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Abstract
Managing controversial information is a challenging issue in AI. Formal argumentation is an important area
of AI concerned with reasoning about supporting and opposing arguments involved in decision-making
processes. In abstract argumentation frameworks, each argument can be associated with an acceptance
condition, which can be either implicit (e.g. in Dung’s framework) or explicit (e.g. in the Dialectical
Framework, where propositional formulas are associated with arguments/statements). However, existing
argumentation frameworks that allow explicit conditions may not always offer a concise and intuitive
way to express general acceptance conditions, such as those that can be expressed using first-order logic
formulas. In this paper, we discuss the recently introduced Abstract Reasoning Framework (ARF) [1],
that is an argumentation framework where arguments’ acceptance conditions allow for checking general
properties also concerning sets of arguments/statements by exploiting aggregate functions.

1. Introduction

Argumentation is used in our daily life to explain our reasons for or against claims in our
discussions, persuade other people, and derive conclusions in a step-wise fashion. Most of
the situations where argumentation takes place are inherently characterized by the presence of
controversial information. Enabling automated systems to process such kind of information,
much in the same way as organized human discussions are carried out, is an important challenge
that have deserved increasing attention from the Artificial Intelligence community in the last
decades. This has led to the development of an important and active research area called formal
argumentation [2]. A central formalism in this area is Dung’s abstract Argumentation Framework
(AF) [3]. An AF consists of a set of arguments and a binary attack relation over the set of
arguments that specifies the following relationship: if argument 𝑎 attacks argument 𝑏, then 𝑏 is
acceptable only if 𝑎 is not. Hence, arguments are abstract entities whose role is determined by
attacks. We can think of an AF as a directed graph whose nodes represent arguments and edges
represent attacks. The formal meaning of an AF is given in terms of argumentation semantics, e.g.
the well-known grounded, complete, preferred, stable, and semi-stable semantics [3, 4], which
intuitively tell us the sets of arguments (called extensions) that can collectively be accepted to
support a point of view in a discussion, as illustrated in the following example.
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Example 1. Suppose that a party planner invites Antony, Bob, Carol, and David. Due to their
rivalry, Antony and Bob each replies that will join the party if the other does not. Carol replies

d

a

b α

c that she will join the party anyway, and David replies that he will join the
party if at least two among Antony, Bob, and Carol will be at the party. As the
party planner is aware of the fact that Carol will join the party, they interpret
David’s reply as “he will join the party if Antony or Bob will do”. This
situation can be modeled by the AF shown in the the figure on the left-hand

side, where each person’s statement is represented by the name’s initial and 𝛼 is a meta-argument
whose status is false (i.e. not accepted) if either Antony or Bob will join the party. According to
the well-known preferred, stable, and semi-stable semantics [3, 4], we have that {a, c, d} and
{b, c, d} are the preferred, stable, and semi-stable extensions of the AF shown in the figure. □

Despite the expressive power and generality of AFs, in some cases it is difficult to accurately
model domain knowledge by an AF in a natural and easy-to-understand way. For this reason,
Dung’s framework has been extended by introducing further constructs, such as preferences
[5, 6, 7, 8, 9], constraints [10, 11, 12, 13, 14], weights [15, 16], supports [17, 18], topics [19],
and qualitative [20, 21, 22] and quantitative uncertainty [23, 24, 25, 26, 27] to achieve more com-
prehensive, natural, and compact ways for representing useful relationships among arguments [2].
However, many situations cannot be easily modeled using (extended) AFs. This happens, for
instance, when the status of arguments may depend on a value obtained by aggregating some
information. In fact, dealing with attacks and supports, it is not possible to state that an argument
is accepted, and thus appears in an extension 𝐸 under a given semantics, if the number of its
supporters appearing in 𝐸 is greater than the number of its attackers in 𝐸.

As an example, consider now the case where there are 𝑛 people attending a party and that
some pairs of people (e.g. male-female couples) attending together the party have the same ticket.
Now person d says that they will attend the party if there are at least 𝑘 pairs of people with the
same ticket. To express such a condition in existing frameworks such as GRAPPA [28], several
additional (meta-)statements have to be introduced to represent groups of 2 people sharing the
same ticket among 𝑛 people, thus possibly introducing

(︀
𝑛
2

)︀
new statements; in general, we

would have
(︀
𝑛
𝑚

)︀
new statements if groups of 𝑚 people sharing the same ticket are considered.

Moreover, considering the ADF framework [29] (a generalization of AF that allows explicit
acceptance conditions over arguments using propositional formulae), it is not possible to naturally
express acceptance conditions taking into account general properties on groups of objects that,
for instance, can be easily expressed by using first-order logics. On the other side, the GRAPPA
framework, that has firstly addressed the problem and proposed a solution, in some cases is not
sufficiently flexible to easily express situations such as that mentioned above, as it could require
the introduction of several additional statements, sometimes exponential.

Thus, in this paper we present the novel framework called Abstract Reasoning Framework
(ARF) [1], allowing for versatile, easily understandable, and expressive acceptance conditions.

2. Preliminaries

We briefly summarize the basic concepts underlying the notion of partial stable models of logic
programs [30], as ARF semantics relies on that.



A (normal, logic) program is a set of rules 𝑟 of the form 𝑎← 𝑏1 ∧ · · · ∧ 𝑏𝑛, with 𝑛 ≥ 0, where
𝑎 is an atom, called head and denoted by ℎ𝑒𝑎𝑑(𝑟), and 𝑏1 ∧ · · · ∧ 𝑏𝑛 is a conjunction of literals,
called body and denoted by 𝑏𝑜𝑑𝑦(𝑟). With a little abuse of notation, 𝑏𝑜𝑑𝑦(𝑟) also denotes the set
of literals in the body of 𝑟. We consider programs without function symbols.

Given a program 𝑃 , 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) denotes the set of all ground instances of the rules in 𝑃 . The
Herbrand Base of a program 𝑃 , i.e. the set of all ground atoms which can be constructed by using
predicate and constant symbols occurring in 𝑃 , is denoted by 𝐵𝑃 , whereas ¬𝐵𝑃 denotes the set
{¬𝑎 | 𝑎 ∈ 𝐵𝑃 }. Analogously, for any set 𝑆 ⊆ 𝐵𝑃 ∪ ¬𝐵𝑃 , ¬𝑆 denotes the set {¬𝑎 | 𝑎 ∈ 𝑆},
where ¬¬𝑎 = 𝑎. Given 𝐼 ⊆ 𝐵𝑃 ∪ ¬𝐵𝑃 , 𝑝𝑜𝑠(𝐼) (resp., 𝑛𝑒𝑔(𝐼), 𝑢𝑛𝑑𝑒𝑓(𝐼)) stands for 𝐼 ∩ 𝐵𝑃

(resp., ¬𝐼 ∩𝐵𝑃 , 𝐵𝑃 ∖ (𝑝𝑜𝑠(𝐼) ∪ 𝑛𝑒𝑔(𝐼))). 𝐼 is consistent if 𝑝𝑜𝑠(𝐼) ∩ ¬𝑛𝑒𝑔(𝐼) = ∅, otherwise
𝐼 is inconsistent. A set 𝐼 ⊆ 𝐵𝑃 ∪ ¬𝐵𝑃 is a (partial) interpretation of 𝑃 if 𝐼 is consistent; 𝐼 is
total if 𝑝𝑜𝑠(𝐼) ∪ 𝑛𝑒𝑔(𝐼) = 𝐵𝑃 . For any partial interpretation 𝐼 of a program 𝑃 , the atoms in
𝑝𝑜𝑠(𝐼) (resp., in 𝑛𝑒𝑔(𝐼), 𝑢𝑛𝑑𝑒𝑓(𝐼)) are said to be true (resp., false, undefined) w.r.t. 𝐼 . The truth
value, either t (true), f (false) or u (undefined), of an atom 𝑎 w.r.t. an interpretation 𝐼 is denoted
by 𝜗𝐼(𝑎). We assume the truth values ordering f < u < t and that ¬u = u.

A partial interpretation 𝑀 of a program 𝑃 is a partial model of 𝑃 if for each rule 𝑟 ∈
𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ), 𝜗𝑀 (ℎ𝑒𝑎𝑑(𝑟)) ≥ 𝜗𝑀 (𝑏𝑜𝑑𝑦(𝑟)). Given a program 𝑃 and a partial interpretation
𝑀 , the reduct of 𝑃 w.r.t. 𝑀 , denoted by 𝑃𝑀 , is obtained from 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) by replacing each
negated literal with its truth value in 𝑀 . Clearly, rules having in the body the truth value f can be
deleted, and the truth value t can be deleted from the body of rules.

As 𝑃𝑀 is a positive program, the minimal Herbrand model of 𝑃𝑀 can be obtained as the least
fixpoint of its immediate consequence operator 𝑇𝑃𝑀 , denoted by 𝑇𝜔

𝑃𝑀 (∅), containing true and
undefined atoms. Let Ψ𝑃𝑀 be the set of atoms which are either true or false w.r.t. 𝑇𝜔

𝑃𝑀 (∅) (false
atoms are those in 𝐵𝑃 that do not occur in 𝑇𝜔

𝑃𝑀 (∅) neither as true atoms nor as undefined atoms),
then Ψ𝑃𝑀 is minimal w.r.t. 𝑝𝑜𝑠(Ψ𝑃𝑀 ) and maximal w.r.t. 𝑛𝑒𝑔(Ψ𝑃𝑀 ).

Let 𝑃 be a program and 𝑀 a partial model of 𝑃 . Then 𝑀 is a Partial Stable Model (PSM) of
𝑃 iff 𝑀 = Ψ𝑃𝑀 . The set of partial stable models of a logic program 𝑃 define a meet semi-lattice.
The well-founded model and the maximal-stable models are defined by considering the ⊆-
minimal and ⊆-maximal elements. The set of (total) stable models is obtained by considering the
maximal-stable models which are total, whereas the least-undefined (a.k.a. semi-stable) models
are obtained by considering the maximal-stable models with a ⊆-minimal set of undefined atoms.

The set of partial stable (resp., maximal-stable, (total) stable, least-undefined, well-founded)
models of 𝑃 will be denoted by 𝒫𝒮(𝑃 ) (resp.,ℳ𝒮(𝑃 ), 𝒯 𝒮(𝑃 ), ℒ𝒮(𝑃 ),𝒲𝒮(𝑃 )).

Example 2. Consider the program 𝑃 = {a← ¬b; b← ¬a; c← ¬a∧¬b∧¬d; d← ¬c}. The
set of PSMs of 𝑃 is 𝒫𝒮(𝑃 ) = {∅, {¬c, d}, {a,¬b,¬c, d}, {¬a, b, ¬c, d}}. Then,𝒲𝒮(𝑃 ) =
{∅}, whereas 𝒯 𝒮(𝑃 ) =ℳ𝒮(𝑃 ) = ℒ𝒮(𝑃 ) = {{a, ¬b, ¬c, d}, {¬a, b, ¬c, d}}. □

3. Abstract Reasoning Framework

We now present the syntax and the semantics of Abstract Reasoning Framework [1].
The language used to define acceptance conditions considers numerical terms, that is, natural

numbers or terms built by using natural numbers, aggregate functions over set terms (defined



using general properties on groups of objects), and standard arithmetic functions. Moreover,
in addition to user-defined atoms, built-in atoms constructed by using numerical terms and
comparison predicates are also allowed. Specifically, the alphabet consists of the following sets:

• Constants 𝒞, consisting of a set of user-defined objects (denoted by names starting with a
lowercase letter) and the set N of natural numbers;

• Variables 𝒱 , denoted by names starting with an uppercase letter;
• Functions ℱ , consisting of arithmetic functions1 +,−,× and aggregate functions 𝑚𝑖𝑛,
𝑚𝑎𝑥, 𝑐𝑜𝑢𝑛𝑡 and 𝑠𝑢𝑚;

• Predicates Π, consisting of a set of user-defined predicates 𝑄 and the built-in predicates
>,≥, <,≤, =, ̸= (also called comparison operators);

• Logical connectives ℒ = {∧,¬}.

As illustrated below, we assume the existence of set terms that can be defined by specifying
their properties (by a logical formula to be satisfied). Aggregate functions 𝑚𝑖𝑛, 𝑚𝑎𝑥, and 𝑠𝑢𝑚
are assumed to be applied to the first element of the tuples in the input set. Thus, in constructing
formulae defining generalized acceptance conditions, we use atoms having as terms both simple
terms and aggregate terms, that is aggregate functions applied to set terms.

The basic elements for building acceptance conditions are:

• Simple terms, that are constants and variables;
• User-defined atoms, built by using predicates in 𝑄 and simple terms as usual.
• Built-in atoms of the form 𝐸1 ⊙ 𝐸2, where 𝐸1 and 𝐸2 are arithmetic expressions built by

using natural numbers and aggregate terms (see next) and ⊙ is a comparison operator.
• Literals, consisting of built-in atoms or possibly negated user-defined atoms. Analogously

to atoms, literals are distinguished between user-defined and built-in ones.
• Set terms of the form {𝑋 |𝜙(𝑋,𝑍)}, where 𝜙(𝑋,𝑍) is a safe conjunction of literals2

such that built-in atoms contain only simple terms; here 𝑋 is a list of so-called aggregate
variables, whereas 𝑍 is the list of remaining variables, called existential variables.

• Aggregate terms of the form 𝑓(𝑈), where 𝑈 = {𝑋 |𝜙(𝑋,𝑍)} is a set term and 𝑓 is an
aggregate function.

• Logical rules having in the head a ground user-defined atom and in the body a conjunction
of ground user-defined literals and built-in literals.

Notice that the above definitions do not allow to have nested aggregate terms (i.e. only simple
terms can occur inside aggregate terms). W.l.o.g., we can assume that rules may have at most
one built-in atom with aggregate terms. It is also assumed that: i) conjunctions inside set terms
are safe [31], ii) variables occurring in an aggregate term do not occur elsewhere outside the
aggregate term in the same rule, and iii) built-in atoms are monotonic. Intuitively, a built-in atom
is monotonic if by enlarging the set terms occurring in it, its truth value does not decrease (e.g. if
it was t it cannot become f after enlarging the set). These properties are discussed in detail in [1].

We are now ready to introduce the ARF syntax.

1The operator / has been excluded to avoid possible division by zero.
2Intuitively, safeness prescribes that variables take values from a finite domain.



Definition 1 (ARF Syntax). An Abstract Reasoning Framework (ARF) is a tuple ⟨𝑂, 𝑄, 𝑆, 𝐺⟩,
where 𝑂 is a finite set of objects, 𝑄 is a set of predicates, 𝑆 is a finite set of statements built
by using predicates in 𝑄 and constants in 𝒞, and 𝐺 is a finite set of logical rules defining all
statements in 𝑆.

Example 3. Continuing with Example 1, assume now that Carol changes her mind and says
that she will join the party if Bob does not. For the new party planning scenario, we obtain
the following ARF ∆3 = ⟨{a, b, c, d}, {j}, {j(a), j(b), j(c), j(d)}, 𝐺3⟩, where a, b, c, d
respectively denote Antony, Bob, Carol, David, the 1-arity predicate j stands for joins the party,
and 𝐺3 is as follows:

j(a)← ¬j(b) j(b)← ¬j(a)
j(c)← ¬j(b) j(d)← count{X | j(X) ∧ X ̸= d} ≥ 2.

In the last rule, j(X) is a user-defined atom, whereas X ̸= d is a built-in atom containing only
simple terms. On the other side, count{X | j(X) ∧ X ̸= d} ≥ 2 is a (monotonic) built-in
atom containing an aggregate term. Notably, for the more general situation described in the
introduction, where d joins the party only if at least 𝑘 people will do, in the rule defining j(d) we
simply need to replace 2 with 𝑘. □

3.1. ARF Semantics

Considering the tight connection between ARF and logic programming, we propose a semantics
based on an extension of that proposed in [32] for logic programs with aggregates under total
stable model semantics. The semantics of an ARF ∆ = ⟨𝑂,𝑄, 𝑆,𝐺⟩, given by the partial
stable models of 𝐺, is obtained in two steps: (𝑖) first, a dual set of rules 𝐺◇ derived from 𝐺 by
rewriting rules with aggregates is generated, and then (𝑖𝑖) for a given candidate partial stable
model 𝑁 , the P-reduct 𝐺◇𝑁 (a ground, positive, standard program where aggregates are replaced
by conjunctions of atoms) is generated and it is checked that 𝑁 is the fixpoint of the immediate
consequence operator 𝑇𝐺◇𝑁 .

Generating the dual set of rules 𝐺◇

For any ARF ∆ = ⟨𝑂,𝑄, 𝑆,𝐺⟩, the dual set of rules 𝐺◇ is derived from 𝐺 by:

1. replacing every aggregate term 𝑓{𝑋|𝜙(𝑋,𝑍)} with a fresh variable 𝑉 (called auxiliary
variable), and adding to the body of the rule where it appears an auxiliary atom 𝑝(𝑉 )
(where 𝑝 is a fresh predicate);

2. adding for each auxiliary atom 𝑝(𝑉 ), used to replace an aggregate term
𝑓{𝑋 |𝜙(𝑋,𝑍)}, the following two aggregate rules:

𝑟′ : 𝑝(𝑉 )← 𝑉 = 𝑓{𝑋 |𝜙(𝑋,𝑍) ≡ t},
𝑟′′ : 𝑝(𝑉 )← 𝑉 = 𝑓{𝑋 |𝜙(𝑋,𝑍) ̸≡ f},

where the body atom 𝑉 = 𝑓{· · · } is called aggregate atom.



Thus, rules’ bodies of 𝐺◇ consist of either a conjunction of literals not containing aggregate
terms or a single aggregate atom. Intuitively, in the dual set 𝐺◇, heads of rules containing
an aggregate atom can be derived from instances of set terms whose truth value is true or
undefined. For the logical connective ≡ there are different 3-valued semantics; we refer here to
the Lukasiewicz’s logic stating that the truth value of 𝑎 ≡ 𝑏 is true if the truth values of 𝑎 and 𝑏
coincide, false if one is false and the other one is true, undefined otherwise.

The difference between 𝐺 and 𝐺◇ is that in 𝐺◇ we have introduced new auxiliary atoms to
compute intermediate values related to aggregate terms.

Example 4. Considering the set of rules 𝐺3 of ∆3, the dual set of rules 𝐺◇
3 is as follows:

j(a)← ¬j(b) j′(V)← V = count{X | (j(X) ∧ X ̸= d) ≡ t}
j(b)← ¬j(a) j′(V)← V = count{X | (j(X) ∧ X ̸= d) ̸≡ f}
j(c)← ¬j(b)
j(d)← j′(V) ∧ V ≥ 2

where a, b, c, d are constants, V is an auxiliary variable and j′(V) is an auxiliary atom. □

We now define the satisfiability of literals and aggregate atoms. To this end, for any ARF
∆ = ⟨𝑂,𝑄, 𝑆,𝐺⟩, we denote by 𝑝𝑔𝑟𝑜𝑢𝑛𝑑(𝐺◇) the program derived from 𝐺◇ by replacing
auxiliary variables with constants in N in all possible ways. Let 𝐻 be the set of atoms occurring
in the heads of rules in 𝑝𝑔𝑟𝑜𝑢𝑛𝑑(𝐺◇). A partial interpretation 𝑁 for 𝐺◇ is a consistent subset
of 𝐻 ∪ ¬𝐻 , that is, for each auxiliary predicate 𝑝, 𝑁 defines at most one atom 𝑝(𝑘) as true
(contained in the interpretation) and at most one atom 𝑝(𝑘′) as undefined.

For instance, considering Example 4, the partial interpretation 𝑁 = {j(a), ¬j(b), j′(1)} ∪
{¬j′(x) | x ∈ (N ∖ {1})} is consistent, while 𝑁 ′ = {j(a),¬j(b), j′(1), j′(2)} ∪ {¬j′(x) | x ∈
(N ∖ {1, 2, 3, 4})} is not. Observe that interpretations for 𝐺 are finite whereas interpretations for
𝐺◇ can be infinite, though enumerable and finitely representable.

A partial interpretation 𝑀 for an ARF ⟨𝑂,𝑄, 𝑆,𝐺⟩ is a consistent set such that 𝑀 ⊆ 𝑆 ∪ ¬𝑆.

Definition 2 (Satisfiability of literals and aggregate atoms). Let ∆ = ⟨𝑂,𝑄, 𝑆,𝐺⟩ be an ARF
and let 𝑁 be a partial interpretation for 𝐺◇. Then:

• a user-defined, ground literal ℓ is true (resp., false, undefined) w.r.t. 𝑁 if ℓ ∈ 𝑁 (resp.,
¬ℓ ∈ 𝑁 , neither ℓ ∈ 𝑁 nor ¬ℓ ∈ 𝑁 );

• the truth value of a ground built-in literal is computed in the standard way and it is either
true or false;

• an aggregate atom 𝑘 = 𝑓{𝑋 | 𝜙(𝑋,𝑍)}, with 𝑘 ∈ N, is:

– true w.r.t. 𝑁 if, let 𝑘𝑡 be the value of 𝑓{𝑋 | 𝜙(𝑋,𝑍) ≡ t} computed over 𝑁 , the
arithmetic statement 𝑘 = 𝑘𝑡 is true; for 𝑓 ∈ {𝑚𝑖𝑛,𝑚𝑎𝑥} it is also required that
|{𝑋 | 𝜙(𝑋,𝑍) ≡ t}| > 0;

– undefined w.r.t. 𝑁 if, let 𝑘𝑢 be the value of 𝑓{𝑋 | 𝜙(𝑋,𝑍) ̸≡ f} computed over 𝑁 ,
the arithmetic statement 𝑘 = 𝑘𝑡 is false and the arithmetic statement 𝑘 = 𝑘𝑢 is true;
for 𝑓 ∈ {𝑚𝑖𝑛,𝑚𝑎𝑥} it is also required that |{𝑋 | 𝜙(𝑋,𝑍) ̸≡ f}| > 0;



– false w.r.t. 𝑁 , otherwise.

Observe that if 𝑁 is a total interpretation then literals and aggregate atoms are either true
or false w.r.t. 𝑁 . Indeed, any aggregate atom cannot be undefined because 𝜙(𝑋,𝑍) ≡ t is
equivalent to 𝜙(𝑋,𝑍) ̸≡ f .

Generating the P-reduct of 𝐺◇

ARF’s partial stable model semantics extends the total stable model semantics for normal pro-
grams with aggregates defined in [32] and is based on the novel concept of P-reduct of the dual
program, defined as follows.

Definition 3 (P-Reduct). Given an ARF ∆ = ⟨𝑂,𝑄, 𝑆,𝐺⟩ and a partial interpretation 𝑁 for
𝐺◇, the P-reduct 𝐺◇𝑁 is obtained from 𝑝𝑔𝑟𝑜𝑢𝑛𝑑(𝐺◇) by:

1. deleting:
a) aggregate rules whose body atom 𝑘 = 𝑓(𝑈) is false w.r.t. 𝑁 ,
b) rules having in the body an auxiliary atom not defined by any rule (i.e. there are no rules

having that atom in the head), and
2. replacing:

a) every aggregate atom 𝑘 = 𝑓{𝑋 |𝜙(𝑋,𝑍) ≡ t} that is true w.r.t. 𝑁 with the conjunction⋀︀
{𝜙(𝑥, 𝑧) |𝜙(𝑥, 𝑧) is true w.r.t. 𝑁};

b) every aggregate atom 𝑘 = 𝑓{𝑋 |𝜙(𝑋,𝑍) ̸≡ f} that is not false w.r.t. 𝑁 with the
conjunction

⋀︀
{𝜙(𝑥, 𝑧) |𝜙(𝑥, 𝑧) is not false w.r.t. 𝑁};

c) every negative (user-defined) body literal and built-in literal with its truth value w.r.t. 𝑁 ;
where 𝑥 and 𝑧 are lists of constants replacing the list of variables 𝑋 and 𝑍, respectively.

Therefore, 𝐺◇𝑁 is derived from 𝑝𝑔𝑟𝑜𝑢𝑛𝑑(𝐺◇) and 𝑁 , after deleting useless rules (items 1.a
and 1.b), by performing the same steps as done for standard programs (item 2.c), and by replacing
aggregate rules with standard rules (items 2.a and 2.b). Clearly, rules in 𝐺◇𝑁 having in the body a
truth value f may be omitted as they do not contribute to the computation of the minimum model.
Therefore, for each auxiliary predicate 𝑝, there are at most two rules defining it in 𝐺◇𝑁 .

It is worth noting that conjunctions 𝜙(𝑥1, 𝑧1) ∧ · · · ∧ 𝜙(𝑥𝑘, 𝑧𝑘) replacing aggregate atoms of
the form 𝑘 = 𝑐𝑜𝑢𝑛𝑡{𝑋 | 𝜙(𝑋,𝑌 )} contain exactly 𝑘 elements 𝜙(𝑥𝑖, 𝑧𝑖). Note also that if 𝑁 is
a total interpretation for 𝐺◇, then items 2.a and 2.b of Definition 3 are equivalent. We are now
ready to define models for an ARF.

Definition 4 (ARF Semantics). An interpretation 𝑀 for an ARF ∆ = ⟨𝑂,𝑄, 𝑆,𝐺⟩ is a partial
stable model (PSM) for ∆ if there exists an interpretation 𝑁 for 𝐺◇ such that: i) 𝑁 is the minimal
model of the P-reduct 𝐺◇𝑁 , and ii) 𝑀 = 𝑁 ∩ (𝑆 ∪ ¬𝑆).

Notice that for ARFs where 𝐺 is a standard program (not containing aggregate terms), the
definition of partial stable model coincides with that of logic programs, as 𝐺◇ coincides with 𝐺
and an interpretation for it has no auxiliary atoms.



Example 5. Considering the set of rules 𝐺3 of ∆3 (see Example 3), the dual set of rules 𝐺◇
3 (see

Example 4), and the the interpretation 𝑁1 = {j(a),¬j(b), j(c), j(d), j′(2)} ∪ {¬j′(x) | x ∈
(N ∖ {2})} for 𝐺◇

3, the P-reduct 𝐺◇𝑁1
3 is:

j(a)← t j(c)← t
j(d)← j′(2) ∧ 2 ≥ 2 j′(2)← j(a) ∧ j(c).

Observe that rule j(b)← f has been omitted as its body is false. Therefore, 𝑀1 = 𝑁1 ∩ (𝑆 ∪
¬𝑆) = {j(a),¬j(b), j(c), j(d)} is a PSM for ∆3, as 𝑁1 is the minimal model of 𝐺◇𝑁1

3 . □

We use𝒫𝒮(∆) to denote the set of PSMs for ∆. Consistently with the terminology of Section 2,
a maximal-stable model is a ⊆-maximal PSM for ∆. A (total) stable model is a maximal-stable
model for ∆ that is total, and a least-undefined model is a maximal-stable model for ∆ with a
⊆-minimal set of undefined statements.

Example 6. ARF ∆3 has 3 PSMs: 𝑀0 = ∅, 𝑀1 = {j(a), ¬j(b) j(c), j(d)} and 𝑀2 =
{¬j(a), j(b), ¬j(c),¬j(d)}. 𝑀1 and 𝑀2 are maximal-stable, stable, and least-undefined.
However, it is not always true that the maximal-stable models are also (total) stable. Indeed,
consider the ARF ∆6 obtained from ∆3 by replacing the rule j(c) ← ¬j(b) with j(c) ←
¬j(b) ∧ ¬j(c). In this case we have that ∆6 has 3 PSMs: 𝑀0 = ∅, 𝑀1 = {j(a), ¬j(b)} and
𝑀2 = {¬j(a), j(b), ¬j(c),¬j(d)}. 𝑀1 is maximal-stable, but not (total) stable, while 𝑀2

(total) stable and, therefore, also maximal-stable and least-undefined. □

4. Conclusions

We have discussed the Abstract Reasoning Framework (ARF), that is a simple yet expressive
argumentation framework where arguments’ acceptance conditions allow aggregates and whose
semantics is built on basis of the proposal of [32] that naturally extends (total) stable model
semantics for standard logic programs to logic programs with aggregates. Aggregates over
set terms have been studied in different contexts such as databases, logic programming, and
argumentation-based frameworks. Interestingly, it can be shown that ARF generalizes several
existing AF-based frameworks (e.g. Bipolar AF [33], AFRA, ASAF, and Recursive AF [17, 34]),
as their semantics could be expressed using partial stable models [35]. We point out that ARF
without aggregate functions can be easily implemented by using classical ASP solvers [36, 37].
However, this cannot be carried out for the (full) ARF framework since current ASP solvers do
not fully support general aggregates as proposed in [32]. Indeed, the big research effort on the
extension of ASP languages with aggregate constructs has culminated with the proposal presented
in [32]. We strongly believe that this semantics will be incorporated in the next generation ASP
solvers so that the ARF framework could be easily implemented. Finally, in [1] it is shown that
the complexity of credulous and skeptical reasoning in ARF (that is, checking whether a given
statement holds in any/all models) is not higher than that of AF-based frameworks under several
well-known non-deterministic semantics.
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