
Enhancing ASP(Q) evaluation

Wolfgang Faber1, Giuseppe Mazzotta2 and Francesco Ricca2

1

Alpen-Adria Universität Klagenfurt, Austria

2

University of Calabria, Rende, Italy

Abstract

is an extension of Answer Set Programming (ASP) that enables the declarative and modular modeling
of problems within the entire polynomial hierarchy. The first implementation of ASP(Q), known as
qasp, utilized a translation to Quantified Boolean Formulae (QBF) to take advantage of the advanced and
mature QBF-solving technology. However, the QBF encoding implemented by qasp is highly general,
potentially leading to complex formulas that existing QBF solvers struggle to evaluate due to the large
number of symbols and sub-clauses.

In the paper titled “An efficient solver for ASP(Q) ", that has been presented during the 39th Interna-
tional Conference on Logic Programming (ICLP23), we introduced a novel implementation that builds
upon the concepts of qasp and incorporates a more efficient encoding procedure, optimized encodings
of ASP(Q) programs in QBF, and a machine learning model for the automatic selection of QBF-solving
back-ends.

In this paper, we give an overview of the results we have obtained in the above-mentioned paper and
discuss possible future directions.

Keywords

ASP with Quantifiers, Quantified Boolean Formulas, Well-founded semantics

1. Introduction

Answer Set Programming (ASP) [1, 2] is a very well-known logic programming paradigm
based on the stable models semantics, offering the capabilities for (𝑖) modeling search and
optimization problems in a declarative (and often compact) way and (𝑖𝑖) solving them using
efficient systems [3, 4, 5] that can handle real-world problems [6, 7]. Thanks to advanced
programming strategies, such as saturation [8, 9], ASP can model problems up to Σ𝑝

2 (i.e. the
second level of the Polynomial Hierarchy (PH)). However, such techniques are not very intuitive
for non-expert users and so it can be difficult for them to model problems of such complexity.

Recently, these shortcomings of ASP have been overcome by the introduction of language
extensions that expand the expressivity of ASP [10, 11, 12]. Among these, Answer Set Program-
ming with Quantifiers ASP(Q) extends ASP, allowing for declarative and modular modeling
of problems of the entire PH [12]. The language of ASP(Q) expands ASP with quantifiers over
answer sets of ASP programs and allows the programmer to use the standard and natural pro-

22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2023) - Discussion Papers,

November 06–09, 2023, Rome, Italy

$ Wolfgang.Faber@aau.at (W. Faber); giuseppe.mazzotta@unical.it (G. Mazzotta); francesco.ricca@unical.it
(F. Ricca)
� 0000-0002-0330-5868 (W. Faber); 0000-0003-0125-0477 (G. Mazzotta); 0000-0001-8218-3178 (F. Ricca)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Wolfgang.Faber@aau.at
mailto:giuseppe.mazzotta@unical.it
mailto:francesco.ricca@unical.it
https://orcid.org/0000-0002-0330-5868
https://orcid.org/0000-0003-0125-0477
https://orcid.org/0000-0001-8218-3178
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

gramming methodology, known as generate-define-test [13], to encode also problems beyond
NP. The most important aspect that supports the adoption of ASP(Q) both in academia and
industry is the availability of efficient systems that evaluate ASP(Q) programs.

The first implementation of ASP(Q) is the solver qasp [14] which features a translation of
ASP(Q) to Quantified Boolean Formula (QBF) in order to exploit the well-developed and mature
QBF-solving implementations [15]. The encoding strategy adopted in qasp is very general and
might produce formulas that are hard to evaluate for existing QBF solvers because of the large
number of symbols and sub-clauses. Moreover, from previous assessments [14] it has been
observed that the implementation of the translation procedure could –in some specific cases–
be so memory-hungry to prevent the production of the QBF formula even when a considerable
amount of memory is available. These weaknesses motivated the idea of implementing a more
efficient encoding in QBF that can generate more affordable formulas that can be handled by
QBF solvers.

As a result, we proposed a new implementation of ASP(Q), the pyqasp system, that builds on
the ideas of qasp and exploits syntactic properties of the ASP(Q) program for obtaining ad-hoc
and compact QBF formulas. This contribution has been presented during the 39th International
Conference on Logic Programming (ICLP23) and it has been published in the Journal: Theory
and Practice of Logic Programming [16]. In particular, the new translation in QBF proposed by
pyqasp produces more compact encodings by exploiting the well-founded semantics [17] for
simplifying ASP(Q) programs and, if it is possible, avoids costly normalization steps that are
needed for obtaining a QBF in Conjunctive Normal Form (QCNF). The new system has been
empirically validated on ASP(Q) benchmarks proposed in the literature and the obtained results
highlight significant performance improvements. In particular, pyqasp outperformed qasp by
pushing forward the state of the art in ASP(Q) solving. In the following, we assume the reader
familiar with logic programming syntax and both Answer Set and Well-founded semantics and
refer the reader to introductory and founding papers for more details [1, 2, 17].

2. Answer Set Programming with Quantifiers

An ASP(Q) program Π is an expression of the form [12]:

□1𝑃1 □2𝑃2 · · · □𝑛𝑃𝑛 : 𝐶,

where, for each 𝑖 = 1, . . . , 𝑛, □𝑖 ∈ {∃𝑠𝑡,∀𝑠𝑡}, 𝑃𝑖 is an ASP program, and 𝐶 is a stratified ASP
program possibly with constraints.

Given a logic program 𝑃 , a total interpretation 𝐼 over the Herbrand base ℬ𝑃 , and an ASP(Q)
program Π, we denote by fix𝑃 (𝐼) the set of facts and constraints {𝑎 | 𝑎 ∈ 𝐼 ∩ ℬ𝑃 } ∪ {← 𝑎 |
𝑎 ∈ ℬ𝑃 ∖ 𝐼}, and by Π𝑃,𝐼 the ASP(Q) program Π, where 𝑃1 is replaced by 𝑃1 ∪ fix𝑃 (𝐼), i.e.
Π𝑃,𝐼 = □1(𝑃1 ∪ fix𝑃 (𝐼)) □2𝑃2 · · ·□𝑛𝑃𝑛 : 𝐶.

The coherence of ASP(Q) programs is defined by induction as follows:

• ∃𝑠𝑡𝑃 : 𝐶 is coherent, if there exists 𝑀 ∈ 𝐴𝑆(𝑃) such that 𝐶 ∪ fix𝑃 (𝑀) is coherent;

• ∀𝑠𝑡𝑃 : 𝐶 is coherent, if for every 𝑀 ∈ 𝐴𝑆(𝑃), 𝐶 ∪ fix𝑃 (𝑀) is coherent;

• ∃𝑠𝑡𝑃 Π is coherent, if there exists 𝑀 ∈ 𝐴𝑆(𝑃) such that Π𝑃,𝑀 is coherent;

• ∀𝑠𝑡𝑃 Π is coherent, if for every 𝑀 ∈ 𝐴𝑆(𝑃), Π𝑃,𝑀 is coherent.

Given a set of propositional atoms 𝐴, we denote by 𝑐ℎ(𝐴) the program {{𝑎}|𝑎 ∈ 𝐴} made
of choice rules over atoms in 𝐴. For two ASP programs 𝑃 and 𝑃 ′, Int(𝑃, 𝑃 ′) denotes the set of
common atoms between 𝑃 and 𝑃 ′. For two programs 𝑃 and 𝑃 ′, the choice interface program
CH (𝑃, 𝑃 ′) is defined as 𝑐ℎ(Int(𝑃, 𝑃 ′)). For a propositional formula Φ, 𝑣𝑎𝑟(Φ) denotes the
variables occurring in Φ. For an ASP(Q) program Π, and an integer 1 ≤ 𝑖 ≤ 𝑛, we define the
program 𝑃≤

𝑖 as the union of programs 𝑃𝑗 with 1 ≤ 𝑗 ≤ 𝑖. Given an ASP(Q) program Π, the
intermediate versions 𝐺𝑖 of its subprograms, and the QBF Φ(Π) encoding Π are:

𝐺𝑖 =

⎧⎨⎩
𝑃1 𝑖 = 1

𝑃𝑖 ∪ CH (𝑃≤
𝑖−1, 𝑃𝑖) 1 < 𝑖 ≤ 𝑛

𝐶 ∪ CH (𝑃≤
𝑛 , 𝐶) 𝑖 = 𝑛+ 1

Φ(Π) = ⊞1 · · ·⊞𝑛+1

(︃
𝑛+1⋀︁
𝑖=1

(𝜑𝑖 ↔ CNF (𝐺𝑖))

)︃
∧ 𝜑𝑐

where CNF (𝑃) is a CNF formula encoding the program 𝑃 (such that models of CNF (𝑃)
correspond to AS (𝑃)); 𝜑1, . . . , 𝜑𝑛+1 are fresh propositional variables; ⊞𝑖 = ∃𝑥𝑖 if □𝑖 = ∃𝑠𝑡 or
𝑖 = 𝑛 + 1, and ⊞𝑖 = ∀𝑥𝑖 otherwise, where 𝑥𝑖 = 𝑣𝑎𝑟(𝜑𝑖 ↔ CNF (𝐺𝑖)) for 𝑖 = 1, · · · , 𝑛 + 1,
and 𝜑𝑐 is the formula

𝜑𝑐 = 𝜑′
1 ⊙1 (𝜑

′
2 ⊙2 (· · ·𝜑′

𝑛 ⊙𝑛 (𝜑𝑛+1) · · ·))

where ⊙𝑖 = ∨ if □𝑖 = ∀𝑠𝑡, and ⊙𝑖 = ∧ otherwise, and 𝜑′
𝑖 = ¬𝜑𝑖 if □𝑖 = ∀𝑠𝑡, and 𝜑′

𝑖 = 𝜑𝑖

otherwise.

Theorem 1 (Amendola et al. [14]). Let Π be a quantified program. Then Φ(Π) is true iff Π is

coherent.

3. Enhancing the Encoding of ASP(Q) in QBF

In this section, we discuss some of the weaknesses of the encoding proposed by Amendola et
al. [14] and describe the proposed optimizations, in order to overcome such limitations. First
of all, in the encoding proposed in Section 2 the intermediate version of each program 𝐺𝑖 is
computed by introducing atoms from previous levels by means of choice rules that introduce
even loops through negation. This aspect increases the number of clauses and does not allow
the system to further simplify the intermediate grounded programs. Moreover, the standard
grounding may produce rules that are trivially satisfied in each answer set of a given program
increasing the number of clauses in the resulting translation in SAT. Secondarily, it can be
noted that the formula Φ(Π) is not in CNF because of the presence of equivalences for each
subprogram and the final formula 𝜑𝑐 (which is not in CNF either). While this might be seen as a
minor issue, the translation of non-CNF formulas into CNF by means of a Tseytin transformation

can be a time-consuming procedure that increases the length of the formulas and introduces
extra symbols that could slow down QBF solvers. A natural question, therefore, is whether it is
possible to identify classes of ASP(Q) programs such that the resulting QBF formula is in CNF.
In what follows, we are going to investigate the proposed optimizations that will address the
aforementioned limitation of the qasp encoding strategy.

Simplification based on well-founded semantics. A possible solution to obtain more
compact encodings is exploiting the well-founded semantics. In particular, the well-founded
model defines literals that are true in every answer set and so this can be exploited to simplify
each subprogram and to propagate this ground truth to the following levels. In particular, given
a program 𝑃 and its well-founded model𝒲 , 𝑃 can be simplified by removing all those rules
with a false body w.r.t. 𝒲 and true literals in𝒲 from the bodies of the remaining ones. The
program obtained by applying such transformation admits a more compact CNF encoding and
can be proved to have the same answer sets of the original one. The next step is to propagate
ground truth from previous levels to the following ones. This can be achieved by representing
positive literals that are true w.r.t. the well-founded model𝒲 as facts and by omitting negative
ones, whereas all the undefined literals are encoded as choice rules.

Example 3.1. Given an ASP(Q) program 𝑄 the intermediate grounding exploiting the well-

founded semantics is obtained as follows:

@𝑒𝑥𝑖𝑠𝑡𝑠 % 𝑃1 %𝐺𝑊𝐹
1

𝑎← 𝑎, 𝑛𝑜𝑡 𝑏 𝑐←
𝑐← 𝑛𝑜𝑡 𝑎 {𝑏} ←
{𝑏} ←
@𝑓𝑜𝑟𝑎𝑙𝑙 % 𝑃2 ↦→ %𝐺𝑊𝐹

2

{𝑑(1..2)} ← 𝑐 {𝑑(1..2)} ←
{𝑑(3..100)} ← 𝑎 𝑐←
@𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 %𝐺𝑊𝐹

3

% 𝐶 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 % 𝑒𝑚𝑝𝑡𝑦 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

The well-founded model 𝑃1 is𝒲 = {𝑛𝑜𝑡 𝑎, 𝑐}. It means that 𝑎 is false in every answer set of 𝑃1
and 𝑐 is true in every answer set of 𝑃1. Thus we can restrict the models of 𝑃2 to those in which

𝑎 is false and 𝑐 is true. Thus, the choice interface 𝐶𝐻 ′
contains only the fact 𝑐 ← and we can

recursively simplify also 𝑃2.

As a result, we can observe that the simplified program admits a smaller QBF encoding both in
terms of the number of clauses, since potentially fewer rules are encoded, and also in average
clause length since each rule is transformed into one or more clauses that have fewer literals.
Moreover, by propagating information from the well-founded model of previous levels, answer
sets of the following levels are restricted to those that are coherent with previous ones, if any.
If no answer sets exist, then the resulting QBF formula can be pruned at the incoherent level.
More formal definitions and proofs are available at [16].

Direct CNF encodings for ASP(Q) programs. In our work, we identified a class of ASP(Q)
programs that admits a direct encoding in QCNF. In such a class of programs, all universal
subprograms are said to be trivial. Basically, a trivial subprogram is a program that depends
only on ground truth from previous levels and its stable models coincide with the power set of
the atoms that the subprogram exposes to the following levels. If a subprogram is trivial then it
can be omitted in the final QBF by leaving the quantification of the symbols that are exposed to
the following levels. In this way, we can obtain a direct encoding in QCNF. However, triviality
conditions are hard to verify but the class of programs made of only choice rules (under certain
syntactic restrictions) features such property. In order to expand the class of programs featuring
a direct encoding in QCNF we proposed a rewriting strategy that exploits the modularity of
the Guess&Check paradigm. Essentially, each universal subprogram is split into two programs,
namely Guess and Check. The Check program is pushed in the following levels with an ad-hoc
rewriting that preserves the coherence of the entire ASP(Q) program and the Guess program
(made only by choice rules) substitutes the original subprogram. By recursively applying such
rewriting to all universal programs, we can obtain an equivalent ASP(Q) program that admits a
direct encoding in QCNF. More formal definitions and proofs of the proposed optimization can
be found in [16].

Example 3.2. Let us consider the ASP(Q) program Π encoding the Q-3DNF Satisfiability Problem:

@𝑒𝑥𝑖𝑠𝑡𝑠 % 𝑃1
{ 𝑒𝑥𝑖𝑠𝑡𝑠(𝑋, 𝑡𝑟𝑢𝑒); 𝑒𝑥𝑖𝑠𝑡𝑠(𝑋, 𝑓𝑎𝑙𝑠𝑒)} ← 𝑋 = 1..3
@𝑓𝑜𝑟𝑎𝑙𝑙 % 𝑃2
{ 𝑓𝑜𝑟𝑎𝑙𝑙(𝑌, 𝑡𝑟𝑢𝑒); 𝑓𝑜𝑟𝑎𝑙𝑙(𝑌, 𝑓𝑎𝑙𝑠𝑒)} ← 𝑌 = 4..5
@𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝑎𝑠𝑔𝑛(𝑋,𝑉)← 𝑒𝑥𝑖𝑠𝑡𝑠(𝑋,𝑉)
𝑎𝑠𝑔𝑛(𝑋,𝑉)← 𝑓𝑜𝑟𝑎𝑙𝑙(𝑋,𝑉)
𝑐𝑜𝑛𝑗(1, 𝑡𝑟𝑢𝑒, 2, 𝑡𝑟𝑢𝑒, 4, 𝑓𝑎𝑙𝑠𝑒)←
𝑐𝑜𝑛𝑗(1, 𝑡𝑟𝑢𝑒, 3, 𝑡𝑟𝑢𝑒, 5, 𝑓𝑎𝑙𝑠𝑒)←
𝑐𝑜𝑛𝑗(2, 𝑡𝑟𝑢𝑒, 4, 𝑡𝑟𝑢𝑒, 5, 𝑡𝑟𝑢𝑒)←
𝑠𝑎𝑡← 𝑐𝑜𝑛𝑗(𝑋1, 𝑆1, 𝑋2, 𝑆2, 𝑋3, 𝑆3), 𝑎𝑠𝑔𝑛(𝑋1, 𝑆1), 𝑎𝑠𝑔𝑛(𝑋2, 𝑆2), 𝑎𝑠𝑔𝑛(𝑋3, 𝑆3)
← 𝑛𝑜𝑡 𝑠𝑎𝑡

𝑃1 and 𝑃2 expose to the subsequent levels, respectively, the following atoms:

𝐸𝑥𝑡1 = {𝑒𝑥𝑖𝑠𝑡𝑠(𝑋,𝑉) | 1 ≤ 𝑋 ≤ 3 ∧ 𝑉 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}}

𝐸𝑥𝑡2 = {𝑓𝑜𝑟𝑎𝑙𝑙(𝑋,𝑉) | 4 ≤ 𝑋 ≤ 5 ∧ 𝑉 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}}
The stable models of 𝑃1 (resp. 𝑃2) coincide with 2𝐸𝑥𝑡1

(resp. 2𝐸𝑥𝑡2
) and so Π can be encoded in a

formula of the form: ∃𝐸𝑥𝑡1∀𝐸𝑥𝑡2 𝐶𝑁𝐹 (𝐺3)

4. Experiments

In this section, we discuss an experimental analysis conducted to (𝑖) demonstrate empirically
the efficacy of the techniques described above, and (𝑖𝑖) compare pyqasp with qasp. We consid-
ered different benchmarks that have already been used to assess the performance of ASP(Q)

implementations [14]. The suite contains encodings in ASP(Q) and instances of four problems:
Quantified Boolean Formulas (QBF); Argumentation Coherence (AC); Minmax Clique (MMC);
Paracoherent ASP (PAR). A detailed description of these benchmarks was provided by Amendola
et al. [14]. All the experiments were run on a system with 2.30GHz Intel(R) Xeon(R) Gold
5118 CPU with Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-137-generic x86_64). Execution time and
memory were limited to 800 seconds (of CPU time, i.e., user+system) and 12 GB, respectively.

In order to assess the impact of the proposed optimizations we run three variants of pyqasp,
(i) basic encoding without optimization: pyqasp; (ii) encoding with well-founded simplification:
pyqaspWF ; and (iii) encoding with well-founded simplification and Guess&Check rewriting:
pyqaspWF+GC .

These variants were combined with the following three QBF back-end solvers:

• (RQS) RareQS by Janota – http://sat.inesc-id.pt/~mikolas/sw/areqs;

• (DEPS) DepQBF by Lonsin – https://lonsing.github.io/depqbf – equipped with the bloqqer

preprocessor by Biere et al. – http://fmv.jku.at/bloqqer;

• (QBS) Quabs by Tentrup – https://github.com/ltentrup/quabs.

All this amounts to running 9 variants of pyqasp.
In our naming conventions, the selected back-end is identified by a superscript, and a subscript

identifies the enabled optimizations (e.g., pyqaspDEPS indicates pyqasp with back-end DEPS ,
and pyqasp

DEPS
WF+GC indicates pyqasp with DEPS back-end and all optimizations enabled).

(a) Argumentation Coherence (AC). (b) Min Max Clique (MMC).

(c) Paracoherent ASP (PAR). (d) Quantified Boolean Formula (QBF).

Figure 1: Analysis of proposed optimizations.

http://sat.inesc-id.pt/~mikolas/sw/areqs
https://lonsing.github.io/depqbf
http://fmv.jku.at/bloqqer
https://github.com/ltentrup/quabs

Figure 2: Comparison with qasp.

Obtained results are summarized in Figure 1, which aggregates the performance of each
compared method in four cactus plots, one per considered problem. Recall that, a line in
a cactus plot contains a point (𝑥, 𝑦) whenever the corresponding system solves at most 𝑥
instances in 𝑦 seconds. The well-founded optimization allows to solve more instances and in
less time in AC, MMC, and QBF benchmarks, independently of the back-end; whereas, the
identification of guess&check programs pays off in terms of solved instances in QBF and MMC,
again independently of the back-end solver. The two techniques combine their positive effects
in MMC, PAR, and QBF. In particular, pyqaspDEPS

WF+GC solves 25 more instances than pyqasp
DEPS

in MC, and 73 in QBF; moreover, pyqaspRQS
WF+GC solves 20 more instances than pyqasp

RQS in
MC, and 20 in QBF. However, the application of the guess&check optimization has a negative
effect on AC, since the well-founded operator, applied to the rewritten program, is no longer
able to derive some simplifications that instead can be derived from the original program. For
this reason, pyqaspRQS

WF is the best option in AC, solving 29 instances more than pyqasp
RQS . All

in all, the results summarized in Figure 1 confirm the efficacy of both well-founded optimization
and identification of guess&check programs.

Comparison with qasp. In this comparison, we considered the best variants of pyqasp
identified in the previous paragraph with qasp running the same back-end QBF solvers. As
before, the selected back-end is identified by a superscript. In addition, we run a version of
pyqasp that automatically selects a suitable back-end solver for each instance, denoted by
pyqasp

AUTO . This latter was obtained by applying to pyqasp the methodology used in the
ME-ASP solver [18] for ASP. In particular, we measured some syntactic program features, the
ones of ME-ASP augmented with the number of quantifiers, existential (resp. universal) atoms
count, and existential (resp. universal) quantifiers to characterize qasp instances. Then, we
used the random forest classification algorithm for predicting a suitable back-end solver. As
it is customary in the literature, to assess on the field the efficacy of the algorithm selection
strategy, we also computed the Virtual Best Solver (VBS). VBS is the ideal system one can obtain
by always selecting the best solver for each instance. Obtained results are reported in the cactus
plot of Figure 2.

First of all, we note that pyqasp is faster and solves more instances than qasp no matter
the back-end solver. In particular, pyqaspDEPS

WF+GC solves 186 instances more than qasp
DEPS ,

pyqasp
RQS
WF solves 4 instances more than qasp

RQS , and pyqasp
QBS
WF solves 21 instances more

than qasp
QBS .

Diving into the details, we observed that pyqasp also uses less memory on average than qasp.
Indeed, qasp used more than 12GB in some instances of PAR and AC, whereas pyqasp never
exceeded the memory limit in these domains. This is due to a combination of factors. On the
one hand, pyqasp never caches the entire program in main memory; on the other hand, the
formulas built by pyqasp are smaller than the ones of qasp and this causes the back-end QBF
solver to use less memory and be faster during the search.

Finally, as one might expect, the best solving method is pyqaspAUTO . Comparing pyqaspAUTO

with the VBS there is only a small gap (38 instances overall). In particular, we observe that,
in the majority of cases, the selector is able to pick the best method; it sometimes misses a
suitable back-end (especially in MMC which is the smallest and least represented domain in the
training set). As a result, pyqaspAUTO is generally effective in combining the strengths of all
the back-end solvers. Indeed, pyqaspAUTO solves 363 instances more than pyqasp

DEPS
WF+GC (i.e.,

the best variant of pyqasp with fixed back-end) and 414 instances more than qasp
RQS (i.e., the

best variant of qasp).

5. Conclusion

An important aspect that can boost the adoption of ASP(Q) as a practical tool for developing
applications is the availability of more efficient implementations. The pyqasp system for ASP(Q)
features both a memory-aware implementation in Python and a new optimized translation of
ASP(Q) programs in QBF. In particular, pyqasp exploits the well-founded operator to simplify
ASP(Q) programs and can recognize a (popular) class of ASP(Q) programs that can be encoded
directly in CNF, and thus do not require to perform any additional normalization to be handled
by QBF solvers. Moreover, pyqasp is able to select automatically a suitable back-end for the given
input program and can deliver steady performance over varying problem instances. pyqasp
outperforms qasp, the first implementation of ASP(Q), and pushes forward the state of the art in
ASP(Q) solving. As future work, we plan to further optimize pyqasp by providing more efficient
encodings in QBFs, and improve the algorithm selection model with extended training and a
deeper tuning of parameters.

Acknowledgments

This work was partially supported by the Italian Ministry of Industrial Development (MISE)
under project MAP4ID “Multipurpose Analytics Platform 4 Industrial Data”, N. F/190138/01-
03/X44, by MUR under PRIN project PINPOINT Prot. 2020FNEB27, CUP H23C22000280006, and
PNRR project PE0000013-FAIR, Spoke 9 - Green-aware AI – WP9.1.

References

[1] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun.
ACM 54 (2011) 92–103.

[2] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases,
New Gener. Comput. 9 (1991) 365–386.

[3] C. Dodaro, G. Mazzotta, F. Ricca, Compilation of tight ASP programs, in: ECAI 2023 - 26th
European Conference on Artificial Intelligence, IOS Press, 2023. URL: https://doi.org/10.
3233/FAIA230316. doi:10.3233/FAIA230316.

[4] G. Mazzotta, F. Ricca, C. Dodaro, Compilation of aggregates in ASP systems, in: Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, AAAI Press, ???? URL:
https://doi.org/10.1609/aaai.v36i5.20527. doi:10.1609/AAAI.V36I5.20527.

[5] M. Gebser, N. Leone, M. Maratea, S. Perri, F. Ricca, T. Schaub, Evaluation techniques and
systems for answer set programming: a survey, in: Proceedings of IJCAI 2018, ijcai.org,
2018, pp. 5450–5456. doi:10.24963/ijcai.2018/769.

[6] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Magazine
37 (2016) 53–68.

[7] M. Gebser, M. Maratea, F. Ricca, The sixth answer set programming competition, J. Artif.
Intell. Res. 60 (2017) 41–95. doi:10.1613/jair.5373.

[8] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic programming: Proposi-
tional case, Ann. Math. Artif. Intell. 15 (1995) 289–323.

[9] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic
programming, ACM Comput. Surv. 33 (2001) 374–425.

[10] B. Bogaerts, T. Janhunen, S. Tasharrofi, Stable-unstable semantics: Beyond NP with normal
logic programs, TPLP 16 (2016) 570–586. doi:10.1017/S1471068416000387.

[11] J. Fandinno, F. Laferrière, J. Romero, T. Schaub, T. C. Son, Planning with incomplete
information in quantified answer set programming, TPLP 21 (2021) 663–679. doi:10.
1017/S1471068421000259.

[12] G. Amendola, F. Ricca, M. Truszczynski, Beyond NP: quantifying over answer sets,
TPLP 19 (2019) 705–721. URL: https://doi.org/10.1017/S1471068419000140. doi:10.1017/
S1471068419000140.

[13] V. Lifschitz, Answer set programming and plan generation, Artif. Intell. 138 (2002) 39–54.
[14] G. Amendola, B. Cuteri, F. Ricca, M. Truszczynski, Solving problems in the PH with

ASP(Q), in: Proceedings of LPNMR, volume 13416 of LNCS, Springer, 2022, pp. 373–386.
doi:10.1007/978-3-031-15707-3_29.

[15] L. Pulina, M. Seidl, The 2016 and 2017 QBF solvers evaluations (qbfeval’16 and qbfeval’17),
Artif. Intell. 274 (2019) 224–248.

[16] W. Faber, G. Mazzotta, F. Ricca, An efficient solver for asp(q), Theory and Practice of Logic
Programming (2023). doi:10.1017/S1471068423000121.

[17] A. Van Gelder, K. A. Ross, J. S. Schlipf, The well-founded semantics for general logic
programs, J. ACM 38 (1991) 620–650.

[18] M. Maratea, L. Pulina, F. Ricca, A multi-engine approach to answer-set programming,
TPLP 14 (2014) 841–868. doi:10.1017/S1471068413000094.

https://doi.org/10.3233/FAIA230316
https://doi.org/10.3233/FAIA230316
http://dx.doi.org/10.3233/FAIA230316
https://doi.org/10.1609/aaai.v36i5.20527
http://dx.doi.org/10.1609/AAAI.V36I5.20527
http://dx.doi.org/10.24963/ijcai.2018/769
http://dx.doi.org/10.1613/jair.5373
http://dx.doi.org/10.1017/S1471068416000387
http://dx.doi.org/10.1017/S1471068421000259
http://dx.doi.org/10.1017/S1471068421000259
https://doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.1017/S1471068419000140
http://dx.doi.org/10.1007/978-3-031-15707-3_29
http://dx.doi.org/10.1017/S1471068423000121
http://dx.doi.org/10.1017/S1471068413000094

	1 Introduction
	2 Answer Set Programming with Quantifiers
	3 Enhancing the Encoding of ASP(Q) in QBF
	4 Experiments
	5 Conclusion

