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Abstract
While many enterprise knowledge Graphs (KGs) are updated frequently, most KG models require retraining to incorporate
these updates. Inductive models are able to adapt to new edges and entities in the KG. This extended abstract presents a prior
work StATIK–Structure And Text for Inductive Knowledge Completion– and a roadmap towards industry implementations.
StATIK uses a Language Model to extract the semantic information from text descriptions, while using Message Passing
Neural Networks to capture the structural information in the graph. While StATIK was evaluated for inductive knowledge
graph completion, many applications have different end tasks. This work provides background and a roadmap of some of the
opportunities in applying StATIK to industry tasks.
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Knowledge graphs (KGs) are used to represent knowl-
edge across many domains. These domains include
commonsense reasoning [1, 2, 3], question answering
[4, 5, 6, 7, 8, 9], recommendation systems [10, 11, 12, 13],
and many others [14]. In knowledge graphs, the nodes,
called entities, often possess textual descriptions, while
edges are typically labeled with one of many relation
types, which may also possess textual descriptions. Ef-
fective KG models should learn to leverage this textual
information in order to correctly complete the knowledge
base. Additionally, such knowledge graphs are usually
dynamic [15, 16] as a result of the underlying knowl-
edge base being dynamic. Meaning, entities and edges
are frequently added and removed from the knowledge
graph. Thus, another quality we desire of knowledge
graph models, is that they be inductive and generalize to
unseen entities.

StATIK [17] is a completely inductive, hybrid model
that effectively leverages both the structure of a knowl-
edge graph as well as the underlying textual descriptions
of the entities and relations. Structure is incorporated
through a Message Passing Neural Network (MPNN) [18]
that aggregates information from a neighborhood defined
around each entity, while textual information is incor-
porated through a pretrained language model[19]. A
high level depiction of StATIK is provided in Figure 1.
While proven in inductive knowledge graph completion,
this paper proposes paths to applying StATIK in other
industrial tasks.
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Figure 1: StATIK takes as input text features for a centroid
node 0⃝ around which a local subgraph has been sampled. A
fine-tuned language model encodes the text features for the
centroid node while the representations for neighboring nodes
come from a frozen pretrained language model (preprocessing
step). Amessage passing neural network is applied to generate
the final representation for the centroid node.

1. Inductive Representation
Learning on Knowledge Graphs

We can define a knowledge graph with textual infor-
mation as G = (E ,R,T ,D) where E is the set of enti-
ties, R is the set of relation types, T is the set of triples
(ℎ, 𝑟 , 𝑡) ∈ E ×R×E , andD is the set of entity and relation
descriptions. The inductive knowledge graph model-
ing task is defined as follows. Let the training graph be
G𝑡𝑟𝑎𝑖𝑛 = (E𝑡𝑟𝑎𝑖𝑛,R,T𝑡𝑟𝑎𝑖𝑛,D𝑡𝑟𝑎𝑖𝑛)where E𝑡𝑟𝑎𝑖𝑛 is a subset of
E , D𝑡𝑟𝑎𝑖𝑛 is the corresponding subset of D, and T𝑡𝑟𝑎𝑖𝑛 is
the subset of T containing triples only involving entities
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Table 1
Related works comparison table (reproduced from [17]). 𝑁 is number of entities, 𝑄 is number of queries, 𝑅 is number of
relation types. †Model uses domain adaptation but does not train end-to-end. References are TransE [20], OpenWorld[21],
Glove-DKRL[22], Commonsense[23], IndTransE[24], LAN[25], GraIL[26], KGBert[27], BLP[28], StAR[29]
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Inductive - Seen2Unseen 7 3 3 7 3 3 3 3 3 3 3
Inductive - Unseen2Unseen 7 3 3 7 7 7 3 3 3 3 3
End-to-end LM 7 7 7 7† 7 7 7 3 3 3 3
No Support Set Required 3 3 3 3 7 7 7 3 3 3 3
Graph features 7 7 7 3 3 3 3 7 7 7 3
Structure Objective 3 3 3 3 3 3 3 3 3 7 3
Inference Scalability O(𝑁 ) O(𝑁 ) O(𝑁 ) O(𝑁 ) O(𝑁 ) O(𝑁 ) O(𝑁𝑄) O(𝑁𝑄) O(𝑁 ) O(𝑁𝑅 + 𝑄) O(𝑁 + 𝑄)
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Figure 2: Problem addressed by inductive learning (repro-
duced from [17]). During training, only the blue portion of
the graph exists, including the entities FC Barcelona, sports
team, La Liga, and Spain. Later, the entity Cádiz FC is
added to the graph. When added, an entity contains a descrip-
tion and some number of edges (possibly zero). Since StATIK
is inductive, it requires no retraining or retroactive processing
in any way to make predictions about Cádiz FC. This could
include predicting Cádiz FC’s country i.e. the query (Cádiz
FC, country, ?). The correct prediction, (Cádiz FC, country,
Spain), is displayed in dashed red.

in E𝑡𝑟𝑎𝑖𝑛. For any KG task, the goal is to make predictions
onG having only trained themodel onG𝑡𝑟𝑎𝑖𝑛. StATIK was
trained and evaluated on a knowledge graph completion
task. Figure 2 demonstrates a motivating example.

In order to learn the inductive objective, StATIK uses
text features instead of the commonly used embedding
tables and extends prior work by also incorporating struc-
tural information through message passing neural net-
works, a type of graph neural network.

2. Related Work
Much of the work in the area of KG modeling has fo-
cused on the transductive setting i.e. making predictions
on entities seen at training time. Generally, these meth-

ods learn simple entity embeddings in a geometric space
such as TransE [20], ComplEx [30], DistMult [31], RotatE
[32], and SimplE [33], or through a machine learning de-
coder such as ConvE and HypER [34, 35]. There has also
been effort in using graph neural networks for knowl-
edge graph completion. R-GCN [36] brings the original
GCN [37] to themulti-relational knowledge graph setting.
Wang et al. [38] looked at using a modified version of
GAT [39] to get strong results in the transductive setting.

2.1. Inductivity
Recently, there has been increased focus on the inductive
setting. Some works learn embeddings for new entities
by translating from existing entities in the training graph
[25, 24, 40, 41]. This requires a sufficient number of edges
from nodes seen during training to the new nodes (seen-
to-unseen). Other methods [26, 42], have been able to
achieve inductivity without such requirements, and as a
result, can operate on unseen-to-unseen entities. There
have also been some works on open domain knowledge
graph completion, a similar learning task [21, 43]. Some
of their techniques, such as using text to enable gener-
alization to new entities, have continued in the works
analyzed here.

2.2. Language Models
Transformers [44], have created a renaissance in lan-
guage modeling over recent years. Combined with self-
supervised pretraining, language models are able to cap-
ture the contextual and semantic information of natural
language [19].

As many KGs contain text associated with each entity,
researchers have sought to use that information for im-
proved performance or inductivity. KGBert [27] looked
into using transformers for link prediction, treating it as



a text classification task. Bert for Link Prediction (BLP)
[28] and StAR [29] have sought to incorporate language
models while improving on some of the flaws of KGBert.
Commonsense [23] initializes an embedding table using
the language model before training with a message pass-
ing neural network (similar but not inductive). Older
model DKRL [22] uses a simpler language model with
GloVe embeddings [45].

2.3. Structural Objective/Graph Features
Most KG completion models use some form of structural
objective; The scoring function uses spatial or geometric
transformations to learn the graph structure.

Structural objectives alone have some limitations with
regard to capturing graph structure. Being able to ex-
plicitly use the local graph structure and topology as a
feature (through message passing) is beneficial for both
general performance and inductivity. Many of themodels
mentioned [23, 24, 25, 26] make use of such features.

2.4. Scalability
Scalability is incredibly important for KGmodels as enter-
prise knowledge graphs can include millions to billions of
entities and edges. When dealing with complex encoders
such as MPNNs or LMs, the number of encoder passes
becomes an especially pressing issue.

In KG completion, every entity is considered a possible
solution to a query. This is one of the more challenging
tasks with regard to scalability. If each of the possible
triples is evaluated independently, the problem becomes
a combinatorial mess. This is the case for KGBert [27]
and GraiL [26] which can only evaluate a single triple at
a time. This makes the task quadratic in complexity.

There are other scalability issues that arise when com-
bining language models with graph models. Namely,
the neighborhood for the message passing neural net-
work contains many nodes, each with associated text.
Encoding each of the neighbors with a language model at
inference time would be costly when only a single entity
encoding is used in the final output. StATIK solves this
by separating the language encoding of the neighbors
into a preprocessing step and only applying the finetuned
language model to the entity being encoded.

In addition, the size of the neighborhood of some en-
tities makes it infeasible to process the entire neighbor-
hood at once. StATIK relies on frameworks for efficiently
sampling neighborhoods at inference time [46].

Table 1 gives a comparison of the most relevant related
works. StATIK has many advantages in terms of the
factors discussed.

3. Toward Enterprise
Implementation

There are many enterprise domains in which KG entities
are associated with text descriptions including biomed-
ical [47], chemistry [48], geological [49], financial [50],
and many others [51]. StATIK is applicable whenever
this condition is met. Here we outline several potential
directions for leveraging StATIK for enterprise-relevant
KG use cases.

3.1. Beyond KG Completion
While StATIK was developed for and evaluated on in-
ductive knowledge graph completion, the architecture
can be applied to other tasks that are relevant for vari-
ous enterprise use cases. Daza et al. [28] showed that a
text-based model trained on inductive knowledge graph
completion could transfer to other tasks, such as entity
classification and information retrieval.

There are two approaches that can be used to adapt
StATIK to other tasks (1) pretrain then fine-tune: StATIK
can be pretrained on inductive knowledge graph comple-
tion to learn rich entity representations and then fine-
tuned on other downstream tasks. (2) Task-specific train-
ing: StATIK can be trained from scratch on a task such
as entity classification.

Both approaches can be tried for any task. However,
there are some cases in which one may be better. In
some use cases where the primary task is tangential to
the knowledge graph, such as knowledge-enhanced rec-
ommendation systems, it is likely more important to
pretrain the KG model such that it learns rich KG rep-
resentations [52, 53]. In other uses where the output of
StATIK is more directly optimized by the primary task
(e.g. entity classification), then either approach can be
used.

3.2. Tasks Conditioned on Text
One of the advantages of incorporating a fine-tuned lan-
guage model is that the model can learn to condition
on text, rather than just represent the text. StATIK was
trained on text for single hop queries to the KG–e.g. (In-
ception, director, ?). However, it does not need to be
limited to that. StATIK can be conditioned on any text
that is associated with the entity being encoded or task
being performed. Here are a few examples of how this
can be applied. Note that determining the true effective-
ness of each of the following approaches is an area of
future work.

• Adding in user features as text for a personalized
knowledge graph



• Performing more complex KG question answer-
ing where the question can be encoded in text.

• Conditioning a knowledge graph model for rec-
ommendation systems on the genre a user wants

• Adding doctors notes to a patient diagnosis when
encoding that ailment to improve patient health-
care recommendations

• Adding a summary of reviews for products being
recommended

This ability to condition on text unlocks intriguing pos-
sibilities for various industry applications and could lead
to better unification between language and KG domains.

4. Conclusion
StATIK is a powerful inductive model for representing
knowledge graph entities. In return for the added com-
plexity of using both message passing neural networks
and language models, StATIK is able to utilize the rich
information present in both text and graph features. This
makes it appealing for many enterprise use cases where
such information is available. In addition, its structure
unlocks possibilities for applying StATIK in as-of-yet
unexplored ways by utilizing the power of finetuned lan-
guage models.
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