CEUR-WS.org/Vol-3533/iStar23_paper_2.pdf

Exploiting goal-oriented requirements models for
increasing energy awareness: A research preview

Denisse Mufiante!, Anna Perini? and Angelo Susi?

'ENSIIE & SAMOVAR, Evry (France)

?Fondazione Bruno Kessler, Trento (Italy)

Abstract

Energy efficiency of software systems has been investigated by the Software Engineering research
community along different aspects. For example, conceptual frameworks and guidelines have been
defined to help increase stakeholders’ awareness about energy efficiency; design patterns and tactics have
been proposed to guide software system architects when evaluating possible alternative solutions; and
techniques for collecting energy consumption data while the software is running have been developed.
Research on practical methods and tools at support of requirements engineering for the development of
software that meets energy efficiency requirements is still limited.

In this research preview, we introduce an approach that exploits goal-oriented requirements models
and software testing to explore critical scenarios for energy consumption, and identify model factors that
may recur when energy consumption is greater, we call them "model indicators" of energy consumption.
Techniques for performing energy consumption measurements of running software are used. The
resulting method connects artefacts at requirements and run-time levels. The identified model indicators
can contribute to the prediction of energy consumption of software at requirements level, thus increasing
energy awareness of the analysts and developers, and support them to take more energy-friendly
decisions during software development and evolution. We describe this method with the help of an
illustrative example. Next steps in the proposed research are presented.

1. Introduction

Optimising energy consumption of software systems has became a primary goal. Increasing
attention to building energy efficient software systems is given by the software engineering
research communities, under specific umbrellas, for instance, the GreenIT research commu-
nity [1]. In Requirements Engineering (RE), conceptual frameworks and guidelines have been
proposed to help increase stakeholders’ awareness about sustainability requirements for soft-
ware systems, including energy efficiency requirements [2, 3, 4]. Goal-oriented (GO) modelling
for representing and analysing sustainability requirements (including energy optimisation)
has been proposed in several work, as discussed for instance in [5]. Architectural patterns
and tactics have been proposed to guide software system architects when evaluating possible
alternative solutions [6, 7]. Techniques for measuring software energy consumption have been
made available as well [8, 9]. Up to our knowledge, there is still limited availability of practical
methods and tools to be used since the earlier phases in software development.

iStar’23: The 16th International i* Workshop, September 4, 2023, Hannover, GE

& denisse.munantearzapalo@ensiie.fr (D. Mufiante); perini@fbk.eu (A. Perini); susi@fbk.eu (A. Susi)

@ 0000-0003-2621-8342 (D. Muiante); 0000-0001-8818-6476 (A. Perini); 0000-0002-5026-7462 (A. Susi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=1 CEUR Workshop Proceedings (CEUR-WS.org)



mailto:denisse.munantearzapalo@ensiie.fr
mailto:perini@fbk.eu
mailto:susi@fbk.eu
https://orcid.org/0000-0003-2621-8342
https://orcid.org/0000-0001-8818-6476
https://orcid.org/0000-0002-5026-7462
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In our research we aim at providing methods that can help software developers and require-
ments engineers to increase their awareness about energy consumption and the interplay among
different quality requirements.

Towards this objective we leverage on: (i) GO requirements modelling and analysis, which
has been largely exploited to support the evaluation of alternative ways to achieve high level
goals, taking into account the impact in terms of positive and negative contributions to quality
goals [10, 11]; (ii) the Goal-Oriented Software Testing methodology (GOST), which has been
proposed by Nguyen et al. [12], that provides guidelines for the systematic derivation of test
suites from a GO requirements or design model; and (iii) the potential of software testing (ST) in
providing data useful to assess, and eventually refactor, design- and requirements-time artefacts,
including requirements models. The resulting method can be considered a REST method ?,
according to the taxonomy proposed in [13].

The ultimate objective is to help increase requirements engineers’ awareness about possible
issues of energy consumption in the modelled system, and support them in identifying parts of
requirements models that may need refactoring towards improving energy efficiency of the
system.

In the rest of the paper, we introduce the proposed REST method. Examples taken from the
Tele Assistance Service (TAS for brevity) case study [14] are used for illustrative purposes. The
envisioned application of the method is then outlined, together with future research.

2. The method

The proposed REST method includes a set of activities that are performed iteratively by the
software system development team. They are depicted in Figure 1. Four roles are involved with
responsibility on specific activities, namely the Requirements engineer, the Developer, the
Test designer, and the quality assurance team (QA team). The Requirements engineer
analyses the collected domain knowledge and builds a GO requirements model. S/he focuses
on the analysis of the stakeholders’ goals, including quality goals, whose achievement may be
delegated to system actors. On the other side, the Developer builds the running software
application following design decisions that conforms to the previous goal model. Traceability
among the different artefacts in the development process, from requirements GO models to
code is assumed to be established and maintained. Following the GOST methodology and
focusing on acceptance and integration test cases derivations, scenarios from GO models
are derived in a systematic way. Thus, a scenario represents the alternative path, composed of
sub-goals and sub-tasks, that achieve the satisfaction of stakeholders’ goals. Preconditions and
post-conditions complete the definition of scenarios. The Test designer is then responsible to
validate scenarios derivations and to select criteria to setup test cases that are inferred from
scenarios. We focus on acceptance test cases, which provide a mechanism to define and assess
system’s external qualities, and integration test cases, which assess system’s actors dependencies.
The quality assurance team, QA team executes the test cases on the running system, which is
instrumented with energy consumption metering system, as for example JoularJX [15], which
is a Java-based software energy monitoring tool. Then, energy consumption data are analysed.

'That is methods that connect RE and Software Testing (ST) [13].



In particular, they are used to assess energy consumption related to alternative requirements
modelled in OR refinements. The collected data is then aggregated and associated back to
requirements GO models.

ot Association of energy | outeut
------- i metrics to models
Requirements |GO requlrements™ Derivation of 1\ GO model
engineer N .
madel alternative scenarios - - + energy

: Analysis anld evaluation of consumption

' requirements

' @ Definition of y,

conformg to

' Test

test cases
' designer o N ] requirements time @
runtime

QA
______ Collection of energy team
T apar T consumption measurements

Developer . from test cases execution
Running software

application

Figure 1: Process of the proposed REST method

Ilustrative example: Figure 2 depicts an excerpt of the iStar2.0 early requirement model of
the TAS system [14]. The patient (PDC actor) has the primary goal Therapy continuously
adapted, that requires the exchange of information (the resources vital Parameters and
Updated therapy) with the TAS actor, i.e., the Tele Assistance Service, which is the main
system actor. Among the relevant patient’s quality goals, we distinguish having prompt and
easily access advice, as well as having an energy efficient system. The impact of the main (func-
tional) goals to such quality goals are modelled via contribution relationships using qualitative
labels (e.g., hurt, make). A deeper assessment, such as what’s the relative weights among such
contribution relationships should be further analysed. The proposed REST method will help in
regards to the contributions to the energy efficiency quality.

Pursuing the analysis of the TAS actor, alternative solutions for goal achievement are explored
via goal refinements, which explicit sub-goals, tasks and their utilisation of resources (not
shown in Figure 2 for space reasons), and provide rationale for dependencies with external
actors. For example, the TAS actor interacts with a medical assistance actor, MAS, to analyse the
vital parameters from the patient and with an alarm system, AS, that mange the alarms from the
patient. The analysis of these dependencies helps assess how collaborative goals/tasks influence
the total energy consumed by multi-actor systems. Indeed, as argued in [16], besides computing
resources such as memory, CPU, files, networks, etc. also interactions of IoT entities are
important elements to be analysed at requirements time with regard to energy consumption. We
derive scenarios and associate test cases for GO model element that are involved in contribution
relationships to the Energy efficiency quality goal. We can consider for instance the
goals therapy continuously adapted and direct help request managed. Notice
that the latter is refined in two alternative tasks that may have minor positive impact (help?
contribution) or major negative impact (hurt? contribution) to energy efficiency. Running
energy metering technique while executing the derived test cases provides data on energy
consumption of code corresponding to alternative paths in the requirements GO model. In a first
experiment, we focused on two testing scenarios corresponding to the task pressing panic



Continuous
assistance gof

continuously hi

help ?
Direct help \ / via voice
i request > command
managed " =
+{ recommend pressing pani
button _

~

-~
S, |Legend
readiness "

make

hurt ? make

O help

Goal

10§®

therapy A make .7
.-
help = S
ATarm from
° o=
parameters managed Voice alarm Resource
' ‘ . managed

—D

Dependency rel.
between 2 actors

updated '
therapy

Parameters
analysed

~ Parameters
5 7
:

Figure 2: Early requirements GO model of the Tele Assistance Service. iStar 2.0. notation [17].

. Voice alarm
recognised

p
N

AND/OR
refinements

Contribution

button and the resource dependency vital parameters, for which we executed and tested
the TAS system, using JoularJX to measure energy consumption. To avoid fluctuations on the
gathering energy consumption, we run each scenario 120 times. This experiment was conducted
on an HP ProBook laptop (Intel Core i7-1165G7) running Ubuntu 20.04.6 LTS, Java 11, and
JoularJX 2.0. The analysis of collected data allowed to identify which requirements alternative
corresponds to the most energy consuming implemented solution. We identify that the code
associated to the vital parameters dependency consumes 4.25% more energy than that
mapped to the task pressing panic button, thus raising attention to the refinement of this
latter GO element.

3. Discussion and Future work

So far we have applied the proposed REST method to the TAS case study. This first experiment
served to assess the feasibility of the method and helped point out issues to be addressed
for consolidating it. They include the automation of the test cases derivation procedure, and
the definition of guidelines for performing the method’s activities, as depicted Figure 1, in a
systematic way.

The application of the method to other benchmark case studies will help collect further
evidence about the appropriateness of the method. More specifically, this latter research will
contribute to assess the usefulness of the identified model indicators of energy consumption,
(e.g. number of actor’s inter-dependencies), as well as to identify other possible model indicators.
This is a key step in our envisioned approach to increase energy awareness at requirements



1) REST method: collecting 2) Definition of 3) Estimation of energy
energy consumption estimates an energy model consumption >

of model indicators predictor at requirements level
GO model
+ energy
consumption
estimates
GO models Running GO models Energy model GO model
Software + energy consumption predictor for new case

Figure 3: Overview of the envisioned approach for energy awareness at requirements model time

time, according to the overview depicted in Figure 3.

The following step in Figure 3 corresponds to the definition of an energy model predictor
based on the identified model indicators of energy consumption. As mentioned, so far we are
focusing on the study of two model indicators in GO models that can leads to greater energy
consumption in the associated code, namely the number of means-end relationships modelling
the utilisation of resources and the number of dependencies between system’s actors. We thus
studied the relationship, if any, between these model indicators and the energy consumed by
software systems. The study could be extended to exploiting model anomalies as sources of
energy efficiency improvements. In recent years, code refactoring was studied to improve
energy efficiency of source codes, e.g., [18], however bad smells in models are not yet studied
for this purpose, so it could be worth to be investigate further along this direction.

Finally, the Step 3 in Figure 3, corresponds to the moment when energy model predictor will
be used to approximately deduce the potential energy consumed by new case studies from their
GO models . The energy model predictor helps us to identify model indicators that can influence
energy consumption and to assess how they can impact energy efficiency at requirements level.

References

[1] R. Verdecchia, P. Lago, C. Ebert, C. de Vries, Green it and green software, IEEE Software
38 (2021) 7-15.

[2] B.Penzenstadler, H. Femmer, A generic model for sustainability with process- and product-
specific instances, in: Workshop on Green in/by Software Engineering, GIBSE ’13, Associ-
ation for Computing Machinery, New York, USA, 2013, p. 3-8.

[3] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux, B. Penzenstadler,
G. Rodriguez-Navas, C. Salinesi, N. Seyff, C. C. Venters, C. Calero, S. A. Kogak, S. Betz, The
karlskrona manifesto for sustainability design (2014).

[4] L. Duboc, B. Penzenstadler, J. Porras, S. A. Kocak, S. Betz, R. Chitchyan, O. Leifler, N. Seyff,
C. C. Venters, Requirements engineering for sustainability: an awareness framework for
designing software systems for a better tomorrow, Requir. Eng. 25 (2020) 469-492.

[5] J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, J.-N. Mazon, Integrating sustain-
ability in decision-making processes: A modelling strategy, in: 2009 31st International
Conference on Software Engineering - Companion Volume, 2009, pp. 207-210.

[6] S. Gupta, P. Lago, R. Donker, A framework of software architecture principles for



(9]

sustainability-driven design and measurement, in: 2021 IEEE 18th International Conference
on Software Architecture Companion (ICSA-C), 2021, pp. 31-37.

C. V. Paradis, R. Kazman, D. A. Tamburri, Architectural tactics for energy efficiency:
Review of the literature and research roadmap, in: 54th Hawaii International Conference
on System Sciences, HICSS, ScholarSpace, 2021, pp. 1-10.

B. Dornauer, M. Felderer, Energy-saving strategies for mobile web apps and their mea-
surement: Results from a decade of research (preprint), arXiv preprint arXiv:2304.01646
(2023).

S. Chowdhury, S. Borle, S. Romansky, A. Hindle, Greenscaler: training software energy
models with automatic test generation, Empirical Software Engineering 24 (2019) 1649-
1692.

[10] J. Mylopoulos, L. Chung, S. S. Liao, H. Wang, E. S. K. Yu, Exploring alternatives during

requirements analysis, IEEE Softw. 18 (2001) 92-96.

[11] J. Horkoff, T. Li, F. Li, M. Salnitri, E. Cardoso, P. Giorgini, ]J. Mylopoulos, Using goal models

[12]

[13]

[14]

[17]

(18]

downstream: A systematic roadmap and literature review, Int. J. Inf. Syst. Model. Des. 6
(2015) 1-42.

C.D. Nguyen, A. Perini, P. Tonella, Goal-oriented testing for mass, Int. J. Agent Oriented
Softw. Eng. 4 (2010) 79-109.

M. Unterkalmsteiner, R. Feldt, T. Gorschek, A taxonomy for requirements engineering and
software test alignment, ACM Transactions on Software Engineering and Methodology
(TOSEM) 23 (2014) 1-38.

D. Weyns, R. Calinescu, Tele assistance: A self-adaptive service-based system exemplar, in:
P. Inverardi, B. R. Schmerl (Eds.), 10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy, May
18-19, 2015, IEEE Computer Society, 2015, pp. 88-92.

A. Noureddine, Powerjoular and joularjx: Multi-platform software power monitoring
tools, in: 18th Intl. Conf. on Intelligent Environments, IE 2022, Biarritz, France, June 20-23,
2022, IEEE, 2022, pp. 1-4.

S. A. Chowdhury, A. Hindle, Greenoracle: estimating software energy consumption with
energy measurement corpora, in: M. Kim, R. Robbes, C. Bird (Eds.), Proceedings of the
13th International Conference on Mining Software Repositories, MSR 2016, Austin, TX,
USA, May 14-22, 2016, ACM, 2016, pp. 49-60.

F. Dalpiaz, X. Franch, J. Horkoff, istar 2.0 language guide, CoRR abs/1605.07767 (2016).
URL: http://arxiv.org/abs/1605.07767. arXiv:1605.07767.

R. Morales, R. Saborido, F. Khomh, F. Chicano, G. Antoniol, EARMO: an energy-aware
refactoring approach for mobile apps, IEEE Trans. Software Eng. 44 (2018) 1176-1206.


http://arxiv.org/abs/1605.07767
http://arxiv.org/abs/1605.07767

	1 Introduction
	2 The method
	3 Discussion and Future work

