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Abstract  
Nonlinear programming problem for optimal location of storages is studied so that the total 

distance, taken into account with coefficients, which are the volumes of products transported 

from storages to markets (consumers), is minimal. It is shown that the objective function of 

the problem satisfies a special inequality and, in general case, is a non-smooth nonconvex 

function. The consistency conditions of linear constraints system of the problem and its 

variants depending on balance conditions that define degeneracy and non-degeneracy of the 

constraints system are substantiated. An example of the problem is given when the solver 

MINOS 5.51 does not obtain a solution to a degenerate problem and obtains a solution to a 

non-degenerate problem. Work of NEOS server solvers for solving the storage location 

problem depending on the starting point and degree of degeneracy of the system is studied. 
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1. Introduction 

Objects location problem belongs to problems of transport and production type and quite often 

arises in practice in such areas as health care, waste management system, logistics and transportation 

of products from producers to consumers (or intermediaries with further transportation to consumers), 

etc. A large number of publications are devoted to theoretical, computational and applied aspects of 
this problem. In particular, works [1–3] discuss concepts, models, and algorithms for solving facility 

location problems, works [4, 5] offer new approaches to their solving. The work [6] examines the 

optimization problems of production and transport type, as well as methods and algorithms for their 
solving. The work [7] is devoted to solving the problem of m-travelers and nonlinear programming 

problem using NEOS server solvers. The work [8] considers so called multi-level facility location 

problems, which extend some classical facility location problems.  

Object location problem is closely related to centroid-based clustering problems so that the optimal 
solution of the first problem corresponds to a certain partition of a set of points into classes, i.e. 

solution of a clustering problem. In the general formulation, the object location problem is NP-hard, 

but it can be reduced to other types of problems, in particular to set cover problem [9]. 
As a partial case of the object location problem, the storage location problem formulated in the 

book [10, section 14.2, pp. 370–371] can be considered. In this problem, it is needed to choose the 

optimal coordinates for the storages locations for markets, where the total distance, weighted by the 
volumes of products that need to be transported to markets (consumers), is minimized. Here, the 

coordinates of the storages location are not chosen from the set of potential locations of the storages, 

but can have arbitrary coordinates on the plane. 

The material of the article is presented in the following order. In the second section, the 
formulation of the nonlinear programming problem for the optimal storage location is given. The third 

section examines the properties of the objective function of this problem and shows that its solution 
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may not be unique. The fourth section substantiates the consistency conditions of the constraints 
system of the problem and gives an example of a problem that the MINOS solver solves in degenerate 

case, but does not solve in non-degenerate case, determined by the balance conditions of the 

constraints system of the problem. The fifth chapter deals with nonlinear programming problem for 

optimal storage location with equality constraints. It is shown that one arbitrary linear constraint is 
linearly dependent. An example of solving degenerate and non-degenerate variants of the problem, 

which are determined by the presence or absence of one linearly dependent constraint, using NEOS 

server solvers is given. The sixth chapter examines the problem of location 5 storages for transporting 
products to 19 the most common markets of Kyiv and examines the work of NEOS server solvers 

depending on the starting point and the degeneracy degree of the constraints system. 

2. Storage location problem formulation [9] 

Let the locations of 𝑛 markets (consumers) and the volume of demand on each of them be given. 

The demand can be satisfied from 𝑚 storages with given capacities. It is needed to locate these 𝑚 
storages so that the total distance, calculated with weighting coefficients equal to the volumes of 

products transported from storages to markets, is minimal. It is important to emphasize, that in 

practice such a criterion for solution evaluation is the ton-kilometer indicator. 

Let us build a model of the problem. The notation is the following: 
(𝑥𝑖 , 𝑦𝑖) – unknown coordinated of 𝑖-th storage (𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ); 

𝑐𝑖 – known capacity of 𝑖-th storage (𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ); 

(𝑎𝑗, 𝑏𝑗) – known coordinates of 𝑗-th market (consumer) (𝑗 = 1, 𝑛̅̅ ̅̅ ̅); 

𝑟𝑗 – known volume of 𝑗-th market (𝑗 = 1, 𝑛̅̅ ̅̅ ̅); 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑎𝑗)
2

+ (𝑦𝑖 − 𝑏𝑗)
2
 – distance from 𝑖-th storage to 𝑗-th market (𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 𝑗 = 1, 𝑛̅̅ ̅̅ ̅); 

𝑧𝑖𝑗 – volume of products, transported from 𝑖-th storage to 𝑗-th market (𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 𝑗 = 1, 𝑛̅̅ ̅̅ ̅).  

Then the m storage location problem and determination of products volumes to be transported from 

storages to markets is formulated as follows: 

𝑓(𝐱, 𝐲, 𝐳) = ∑ ∑ 𝑑𝑖𝑗𝑧𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ ∑ 𝑧𝑖𝑗√(𝑥 𝑖 − 𝑎𝑗)
2

+ (𝑦𝑖 − 𝑏𝑗)
2

𝑛

𝑗=1

𝑚

𝑖=1

→ min              (1) 

subject to 

∑ 𝑧𝑖𝑗

𝑛

𝑗=1

≤ 𝑐𝑖 ,   𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ,                                                             (2) 

∑ 𝑧𝑖𝑗

𝑚

𝑖=1

= 𝑟𝑗 ,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅,                                                             (3) 

𝑧𝑖𝑗 ≥ 0,   𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅.                                                       (4) 

The problem (1) – (4) is nonlinear programming problem, for the objective function 𝑓(𝐱, 𝐲, 𝐳) is 

nonlinear and non-smooth. Here variables are coordinates of storages (𝑥𝑖 , 𝑦𝑖) and transportation 

volumes 𝑧𝑖𝑗. If storages locations are known, then distances 𝑑𝑖𝑗 are known, and only transportation 

volumes 𝑧𝑖𝑗 are to be determined. In this case the problem (1) – (4) is opened transportation problem. 

3. Properties of objective function of the problem (1) – (4) 

For the storage location problem, the objective function (1), depending on 𝑚(𝑛 + 2) continuous 

variables, is non-smooth nonlinear function and has the following property. 

Lemma 1. For the function 𝑓(𝐱, 𝐲, 𝐳) = ∑ ∑ 𝑧𝑖𝑗√(𝑥𝑖 − 𝑎𝑗)
2

+ (𝑦𝑖 − 𝑏𝑗)
2𝑛

𝑗=1
𝑚
𝑖=1  and arbitrary  

𝜆 ∈ [0,1] the following inequality is true: 
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𝑓(λ𝒙𝟏 + (1 − 𝜆)𝒙𝟐, λ𝒚𝟏 + (1 − 𝜆)𝒚𝟐, λ𝒛𝟏 + (1 − 𝜆)𝒛𝟐) ≤ 

≤ ∑ ∑ 𝜆𝑓(𝒙𝟏, 𝒚𝟏, 𝒛𝟏) + (1 − 𝜆)𝑓(𝒙𝟐, 𝒚𝟐, 𝒛𝟐)

𝑛

𝑗=1

𝑚

𝑖=1

+                                         (5) 

+𝜆(𝜆 − 1) (√(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

− √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

) (𝑧𝑖𝑗
1 − 𝑧𝑖𝑗

2 ). 

Proof. Using norm convexity and 𝜆 ∈ [0,1], let us estimate the left-hand side of the inequality (5): 

𝑓(λ𝒙𝟏 + (1 − 𝜆)𝒙𝟐, λ𝒚𝟏 + (1 − 𝜆)𝒚𝟐, λ𝒛𝟏 + (1 − 𝜆)𝒛𝟐) = 

= ∑ ∑(𝜆𝑧𝑖𝑗
1 + (1 − 𝜆)𝑧𝑖𝑗

2 )√(𝜆𝑥𝑖
1 + (1 − 𝜆)𝑥𝑖

2 − 𝑎𝑗)
2

+ (𝜆𝑦𝑖
1 + (1 − 𝜆)𝑦𝑖

2 − 𝑏𝑗)
2

𝑛

𝑗=1

𝑚

𝑖=1

≤     (6) 

≤ ∑ ∑(𝜆𝑧𝑖𝑗
1 + (1 − 𝜆)𝑧𝑖𝑗

2 ) (𝜆√(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

+ (1 − 𝜆)√(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2
)

𝑛

𝑗=1

𝑚

𝑖=1

. 

Opening brackets in the right-hand side of the inequality (6) and grouping terms, we get: 

∑ ∑(𝜆𝑧𝑖𝑗
1 + (1 − 𝜆)𝑧𝑖𝑗

2 ) (𝜆√(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

+ (1 − 𝜆)√(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

)

𝑛

𝑗=1

𝑚

𝑖=1

= 

= ∑ ∑ (𝜆2𝑧𝑖𝑗
1 √(𝑥𝑖

1 − 𝑎𝑗)
2

+ (𝑦𝑖
1 − 𝑏𝑗)

2
+ 𝜆(1 − 𝜆)𝑧𝑖𝑗

1 √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

+

𝑛

𝑗=1

𝑚

𝑖=1

 

+𝜆(1 − 𝜆)𝑧𝑖𝑗
2 √(𝑥𝑖

1 − 𝑎𝑗)
2

+ (𝑦𝑖
1 − 𝑏𝑗)

2
+ (1 − 𝜆)2𝑧𝑖𝑗

2 √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

) = 

= ∑ ∑ ((𝜆 − 𝜆 + 𝜆2)𝑧𝑖𝑗
1 √(𝑥𝑖

1 − 𝑎𝑗)
2

+ (𝑦𝑖
1 − 𝑏𝑗)

2
+ 𝜆(1 − 𝜆)𝑧𝑖𝑗

1 √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

+

𝑛

𝑗=1

𝑚

𝑖=1

 

+𝜆(1 − 𝜆)𝑧𝑖𝑗
2 √(𝑥𝑖

1 − 𝑎𝑗)
2

+ (𝑦𝑖
1 − 𝑏𝑗)

2
+ ((1 − 𝜆) − (1 − 𝜆) + 

+(1 − 𝜆)2)𝑧𝑖𝑗
2 √(𝑥𝑖

2 − 𝑎𝑗 )
2

+ (𝑦𝑖
2 − 𝑏𝑗)

2
) = ∑ ∑ 𝜆𝑧𝑖𝑗

1 √(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

+

𝑛

𝑗=1

𝑚

𝑖=1

 

+(1 − 𝜆)𝑧𝑖𝑗
2 √(𝑥𝑖

2 − 𝑎𝑗)
2

+ (𝑦𝑖
2 − 𝑏𝑗)

2
+ 𝜆(𝜆 − 1)𝑧𝑖𝑗

1 √(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

+ 

+𝜆(1 − 𝜆)𝑧𝑖𝑗
1 √(𝑥𝑖

2 − 𝑎𝑗)
2

+ (𝑦𝑖
2 − 𝑏𝑗)

2
+ 𝜆(1 − 𝜆)𝑧𝑖𝑗

2 √(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

− 

+𝜆(𝜆 − 1)𝑧𝑖𝑗
2 √(𝑥𝑖

2 − 𝑎𝑗)
2

+ (𝑦𝑖
2 − 𝑏𝑗)

2
= ∑ ∑ 𝜆𝑧𝑖𝑗

1 √(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

+

𝑛

𝑗=1

𝑚

𝑖=1

 

+(1 − 𝜆)𝑧𝑖𝑗
2 √(𝑥𝑖

2 − 𝑎𝑗)
2

+ (𝑦𝑖
2 − 𝑏𝑗)

2
− 𝜆(1 − 𝜆) × 

× (𝑧𝑖𝑗
1 √(𝑥𝑖

1 − 𝑎𝑗)
2

+ (𝑦𝑖
1 − 𝑏𝑗)

2
− 𝑧𝑖𝑗

1 √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

− 

−𝑧𝑖𝑗
2 √(𝑥𝑖

1 − 𝑎𝑗)
2

+ (𝑦𝑖
1 − 𝑏𝑗)

2
+ 𝑧𝑖𝑗

2 √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

) = 

= ∑ ∑ 𝜆𝑓(𝒙𝟏, 𝒚𝟏, 𝒛𝟏) + (1 − 𝜆)𝑓(𝒙𝟐, 𝒚𝟐 , 𝒛𝟐)

𝑛

𝑗=1

𝑚

𝑖=1

+ 

+𝜆(𝜆 − 1) (√(𝑥𝑖
1 − 𝑎𝑗)

2
+ (𝑦𝑖

1 − 𝑏𝑗)
2

− √(𝑥𝑖
2 − 𝑎𝑗)

2
+ (𝑦𝑖

2 − 𝑏𝑗)
2

) (𝑧𝑖𝑗
1 − 𝑧𝑖𝑗

2 ), 

from which we get that the inequality (5) is fulfilled. 

In general case, the function (1) is not convex, and the problem (1) – (4) is multiextremal. 

However, there are partial cases in which the function (1) may be convex if the last term of the right-

hand side of the inequality (5) is negative. For this problem, this condition means that, considering 
two sets of possible storage locations (two supplier firms), for each “storage – market” pair, the first 
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supplier firm either transports a larger volume of products over a shorter distance, or transports a 
smaller volume of goods, covering a greater distance than the second supplier firm. 

It is easy to demonstrate that in general case the solution of the problem (1) – (4) is not unique. Let 

us consider the problem (1) – (4) with 𝑚 = 1 and 𝑛 = 2, i.e. there are 2 markets with coordinates 
(0,0) and (10,0). Each market requires the same number of units of the product, for example 10 units. 
It is needed to choose the location of one storage for transporting products to these two markets  

(see Fig. 1). 

 
Figure 1: two solutions of the problem (1) – (4) for 𝑚 = 1 and 𝑛 = 2 

It is clear that the optimal location of the storage is on the line segment connecting two markets. 
Let us calculate the value of the objective function (1) for two possible locations of storages with 

coordinates (3,0) and (5,0): 

𝑓(3,0,10) = 10√(3 − 0)2 + (0 − 0)2 + 10√(3 − 10)2 + (0 − 0)2 = 100, 

𝑓(5,0,10) = 10√(5 − 0)2 + (0 − 0)2 + 10√(5 − 10)2 + (0 − 0)2 = 100. 

The same value of the objective function (1) for two different points of storage location shows that 

the solution of the problem can be not unique.  

However, if we remove the square root in the second multiplier under the sum sign in the function 

𝑓(𝐱, 𝐲, 𝐳), i.e., instead of Euclidean distance (norm) we use norm squared, the function will be as 
follows:  

𝑓1(𝐱, 𝐲, 𝐳) = ∑ ∑ 𝑧𝑖𝑗 ((𝑥𝑖 − 𝑎𝑗)
2

+ (𝑦𝑖 − 𝑏𝑗)
2

)

𝑛

𝑗=1

𝑚

𝑖=1

.                                        (7) 

The function (7) is smooth and non-convex function. For 𝑚 = 1 and 𝑛 = 2 the solution of the 
problem (7), (2) – (4) is unique. 

4. Properties of the constraints system of the problem (1) – (4) 

Linear constraints system (2) – (4) depends on variables 𝑧𝑖𝑗 only and is typical for opened 

transportation problems with 𝑚 suppliers (storages) and 𝑛 consumers (markets). To clarify the 
consistency of the system the following criterion ca be used. 

Lemma 2. Constraints system (2) – (4) is consistent if and only if  ∑ 𝑐𝑖
𝑚
𝑖=1 ≥ ∑ 𝑟𝑗

𝑛
𝑗=1 . 

Proof. Necessity. Let there exist non-negative (�̅�𝑖, �̅�𝑖) and 𝑧�̅�𝑗, (𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 𝑗 = 1, 𝑛̅̅ ̅̅ ̅) that satisfy the 

constraints system (2) – (4), i.e. the following equalities and inequalities are true: 

∑ �̅�𝑖𝑗

𝑛

𝑗=1

≤ 𝑐𝑖 ,   𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ,                                                                     (8) 

∑ �̅�𝑖𝑗

𝑚

𝑖=1

= 𝑟𝑗 ,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅,                                                                      (9) 

�̅�𝑖𝑗 ≥ 0,   𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ ,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅.                                                            (10) 

Summing the inequality (8) with index 𝑖 = 1, 𝑚̅̅̅̅ ̅̅  and equality (9) with index 𝑗 = 1, 𝑛̅̅ ̅̅ ̅, we get: 

∑ ∑ �̅�𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

≤ ∑ 𝑐𝑖

𝑚

𝑖=1

,                                                                  (11) 

∑ ∑ �̅�𝑖𝑗

𝑚

𝑖=1

𝑛

𝑗=1

= ∑ 𝑟𝑗

𝑛

𝑗=1

.                                                                 (12) 
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Using the inequality (11) and equality (12), and changing indices order, we get the following 
inequalities chain: 

∑ 𝑐𝑖

𝑚

𝑖=1

≥ ∑ ∑ �̅�𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

= ∑ ∑ �̅�𝑖𝑗

𝑚

𝑖=1

𝑛

𝑗=1

= ∑ 𝑟𝑗

𝑛

𝑗=1

.                                          (13) 

From (13) we obtain that the inequality ∑ 𝑐𝑖
𝑚
𝑖=1 ≥ ∑ 𝑟𝑗

𝑛
𝑗=1  is true. 

Sufficiency. Let the inequality ∑ 𝑐𝑖
𝑚
𝑖=1 ≥ ∑ 𝑟𝑗

𝑛
𝑗=1  be true. Let us consider variables �̃�𝑖𝑗, (𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ,

𝑗 = 1, 𝑛̅̅ ̅̅ ̅), defined as follows: 

�̃�𝑖𝑗 =
𝑐𝑖𝑟𝑗

∑ 𝑐𝑖
𝑚
𝑖=1

,     𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅,                                                     (14) 

and variables (�̃�𝑖 , �̃�𝑖) are arbitrary. Let us show that these variables satisfy constraints (2) – (4). 

1. ∑ �̃�𝑖𝑗

𝑛

𝑗=1

= ∑
𝑐𝑖𝑟𝑗

∑ 𝑐𝑖
𝑚
𝑖=1

𝑛

𝑗=1

=
𝑐𝑖

∑ 𝑐𝑖
𝑚
𝑖=1

∑ 𝑟𝑗

𝑛

𝑗=1

= 𝑐𝑖

∑ 𝑟𝑗
𝑛
𝑗=1

∑ 𝑐𝑖
𝑚
𝑖=1

= 𝑐𝑖 ∙ 𝑑 ≤ 𝑐𝑖 ,     𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 

where 𝑑 =
∑ 𝑟𝑗

𝑛
𝑗=1

∑ 𝑐𝑖
𝑚
𝑖=1

≤ 1, since ∑ 𝑐𝑖
𝑚
𝑖=1 ≥ ∑ 𝑟𝑗

𝑛
𝑗=1 . 

2. ∑ �̃�𝑖𝑗

𝑚

𝑖=1

= ∑
𝑐𝑖𝑟𝑗

∑ 𝑐𝑖
𝑚
𝑖=1

𝑚

𝑖=1

=
𝑟𝑗

∑ 𝑐𝑖
𝑚
𝑖=1

∑ 𝑐𝑖

𝑚

𝑖=1

= 𝑟𝑗,      𝑗 = 1, 𝑛̅̅ ̅̅ ̅. 

3. �̃�𝑖𝑗 =
𝑐𝑖𝑟𝑗

∑ 𝑐𝑖
𝑚
𝑖=1

≥ 0, since 𝑐𝑖 ≥ 0, 𝑟𝑗 ≥ 0, 𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 𝑗 = 1, 𝑛̅̅ ̅̅ ̅. The magnitude ∑ 𝑐𝑖
𝑚
𝑖=1 > 0 by 

assumption, i.e., total capacity of all the storages is non-zero. 

Hence, the system (2) – (4) has the feasible point (14), so it is consistent.     

If the inequality constraints (2) of the problem (1) – (4) are transformed into equality constraints 
by introducing additional variables, then the constraints system (2) – (4) is non-degenerate. However, 

if the equality ∑ 𝑐𝑖
𝑚
𝑖=1 = ∑ 𝑟𝑗

𝑛
𝑗=1  holds, then the coefficients matrix of the basis variables is not 

degenerate, but it may contain zero coefficients for additional variables. Such a situation can impair 
work of methods based on using basis matrix, for example, the simplex method. If the inequality 
∑ 𝑐𝑖

𝑚
𝑖=1 > ∑ 𝑟𝑗

𝑛
𝑗=1  holds, this situation is unlikely since basis variables coefficients are non-zero. 

Therefore, in order to improve performance of methods, which are working with basis matrix, it is 

advisable to ensure that the condition ∑ 𝑐𝑖
𝑚
𝑖=1 > ∑ 𝑟𝑗

𝑛
𝑗=1  is fulfilled. To demonstrate this effect, let us 

consider the following example. 

Example 1. Let us consider the problem (1) – (4) with 𝑚 = 4 and 𝑛 = 24, i.e. there are 4 storages 

and 24 markets. Each market needs 10 units of products, each storage contains 40 units of products. 
The location of the markets with the specified coordinates is shown in Figure 2 (marked in blue). For 

such a problem, there is an analytical solution, according to which the optimal locations of the 

storages have the following coordinates: (𝐱∗, 𝐲∗) = ((50,50), (50,250), (50,450),(250,50), 

(250,250), (250,450)), marked with orange crosses in Figure 2. Optimal value of the function 

𝑓∗(𝐱∗, 𝐲∗, 𝐳∗) for such a configuration of the problem equals 16970,6. 

To solve the problem the MINOS 5.51 solver [11] from NEOS server [12] is used. To formulate 

the problem the AMPL language [13] is used. The initial data are as follows: 𝑐𝑖 = 40, 𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 𝑟𝑗 =

10, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅. The starting point (𝐱0 , 𝐲0, 𝒛0) for the MINOS solver is obtained using pseudorandom 

number generator. The problem is solved in two variants: when the condition ∑ 𝑐𝑖
𝑚
𝑖=1 = ∑ 𝑟𝑗

𝑛
𝑗=1  is 

fulfilled and the condition ∑ 𝑐𝑖
𝑚
𝑖=1 > ∑ 𝑟𝑗

𝑛
𝑗=1  is true. In the first case 𝑐𝑖 = 40, 𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , in the second 

case – 𝑐𝑖 = 40.4, 𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , i.e., each storage capacities are increased in 1 % to ensure that the 

inequality ∑ 𝑐𝑖
𝑚
𝑖=1 > ∑ 𝑟𝑗

𝑛
𝑗=1  is fulfilled. The results of problem solving using the MINOS 5.51 solver 

are given in Table 1. Here 𝑓∗(𝐱, 𝐲, 𝐳) is the objective function value, obtained with the solver, Δ =

(𝑓∗(𝐱, 𝐲, 𝐳) − 𝑓∗(𝐱∗, 𝐲∗, 𝐳∗)) /𝑓∗(𝐱∗, 𝐲∗, 𝐳∗) – relative error of the optimal value of the function. 

Table 1 shows that MINOS successfully solved the second variant of the problem and does not solve 

the first variant, since the magnitude Δ is almost 9 % for it. It is important to emphasize that to solve 

the second variant MINOS used more than twice less iterations comparing to the first variant. 
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Figure 2: storage location problem for 𝑚 = 4 and 𝑛 = 24 

Table 1 
The results of solving two variants of the problem using the MINOS 5.51 solver 

 First variant Second variant 

The number of iterations 368 163 

Solving time (sec) 0.016978 0.004625 

�̂�∗(𝐱, 𝐲, 𝐳) 18472.1 16970.6 

𝚫 0.088481 4.2874e-16 

5. Modification of the problem (1) – (4) for equality constraints 

Similarly to closed transportation problems the problem (1) – (4) can be reformulated using 
equality constraints:  

𝑓(𝐱, 𝐲, 𝐳) = ∑ ∑ 𝑧𝑖𝑗√(𝑥 𝑖 − 𝑎𝑗)
2

+ (𝑦𝑖 − 𝑏𝑗)
2

𝑛

𝑗=1

𝑚

𝑖=1

→ min                           (15) 

subject to 

∑ 𝑧𝑖𝑗

𝑛

𝑗=1

= 𝑐𝑖 ,   𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ,                                                             (16) 

∑ 𝑧𝑖𝑗

𝑚

𝑖=1

= 𝑟𝑗,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅,                                                             (17) 

𝑧𝑖𝑗 ≥ 0,   𝑖 = 1, 𝑚̅̅̅̅ ̅̅ ,   𝑗 = 1, 𝑛̅̅ ̅̅ ̅.                                                       (18) 

Constraints system of the problem (15) – (18) contains 𝑚 + 𝑛 equality constraints and is linear 

dependent. The problem of that kind we will call degenerate problem. For constraints system of the 
problem (15) – (18) the following lemma is true.  

Lemma 3. Constraints system (16) – (18) contains 𝑚 + 𝑛 − 1 linear independent equations.  

Proof. The statement of the lemma is proved in the book [14, p. 198].  
Degeneracy of the system (16) – (18) can significantly affect the process of solving the problem 

(15) – (18) using simplex-type methods, which are based on transition from one basis matrix to 

another. To overcome the degeneracy of the system (16) – (18), it is advisable to exclude one 

arbitrary linearly dependent constraint from it. The choice of such a constraint will affect the 
convergence rate of the method. Let us demonstrate it with the following example. 

Example 2. Let us consider the problem (15) – (18) for 𝑚 = 3, 𝑛 = 12. Markets locations with 

known coordinates are given in Figure 3 (marked in blue). 
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Figure 3: storage location problem for 𝑚 = 3 and 𝑛 = 12 

We will solve the problem with different options for extracting one linearly dependent constraint 

for storages from the constraints system of the problem. For this, we will build four problems. 

Problem A is the problem (15) – (18). Problems B, C, and D are the problem A, with the first, second, 

and third constraints removed from the constraints group (16) respectively.  
Storage capacities and demand of each market are selected similarly to the previous example, i.e. 

𝑐𝑖 = 40, 𝑖 = 1, 𝑚̅̅̅̅ ̅̅ , 𝑟𝑗 = 10, 𝑗 = 1, 𝑛̅̅ ̅̅ ̅. For such input data of the problem, the optimal location of the 

storages is shown in Figure 3 (marked with orange crosses). Herewith, the optimal value of the 

objective function 𝑓∗(𝐱∗, 𝐲∗, 𝐳∗) = 8485,28. The starting point (𝐱0 , 𝐲0, 𝒛0) for solvers is obtained 

using pseudorandom number generator. 

Results of the MINOS solver work for the problems А, В, С, D are given in Table 2. Here iter is 

the number of iteration performed be the solver; obj is the number of the objective function value 

calculations; grad is the number of gradient calculations; 𝚫 = (�̂�∗(𝐱, 𝐲, 𝐳) − 𝒇∗(𝐱∗, 𝐲∗, 𝐳∗)) /

𝒇∗(𝐱∗, 𝐲∗, 𝐳∗) is relative error of the objective function value for the solution obtained by the solver; 
time is the time of solving the problem by the solver in seconds.  

Table 2 
Results of solving the problems А, B, C, D using the MINOS 5.51 solver 

 Problem А Problem B Problem C Problem D 

iter 47 46 33 41 

obj 45 40 24 42 

grad 44 39 23 41 

𝚫 8.36043e-15 2.1437e-16 1.02898e-14 5.14488e-15 

Solving time (sec) 0.00248 0.002263 0.002152 0.002174 

Table 2 results demonstrate that the MINOS 5.51 solver successfully solved all four problems: the 

largest error is achieved in problem C and is 10−14. MINOS spent the most computational resources 

on solving the degenerate problem, namely 47 iterations, 45 calculations of the objective function 
values, and 44 calculations of its gradient. For all non-degenerate problems, MINOS consumed less 

computational resources. The best result is achieved when solving problem C: 33 iterations, 24 

calculations of the objective function value, and 23 calculations of the gradient. Let us solve problems 
А, B, C, D using the following list of solvers from the “Nonlinearly Constrained Optimization” 

section on NEOS server: Knitro 13.2.0, SNOPT 7.6.1, CONOPT 3.17A, LANCELOT, filterSQP 

(20020316), Ipopt 3.14.12, LOQO 7.00, OCTERACT Engine 4.4.0. Relative errors of the objective 

function value for the solution obtained by the solvers are given in Table 3. Table 3 results show that 
only Knitro, SNOPT, filter, Ipopt, and LOQO solvers successfully solved all problems, and filter 

shows the smallest relative error Δ among them. The filter solver is the only solver from the list that 

showed better accuracy than MINOS (see Table 2). When solving the degenerate problem A, Knitro 
printed messages suffix feaserror OUT; suffix opterror OUT; suffix numfcevals OUT; suffix numiters 

OUT, and Ipopt printed messages suffix ipopt_zU_out OUT; suffix ipopt_zL_out OUT. Such messages 

indicate problems related to degeneracy of the problem constraint system.  

CONOPT and LANCELOT solvers were able to solve only problem D and problem C, 
respectively. This demonstrates expediency of excluding one linearly dependent constraint to 

overcome degeneracy of the problem. When solving problems A, B and D using LANCELOT, the 

maximum number of iterations (1000 iterations) was exceeded, so no solution was found. When 
solving problems A, B, CONOPT displayed message Evaluation error limit; 2 failed evaluations, 

which indicates problems with evaluating the value of the objective function. OCTERACT could not 

solve the problem in 5 minutes, so it was not included in the table. 
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Table 3 
Accuracy of solving problems А, В, С, D using NEOS server solvers 

 
Problem А Problem B Problem C Problem D 

𝚫 𝚫 𝚫 𝚫 
Knitro 1.32e-10 3.13e-8 3.13e-8 3.13e-8 

SNOPT 1.25е-12 1.08е-12 7.24е-13 1.08е-12 

CONOPT 0.2518 0.1905 0.2761 2.14е-16 

LANCELOT -0.5460 -0.7334 -4.94е-12 -0.45 

filter 0.0 2.14е-16 0.0 0.0 

Ipopt -5.65e-9 -5.65e-9 -5.65e-9 -5.65e-9 

LOQO 6.77е-9 1.81е-9 1.72е-8 8.49е-9 

6. Computational experiment for the problem (1) – (4): 𝒎 = 𝟓, 𝒏 = 𝟏𝟗 

Example 3. Let us consider the problem (1) – (4) for location 5 storages for products 

transportation to 19 the most common markets in Kyiv (see Figure 4). For this, on the map of Kyiv 

with its surroundings a coordinate grid is superimposed containing 120 squares of size 10 × 10 with a 

maximum coordinate of 100 along the abscissa axis and 120 along the ordinate axis. The origin of the 

coordinates is in the lower left corner. Markets coordinates were determined visually using the grid 

constructed. Table 4 shows names and coordinates of 19 markets obtained under this scheme. 

Table 4 
Model coordinates of the most common Kyiv markets 

# Market Name Coordinates # Market Name Coordinates 

1 Illis (18,81) 11 Zhytnii (46,82) 

2 Shpalernyi (21,74) 12 Hospodarskyi (46,88) 

3 Borshchahivskyi (22,71) 13 Volodymyrskyi (46,67) 

4 Rechovyi (26,79) 14 Bessarabskyi (48,75) 

5 Stolychnyi (33,56) 15 Ovochevyi (64,79) 

6 Sevastopolskyi (37,69) 16 Troieshchynskyi (63,92) 

7 Kurenivskyi (38,93) 17 Pecherskyi (52,72) 

8 Solomianskyi (42,68) 18 Lisovyi (69,81) 

9 Lukianivskyi (42,81) 19 Darnytskyi (71,71) 

10 Hurtovyi (43,75)    

Storages capacities and demand of each market are chosen similarly to the previous examples 1 

and 2, i.e., 𝑐𝑖 = 40, 𝑖 = 1,5̅̅ ̅̅ , 𝑟𝑗 = 10, 𝑗 = 1,19̅̅ ̅̅ ̅̅ . Starting storages coordinates (𝐱0 , 𝐲0) are determined 

visually. Starting products volumes for transportation 𝒛0 are obtained using a pseudorandom number 

generator on the interval [0,20]. For the input data objective function value equals 19218.92 and the 

inequality ∑ 𝑐𝑖
𝑚
𝑖=1 > ∑ 𝑟𝑗

𝑛
𝑗=1  is fulfilled, since  ∑ 405

𝑖=1 = 200 > ∑ 1019
𝑗=1 = 190, so the problem is 

non-degenerate. 
To solve the problem, NEOS server solvers from the “Nonlinearly Constrained Optimization” 

section with default parameters were used. Only the filter and Knitro solvers successfully solved the 

problem, while the solutions and the value of 𝑓∗(𝐱, 𝐲, 𝐳) for both solvers coincide and are equal to 

1015.9. All other solvers did not solve the problem and displayed messages indicating problems with 
solving the problem. In particular, CONOPT displayed the message Evaluation Error Limit, 2 failed 

evaluations, and Ipopt displayed message Invalid number in NLP function or derivative detected. 

suffix ipopt_zU_out OUT; suffix ipopt_zL_out OUT. 

Figure 4 shows locations of 19 markets (marked in red), starting locations of storages (marked in 
yellow), and locations of storages obtained using the filter and Knitro solvers (marked in black). 

Figure 4 shows that three clusters can be distinguished in markets location: the western (Illis, 

Shpalernyi, Borshchahivskyi and Stolychnyi markets), the eastern (Troieshchynskyi, Lisovyi, 
Ovochevyi and Darnytskyi markets) and the central (the rest of the markets). As a result of solving the 

problem using filter and Knitro, three storages are located in the central cluster and one each in the 
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western and eastern clusters. Figure 4 allows you to visually assess the connection between storage 
location problem and centroid-based clustering problem.  

To test dependence of solvers work on choice of starting point, the problem was solved using filter 

and Knitro solvers with 5 different starting points obtained using a pseudorandom number generator. 

The results of filter and Knitro work for this case are shown in Table 5. 

 

 Figure 4: the best location of 5 storages and 19 markets: filter and Knitro 

Table 5 
Results of solving the problem of location 5 storages and 19 markets using filter та Knitro from 
different starting points 

Starting point number 1 2 3 4 5 6 

filter 
�̂�∗(𝐱, 𝐲, 𝐳) 1034.75 1041.33 1021.08 1016.29 1033.34 1015.9 

iter 56 84 68 62 78 58 

Knitro 
�̂�∗(𝐱, 𝐲, 𝐳) 1015.96 1277.8 1016.33 1016.38 1017.07 1015.94 

iter 86 39 78 71 125 77 

The first line of Table 5 shows the number of the starting point, the second and fourth lines show 
value of the objective function of the problem obtained by filter and Knitro, respectively, and the third 

and fifth lines show the number of iterations required by filter and Knitro, respectively. The sixth 

starting point was used in the previous calculation and is given above.  
The results show that in 5 runs from different starting points, the filter and Knitro could not obtain 

a smaller value of the objective function than the value obtained by the solvers starting from the 

above point #6.  

The solvers obtained the highest value of the objective function when starting from the starting 
point #2, and filter performed 84 iterations, Knitro – 39 iterations. Starting from the starting point #6, 

filter and Knitro performed 58 and 77 iterations, respectively, obtaining the same value of the 

objective function equal to 1015.9. This effect can be explained by the close connection of the storage 
location problem with centroid-based clustering problems, the objective functions of which are multi-

extreme, and the solutions of the problem are its local minima. 
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7. Conclusions.  

The article investigates nonlinear programming problem for the optimal location of storages so 
that the total distance, calculated with weighting coefficients equal to the volumes of products 

transported from storages to markets, is minimal. It is shown that the objective function of the 

problem in general case is a non-smooth non-convex function, and the solution of the problem is non-
unique. The consistency conditions of the constraints system of this problem are substantiated and its 

options are considered depending on the balance conditions that determine degeneracy and non-

degeneracy of constraints system. The statement of Lemma 1 can serve as a tool for choosing a 

starting point. Research in this direction is currently underway. 
Three examples of solving the storage location problem using NEOS server solvers from the 

“Nonlinearly Constrained Optimization” section are considered. The first example shows that the 

MINOS solver does not solve a problem with a degenerate constraint system of the problem defined 
by the balance condition and solves a problem with a non-degenerate constraint system. The second 

example shows that exclusion of one arbitrary linearly dependent constraint from the problem 

constraint system allows it to be solved faster than a degenerate problem. The third example is related 
to the optimal location of 5 storages for products transportation to 19 the most common markets in 

Kyiv. The results of solving this problem by solvers filter and Knitro show that the solution they 

found depends on the choice of the starting point. 
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