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Abstract
Multi-agent systems (MAS) are comprised by autonomous agents, each with a potentially specific goal
that may be different from the objective of the system designer. MAS represent the perfect environment
for the work in Algorithmic Mechanism Design (AMD), which seeks to design incentive-compatible
mechanisms, the core idea being to maximise the profit of the agents when they behave honestly, thus
preventing misbehaviour and allowing the designer to optimise her goal.

AMD often assumes full rationality of agents who are expected to know their full preferences (however
complex they are) and to strategise optimally so that the mechanism is guided towards outcomes they
prefer. However, in real MAS, this is too strong an assumption. Humans could interact with software
agents and irrationally choose suboptimal strategies due to their cognitive biases and/or limitations [1].
Software agents themselves could be “irrational” since they could have been “badly” programmed either
because the programmer misunderstood the incentive structure in place or due to computational barriers
[2].

Much work has been done in the last years to relax full rationality and set an agenda to design AMD
mechanisms for real MAS, where we seek to incentivise honest behaviour when agents have some form
of imperfect rationality. This paper will survey some recent works focusing on mechanism design when
agents have imperfect rationality.
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1. Introduction

Mechanism Design provides tools for developing protocols that align the goals of a planner
with the selfish interests of the participating agents. Indeed, agents may, in principle, have an
advantage if they deviate from the protocol’s prescriptions. This could invalidate the guarantees
of the protocol, such as, the maximization of some social measure of welfare or the revenue of
the designer, that only hold under the assumption that agents behave as dictated. Hence, the goal
is to design special protocols, named mechanisms, that allow to optimize the planner goals, and
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at the same time incentivize agents to follow the protocol, a property called strategyproofness.
In Artificial Intelligence, mechanism design has found applications in many settings: from

allocation, to facility location and matching problems [2].
Recently, a lot of interest has been devoted to designing mechanisms that not only aim to

maximize the goal of the planner and to incentivize the correct behaviour of agents, but are
also simple. Simplicity is usually intended in terms of the ability for the agents to understand
their incentives without the need to engage in complex case analyses. From this point of view,
simplicity is related with the transparency and the accountability of the protocol, that are often
desirable properties, especially for democratic institutions.

This definition of simplicity has been recently formalized by Li [8] with the concept of
Obviously Strategyproof (OSP) mechanisms. Roughly speaking, a mechanism is OSP if whenever
it requires an agent to take an action, the worst outcome that she can achieve by following the
protocol is not worse than the best outcome that she can achieve by deviating. Unfortunately, it
has been observed that designing efficient OSP mechanisms can be a hard task [9], and indeed,
most of the early works on the subject focus on special mechanism formats that are OSP, as
posted price mechanisms [10, 11] and deferred acceptance auctions [12].

In this paper we describe a characterization of OSP mechanisms for single-parameter problems
– wherein agent behaviour depends on a single parameter, also known as type. Interestingly,
this characterizations relate OSP mechanisms to greedy and reverse greedy (a.k.a., deferred
acceptance) algorithms, stating that algorithms with this format can be easily enriched with
payments to guarantee obvious strategyproofness.

2. Notation

We let 𝑁 denote a set of 𝑛 selfish agents and 𝒮 a set of feasible outcomes. Each agent 𝑖 has a
type 𝑡𝑖 ∈ 𝐷𝑖 that we assume to be her private knowledge. We call 𝐷𝑖 the domain of 𝑖. With
𝑡𝑖(𝑋) ∈ R we denote the cost of agent 𝑖 with type 𝑡𝑖 for the outcome 𝑋 ∈ 𝒮 . When costs are
negative, the agent has a profit from the solution, called valuation. We will be working with
costs and use that terminology accordingly but our results do not assume that costs are positive.

A mechanism interacts with the agents in 𝑁 to select an outcome 𝑋 ∈ 𝒮 . Specifically, agent
𝑖 takes actions (e.g., saying yes/no) that may signal to the mechanism a type 𝑏𝑖 ∈ 𝐷𝑖 different
from 𝑡𝑖 (e.g., saying yes could signal that the type has some properties that 𝑏𝑖 has but 𝑡𝑖 does
not). We then say that agent 𝑖 takes actions compatible with (or according to) 𝑏𝑖 and call 𝑏𝑖 the
presumed type.

For a mechanism ℳ, ℳ(b) denotes the outcome returned by the mechanism when the
agents take actions according to their presumed types b = (𝑏1, . . . , 𝑏𝑛) (i.e., each agent 𝑖 takes
actions compatible with the corresponding 𝑏𝑖). This outcome is computed by a pair (𝑓, 𝑝), where
𝑓 = 𝑓(b) = (𝑓1(b), . . . , 𝑓𝑛(b)) (termed social choice function or algorithm) maps the actions
taken by the agents according to b to a feasible solution in 𝒮 , and 𝑝(b) = (𝑝1(b), . . . , 𝑝𝑛(b)) ∈
R𝑛 maps the actions taken by the agents according to b to payments.

Each selfish agent is equipped with a quasi-linear utility function, i.e., agent 𝑖 has utility
function 𝑢𝑖 : 𝐷𝑖 × 𝒮 → R: for 𝑡𝑖 ∈ 𝐷𝑖 and for an outcome 𝑋 ∈ 𝒮 returned by a mechanism
ℳ, 𝑢𝑖(𝑡𝑖, 𝑋) is the utility that agent 𝑖 has for the implementation of outcome 𝑋 when her type



is 𝑡𝑖, i.e., 𝑢𝑖(𝑡𝑖,ℳ(𝑏𝑖,b−𝑖)) = 𝑝𝑖(𝑏𝑖,b−𝑖)− 𝑡𝑖(𝑓(𝑏𝑖,b−𝑖)).
A single-parameter agent 𝑖 has as private information a single real number 𝑡𝑖 and 𝑡𝑖(𝑋) can

be expressed as 𝑡𝑖w𝑖(𝑋) for some publicly known function w; note that w𝑖(𝑋) is a non-negative
real number (and 𝒮 = R𝑛

≥0). Moreover, observe that the cost of player 𝑖 is independent on
what the outcome 𝑋 prescribes for players different from 𝑖. We make no other assumption
on 𝒮 . To simplify the notation, we will write 𝑡𝑖𝑓𝑖(b) when we want to express the cost of a
single-parameter agent 𝑖 of type 𝑡𝑖 for the output of social choice function 𝑓 on input the actions
corresponding to a bid vector b.

3. Obvious Strategyproofness

We here introduce the concept of implementation tree to formally define (deterministic) OSP
mechanisms. Our definition is, w.l.o.g., built on the one by Mackenzie [13] rather than the
original definition by Li [8].

An extensive-form mechanism ℳ is a triple (𝑓, 𝑝, 𝒯 ) where, as from above, the pair (𝑓, 𝑝)
determines the outcome of the mechanism, and 𝒯 is a tree, called implementation tree, such
that:
• Every leaf ℓ of the tree is labeled with a possible outcome of the mechanism (𝑋(ℓ), 𝑝(ℓ)),

where 𝑋(ℓ) ∈ 𝒮 and 𝑝(ℓ) ∈ R;
• Each node 𝑢 in the implementation tree 𝒯 defines the following:

– An agent 𝑖 = 𝑖(𝑢) to whom the mechanism makes a query. Each possible answer to this
query leads to a different child of 𝑢.

– A subdomain 𝐷(𝑢) = (𝐷
(𝑢)
𝑖 , 𝐷

(𝑢)
−𝑖 ) containing all types that are compatible with 𝑢, i.e.,

compatible with all the answers to the queries from the root down to node 𝑢. Specifically,
the query at node 𝑢 defines a partition of the current domain of 𝑖 = 𝑖(𝑢), 𝐷(𝑢)

𝑖 into 𝑘 ≥ 2
subdomains, one for each of the 𝑘 children of node 𝑢. Thus, the domain of each of these
children will have as the domain of 𝑖, the subdomain of 𝐷(𝑢)

𝑖 corresponding to a different
answer of 𝑖 at 𝑢, and an unchanged domain for the other agents.

Observe that, according to the definition above, for every profile b there is only one leaf
ℓ = ℓ(b) such that b belongs to 𝐷(ℓ). Similarly, to each leaf ℓ there is at least a profile b that
belongs to 𝐷(ℓ). For this reason, we say that ℳ(b) = (𝑋(ℓ), 𝑝(ℓ)).

Two profiles b, b′ are said to diverge at a node 𝑢 of 𝒯 if this node has two children 𝑣, 𝑣′ such
that b ∈ 𝐷(𝑣), whereas b′ ∈ 𝐷(𝑣′). For every such node 𝑢, we say that 𝑖(𝑢) is the divergent
agent at 𝑢.

We are now ready to define obvious strategyproofness. An extensive-form mechanism ℳ
is obviously strategy-proof (OSP) if for every agent 𝑖 with real type 𝑡𝑖, for every vertex 𝑢 such
that 𝑖 = 𝑖(𝑢), for every b−𝑖,b

′
−𝑖 (with b′

−𝑖 not necessarily different from b−𝑖), and for every
𝑏𝑖 ∈ 𝐷𝑖, with 𝑏𝑖 ̸= 𝑡𝑖, such that (𝑡𝑖,b−𝑖) and (𝑏𝑖,b

′
−𝑖) are compatible with 𝑢, but diverge at 𝑢,

it holds that 𝑢𝑖(𝑡𝑖,ℳ(𝑡𝑖,b−𝑖)) ≥ 𝑢𝑖(𝑡𝑖,ℳ(𝑏𝑖,b
′
−𝑖)). Roughly speaking, an OSP mechanism

requires that, at each time step agent 𝑖 is asked to take a decision that depends on her type, the
worst utility that she can get if she behaves according to her true type is at least the best utility
she can get by behaving differently.



4. Cycle-monotonicity Characterizes OSP Mechanisms

We next describe the main tools needed for our characterization: i.e., OSP can be characterized
by the absence of negative-weight cycles in a suitable weighted graph over the possible strategy
profiles. Specifically, we consider a mechanism ℳ with implementation tree 𝒯 for a social
choice function 𝑓 , and define:
• Separating Node: A node 𝑢 in the implementation tree 𝒯 is (a,b)-separating for agent
𝑖 = 𝑖(𝑢) if a and b are compatible with 𝑢 (that is, a,b ∈ 𝐷(𝑢)), and the two types 𝑎𝑖 and 𝑏𝑖
belong to two different subdomains of the children of 𝑢 (thus implying 𝑎𝑖 ̸= 𝑏𝑖).

• OSP-graph: For every agent 𝑖, we define a directed weighted graph𝒪𝒯
𝑖 having a node for each

profile in 𝐷 = ×𝑖𝐷𝑖. The graph contains edge (a,b) if and only if 𝒯 has some node 𝑢 which
is (a,b)-separating for 𝑖 = 𝑖(𝑢), and the weight of this edge is 𝑤(a,b) = 𝑎𝑖(𝑓𝑖(b)− 𝑓𝑖(a)).
Throughout the paper, we will denote with a → b an edge (a,b) ∈ 𝒪𝒯

𝑖 , and with a⇝ b a
path among these two profiles in 𝒪𝒯

𝑖 .
• OSP Cycle Monotonicity (OSP CMON): OSP cycle monotonicity (OSP CMON) holds if,

for all 𝑖, the graph 𝒪𝒯
𝑖 does not contain negative-weight cycles. Moreover, OSP two-cycle

monotonicity (OSP 2CMON) holds if the same is true when considering cycles of length two
only, i.e., cycles with only two edges. Sometimes, we will simply say CMON and 2CMON
below.

Theorem 1. A mechanism with implementation tree 𝒯 for a social function 𝑓 is OSP on finite
domains if and only if OSP CMON holds. Moreover, for any OSP mechanism ℳ = (𝑓, 𝑝, 𝒯 ) where
𝒯 is not a binary tree, there is an OSP mechanism ℳ′ = (𝑓, 𝑝, 𝒯 ′) where 𝒯 ′ is a binary tree.

Given the result above, we henceforth assume that the agents have finite domains and that
the implementation trees of our mechanisms are binary.

5. Algorithmic Characterization of OSP Mechanisms

We first observe that it is w.l.o.g. to restrict to a specific class of mechanisms, that are ordered.
Specifically, let ℳ = (𝑓, 𝑝, 𝒯 ) be an extensive-form mechanism. Let 𝑢 ∈ 𝒯 be a node where
𝑖 = 𝑖(𝑢) and 𝐷

(𝑢)
𝑖 is separated into 𝐿 and 𝑅. We say that the query at 𝑢 is ordered if for all

𝑙, 𝑟 ∈ 𝐷
(𝑢)
𝑖 with 𝑙 in 𝐿 and 𝑟 in 𝑅, 𝑙 < 𝑟 and ℒ(𝑢)

𝑖 (𝑟) ⪯ ℒ(𝑢)
𝑖 (𝑙). Then, we say that a mechanism

is ordered if it only makes ordered queries. Next result shows that we can focus on ordered
mechanisms without loss of generality as long as we are interested in OSP.

Theorem 2. Any OSP mechanism ℳ = (𝑓, 𝑝, 𝒯 ) can be transformed into an equivalent OSP
mechanism ℳ′ = (𝑓, 𝑝, 𝒯 ′) where all queries in 𝒯 ′ are ordered.

In order to provide our algorithmic characterization, we begin by defining the concept of
antimonotone types and of pivots for a pair of types. We say that two types like 𝑏

(1)
𝑖 > 𝑏

(2)
𝑖 for

which there are profiles b(1) and b(2) such that 𝑓𝑖(b(1)) > 𝑓𝑖(b
(2)) are antimonotone and call

the profiles b(1) and b(2) witnesses of antimonotonicity of 𝑏(1)𝑖 and 𝑏
(2)
𝑖 . Given a node 𝑢 and a

pair of types 𝑏(1)𝑖 , 𝑏
(2)
𝑖 ∈ 𝐷

(𝑢)
𝑖 , we say that types 𝑏(𝑢)𝑖 , 𝑏(𝑑)𝑖 are pivots for 𝑏(1)𝑖 and 𝑏

(2)
𝑖 if



• they are separated from 𝑏
(1)
𝑖 , 𝑏

(2)
𝑖 respectively at nodes 𝑣(𝑢), 𝑣(𝑑) ∈ 𝒯 that are ancestors of 𝑢

with 𝑖(𝑣(𝑢)) = 𝑖(𝑣(𝑑)) = 𝑖;

• for 𝑦 ∈ ℒ(𝑢)
𝑖 (𝑏

(1)
𝑖 ) and 𝑥 ∈ ℒ(𝑢)

𝑖 (𝑏
(2)
𝑖 ) with 𝑦 > 𝑥, there are 𝑧 ∈ ℒ(𝑣(𝑢))

𝑖 (𝑏
(𝑢)
𝑖 ) with 𝑧 ≥ 𝑦,

and 𝑞 ∈ ℒ(𝑣(𝑑))
𝑖 (𝑏

(𝑑)
𝑖 ) with 𝑞 ≤ 𝑥.

For a label 𝑥 ∈ ℒ(𝑢)(𝑡) of some type 𝑡 at node 𝑢 ∈ 𝒯 , we call b−𝑖 a 𝑥-buddy for 𝑡 at 𝑢 if
b−𝑖 ∈ 𝐷

(𝑢)
−𝑖 and 𝑓𝑖(𝑡,b−𝑖) = 𝑥. Given a node 𝑢 and a pair of types 𝑏(1)𝑖 , 𝑏

(2)
𝑖 ∈ 𝐷

(𝑢)
𝑖 , we say that

types 𝑏(𝑢)𝑖 , 𝑏(𝑑)𝑖 are extreme pivots if they are pivots for 𝑏(1)𝑖 and 𝑏
(2)
𝑖 and, given 𝑧 ≥ 𝑦 > 𝑥 ≥ 𝑞

as above, we have that 𝑤(𝑃 (𝑜𝑢𝑡)
1 ) +𝑤(𝑃

(𝑖𝑛)
2 ) +𝑤(𝑃

(𝑜𝑢𝑡)
2 ) +𝑤(𝑃

(𝑖𝑛)
1 ) ≥ 0, for all paths 𝑃 (𝑜𝑢𝑡)

1 ,
𝑃

(𝑖𝑛)
2 , 𝑃 (𝑜𝑢𝑡)

2 , 𝑃 (𝑖𝑛)
1 in 𝒪𝒯

𝑖 defined as follows:

𝑃
(𝑜𝑢𝑡)
1 := (𝑏

(1)
𝑖 ,b

(𝑦)
−𝑖 ) → a(1) ⇝ a(𝑘) → (𝑏

(𝑑)
𝑖 ,b

(𝑞)
−𝑖 )

𝑃
(𝑖𝑛)
2 := (𝑏

(𝑑)
𝑖 ,b

(𝑞)
−𝑖 ) → c(1) ⇝ c(ℓ) → (𝑏

(2)
𝑖 ,b

(𝑥)
−𝑖 )

𝑃
(𝑜𝑢𝑡)
2 := (𝑏

(2)
𝑖 ,b

(𝑥)
−𝑖 ) → c(ℓ+1) ⇝ c(ℓ+ℎ) → (𝑏

(𝑢)
𝑖 ,b

(𝑧)
−𝑖 )

𝑃
(𝑖𝑛)
1 := (𝑏

(𝑢)
𝑖 ,b

(𝑧)
−𝑖 ) → a(𝑘+1) ⇝ a(𝑘+𝑔) → (𝑏

(1)
𝑖 ,b

(𝑦)
−𝑖 ),

where b(𝑦)
−𝑖 is a 𝑦-buddy for 𝑏(1)𝑖 at 𝑢, b(𝑥)

−𝑖 is an 𝑥-buddy for 𝑏(2)𝑖 at 𝑢, b(𝑞)
−𝑖 is a 𝑧-buddy for 𝑏(𝑑)𝑖 at

𝑣(𝑑), b(𝑧)
−𝑖 is a 𝑞-buddy for 𝑏(𝑢)𝑖 at 𝑣(𝑢), a(1), . . . ,a(𝑘+𝑔) and c(1), . . . , c(ℓ+ℎ) are profiles in 𝒪𝒯

𝑖 .
We are now ready to provide the definition of the mechanism format that characterizes OSP:

A mechanism ℳ = (𝑓, 𝑝, 𝒯 ) is three-way greedy if all its queries are ordered and for all internal
nodes 𝑢 ∈ 𝒯 such that 𝑖(𝑢) ̸= 𝑖 and 𝑏

(1)
𝑖 and 𝑏

(2)
𝑖 in 𝐷

(𝑢)
𝑖 are antimonotone, it holds that any

pair of pivots 𝑏(𝑢)𝑖 and 𝑏
(𝑑)
𝑖 are extreme. We then have the following theorem:

Theorem 3. An OSP mechanism ℳ implementing 𝑓 exists if and only if a three-way greedy
mechanism implementing 𝑓 exists.

To make sense of the notion (and the name) of three-way greedy mechanisms, we now explore
few of their properties. Let us first assume that we would like to avoid the introduction of pivots
until there are antimonotone types (this will surely satisfy the definition of three-way greedy
mechanism). How can a mechanism avoid two pivots? Clearly, the mechanism can query an
agent in a greedy fashion (i.e., by querying about the best type that has not yet been queried,
and in case of positive answer, by guaranteeing her an outcome at least as good as the one
she may achieve in case of negative answer) or in a reverse greedy fashion (i.e., by asking her
whether her type is the worst that has not yet been queried, and in case of positive answer,
by guaranteeing her an outcome at least as bas as the one she may achieve in case of positive
answer). The third possibility is for the mechanism to first query an agent about whether her
type is large or small (with the exact threshold defining large or small types depending on the
problem at the hand), whilst ensuring that a label for a large type is never better than the label of
a small type, and then in case of large types, proceeding by querying the agent greedily, whereas
in the case of small types, the mechanism queries the agent in a reverse greedy fashion. These
three ways of ensuring that no two pivots exist justify the name of our mechanism. Actually,
the definition of three-way greedy mechanisms allows pivots to exist, as long as the one with



small (large) label is large (small) enough. Here, the thresholds for these pivots to be considered
small/large enough depend on cycles that go through the four aforementioned points, cf. the
definitions of the paths in the OSP-graph.

Interestingly, this leads to an even simpler characterization in case of binary allocation
problems. Indeed, with only two outcomes available, the only pivots possible must have
outcomes that are equal to those of the two antimonotone types. This implies that the existence
of pivots leads to negative-weight cycles. Hence, the only way to satisfy the definition of
three-way greedy mechanism is to avoid pivots, that in turn means that the mechanism has to
interact with each agent either in a greedy fashion or in a reverse greedy fashion as long as
there are still antimonotone types (for this reason, we term such a mechanism two-way greedy
mechanisms).

6. Payments

Theorem 3 is essentially existential, since it does not provide explicit payments. The existence of
the payments follows from Theorem 1: the payments for a particular player are defined therein
as the shortest path in the corresponding OSP graph. However, these graphs have in general
exponential size with respect to the description of the instance, meaning that this approach is
infeasible from a computational point of view. Moreover, the implicit definition of payments
“hides” the simplicity of the decision making of agents facing an OSP mechanism. We next show
that these payments actually have a simple structure.

To this aim, let ℳ be a mechanism with a three-way greedy implementation for a social
function 𝑓 . We say that the outcomes corresponding to bid profiles a and b are equivalent to
agent 𝑖, denoted as a =𝑖 b, whenever 𝑓𝑖(a) = 𝑓𝑖(b), and that agent 𝑖 prefers 𝑋 to 𝑌 , denoted as
𝑋 ≻𝑖 𝑌 , whenever 𝑓𝑖(a) > 𝑓𝑖(b). Hence, we can partition profile types in equivalence classes
𝑋0

𝑖 , . . . , 𝑋
𝑚
𝑖 , for some 𝑚 ≥ 0 such that 𝑋0

𝑖 = {b : 𝑓𝑖(b) = mina 𝑓𝑖(a)}, i.e., it contains all bid
profiles returning the minimum outcome to 𝑖, and 𝑋𝑗

𝑖 = {b : 𝑓𝑖(b) = min
a/∈𝑋0

𝑖 ,...,𝑋
𝑗−1
𝑖

𝑓𝑖(a)},
i.e. it contains all bid profiles returning to 𝑖 the smallest outcome larger than the one returned
by profiles in previous equivalence classes. We also define 𝑋<𝑗

𝑖 =
⋃︀𝑗−1

ℓ=0 𝑋
ℓ
𝑖 and 𝑋>𝑗

𝑖 =⋃︀𝑚
ℓ=𝑗+1𝑋

ℓ
𝑖 . Moreover for 𝑗 = 1, . . . ,𝑚, we also let 𝑓 𝑗

𝑖 = 𝑓𝑖(b) for some b ∈ 𝑋𝑗
𝑖 . Finally, given

a profile b′ we will say that it is related to b if b and b′ are either not separated until agent 𝑖 is
queried about type 𝑏𝑖, or they have been separated by 𝑖. Now, for 𝑗 = 0, . . . ,𝑚, and every b let
𝜃b(𝑗) = max

b′∈𝑋𝑗
𝑖

b′ related to b

𝑏′𝑖. That is, 𝜃b(𝑗) is the largest bid which may cause the assignment of

outcome 𝑓 𝑗
𝑖 to agent 𝑖 on the path from the root of 𝒯 until agent 𝑖 is queried about 𝑏𝑖.

We will start by defining the payment for an agent 𝑖 that interacts with this mechanism in a
reverse greedy fashion (i.e., the agent is queried for the worst type not yet queried, and upon a
positive answer she receives an outcome not larger than the outcome received by declaring a
better type).

Proposition 4. Let ℳ be a mechanism with a three-way greedy implementation and let 𝑖 be
an agent interacting with ℳ in a reverse greedy way. Then truthfulness is an obvious dominant
strategy for 𝑖 if for every b ∈ 𝑋𝑘

𝑖 𝑝𝑖(b) = 𝜃b(𝑘)𝑓
𝑘
𝑖 +

∑︀𝑘−1
𝑗=0(𝜃b(𝑗)− 𝜃b(𝑗 + 1))𝑓 𝑗

𝑖 .



It is immediate to check that payments defined in Proposition 4 are essentially the same as
strategyproof payments as defined in [14].

Let us now consider an agent 𝑖 that interacts with the mechanism in a greedy fashion (i.e.,
the agent is queried for the best type not yet queried, and upon a positive answer she receives
an outcome that is not smaller than the outcome received by declaring a worse type). To this
aim we let 𝑞(𝑗), for 𝑗 = 1, . . . ,𝑚, be the type corresponding to the first query in the tree
that, if positively answered, will assign to agent 𝑖 the outcome 𝑓 𝑗

𝑖 , that is the smallest type on
which a query is issued with promised outcome 𝑓 𝑗

𝑖 . Moreover, we let 𝜏(0) = maxb 𝑏𝑖, and,
for 𝑗 = 1, . . . ,𝑚, 𝜏(𝑗) = min

b∈𝑋<𝑗
𝑖

𝑏𝑖>𝑞(𝑗)

𝑏𝑖. That is, 𝜏(𝑗) is the smallest bid which may cause the

assignment of an outcome worse than 𝑓 𝑗
𝑖 to agent 𝑖 after the query 𝑞(𝑗). Observe that for each

𝑏𝑖 such that there is b−𝑖 such that (𝑏𝑖,b−1) ∈ 𝑋𝑘
𝑖 we have that 𝜏(𝑘) ≤ 𝑏𝑖. We next show that

payments in this case have a very similar structure as the one described above, but they fail to
match SP payments.

Proposition 5. Let ℳ be a mechanism with a three-way greedy implementation tree and let 𝑖 be
an agent interacting with ℳ in a greedy way. Let 𝑋0

𝑖 , . . . , 𝑋
𝑚
𝑖 be the partition of type profiles in

equivalence class for 𝑖 as defined above. Then truthfulness is an obvious dominant strategy for 𝑖 if
for every b ∈ 𝑋𝑘

𝑖

𝑝𝑖(b) =

⎧⎪⎪⎨⎪⎪⎩
min

⎧⎨⎩0,min 𝑏′𝑖≤𝑏𝑖
∃b′

−𝑖 : b
′∈𝑋>0

𝑖

(𝑝𝑖(b
′)− 𝑏′𝑖𝑓𝑖(b

′))

⎫⎬⎭ if 𝑘 = 0;

𝜏(𝑘)𝑓𝑘
𝑖 +

∑︀𝑘−1
𝑗=0(𝜏(𝑗)− 𝜏(𝑗 + 1))𝑓 𝑗

𝑖 o.w..

Note that there are two main differences between payments as defined in Proposition 5 and
payments provided in Proposition 4: first, we changed the threshold for outcome 𝑓 𝑗

𝑖 from the
SP threshold 𝜃(𝑘) to a smaller threshold 𝜏(𝑗); second, the payment associated with the lowest
outcome depends not only on the outcome, but also on when this outcome is achieved.

The third way our mechanism can interact with an agent consists in first asking to separate
the domain in good and bad types (with outcomes for good types being not worse than outcomes
for bad types), and then proceeding greedily over bad types and reverse greedily over good
types. Hence, it is not surprising that in this case payments are a composition of the ones
described above.

7. Applications

Our algorithmic characterization of OSP mechanisms, showing a connection with a certain
family of greedy algorithms, allows us to show quite easily the existence of a host of new
mechanisms, and to provide a set of upper bounds on their approximation guarantee. We
summarize some of these results in Table 1.



Problem Bound
Known Single-Minded Combinatorial Auctions (CAs)

√
𝑚

MST (& weighted matroids) 1
Max Weighted Matching 2

𝑝-systems 𝑝
Weighted Vertex Cover 2

Shortest Path Ω(𝑛)
Restricted Knapsack Auctions Ω(

√
𝑛)

Asymmetric Restricted Knapsack Auctions (3 values)
√
𝑛− 1

Knapsack Auctions Ω(
√
ln𝑛)

Related Machine Scheduling 𝑛
Related Machine Scheduling (4 speeds only) 𝑛

2 + 1
Related Machine Scheduling (3 speeds only) ⌈

√
𝑛⌉+ 1

Related Machine Scheduling (2 speeds only) 1

Table 1
Bounds on the approximation guarantee of OSP mechanisms. (A 𝑝-system is a downward-closed set
system (𝐸,ℱ) where there are at most 𝑝 circuits, that is, minimal subsets of 𝐸 not belonging to ℱ [15].)

8. Conclusions

We believe that our characterization helps in the construction of simple incentive-compatible
mechanisms for real MAS, in which agents may have imperfect rationality. Clearly, there are
many more settings than the one showed in Table 1 in which it would be interesting to design
these mechanisms, or to evaluate their approximation guarantee.

Moreover, we believe that our approach can be extended to work also with other definitions
of simple mechanisms based on extensive form mechanisms, as Expected OSP [16], OSP with
lookahead [17], 𝑘-step OSP [18], Non-Obvious Manipulations [19, 20].
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