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Abstract  
This paper addresses the problem of improving deep computing, especially equipment prices, 

electricity prices, etc., which in turn impact not only research cost, but also experimental 

reproducibility and consistency. Based on our findings, we propose an idea that should be 

useful for complex computations such as machine learning on small datasets using various 

neural network structures, including RCNN and DCGAN, which are notoriously 

timeconsuming and memory-intensive methods. when applying specific data. The 

improvements here rely on using our own data processing methods, comparing hardware 

using known techniques as benchmarking hardware for central processing units (CPUs) and 

graphics processing units (GPUs). We use this straightforward approach in our experiments, 

using wellestablished datasets available online to evaluate hypotheses about computing 

devices and algorithms. This in turn helps us infer device properties based on how the device 

behaves in the experiment, thereby improving the productivity and quality of our 

experiments. For our experiments, we used a wide range of libraries such as scikit-learn, 

TensorFlow, Pytorch, and Direct ML for practical desktop and laptop computing devices that 

also run CPUs and GPUs. From this study, we found major differences in the behavior of 

CPUs and CPUs using available practice exercises in each case - deep neural network 

training. Our results allow us to confidently choose an appropriate device based upon the 

deep learning task complexity.  
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1. Introduction 

During these years, various new methods and devices for deep learning have been developed. 

Especially large companies, as well as scientific research institutions, have benefited from it. Instead, 

individual researchers have discovered a major problem: what is useful in large tasks (“big data”) is 
not always useful in small tasks (“small” data). Problems in performance evaluation for such small 

tasks can be considered in work of Kim J. et al [1] where they solved a task of feedback supervised 

learning on small datasets, which can raise attention to the problem of the small data in modern 
research in deep data field. Reasonably, to optimize research costs, they use all available devices: 

gaming graphics cards, data center cards, and laptops with integrated graphics; for instance in work 

published by Mahakalkar N. et al. [2], one can observe a possible application, where the customer 

grade GPU used for island-based algorithm optimization task.  
Discussing the advances in these recent works we can state that there isn't always a solution to this 

problem, since each task needs own task-specific hardware: heavy-workload graphics cards may seem 

like overkill for simple tasks, while regular consumer cards may not be able to handle slightly larger 
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tasks due to performance degradation or memory bottlenecks, which may tend to “optimization” of 
architecture, rather the algorithms. 

Why is it so important? In recent years, due to problems with the global supply chain, there has 

been a severe shortage of semiconductors, especially modern types of video memory and graphics 

cards, making graphics cards and video memory very expensive. So even if there is, it will cost a lot 
of money, except for big data centers and corporate cards (new cards that are newly purchased by 

individuals are not easy to buy). Nowadays, this problem is solved to some extent: there are 3 

companies that produce graphics cards for computers: Nvidia, AMD, and Intel, and there are many 
proprietary and open source libraries for computing with these types of graphics cards (such as 

CUDA [3], Microsoft DirectML [4] etc.). In one of the works, Martinez P.-A. et. al [5] discussed 

usage of Intel One API for machine learning tasks, that can serve as an example of multiprocessing. 
Also, two of these suppliers produce multi-core processors for high-performance computing, which 

offers the possibility of using them in certain situations where the cards are not available or their use 

does not make sense. The existence of three suppliers is good, but the question is what should we do 

if a similar problem occurs again (global supply chain disruption or other reasons)? If this happens 
again, individuals should consider finding such a solution that either helps them take advantage of 

obsolete hardware rather than investing in it, although it is a viable solution for now. So, depending 

on the answer, a solution has to be chosen: either individual researchers have to apply solutions that 
don't work, or they have to reorganize or improve their computers for specific tasks (shrinking down 

machine learning models or using them for tasks like learning from small amounts of data).  

We believe the last solution is the better one. Therefore, the purpose of this investigation is to find 
a given solution to a problem. To this end, it is recommended to formulate and address the following 

complex tasks: 

• to suggest an idea to establish and compare the performance of individual devices; 

• to find the benchmarking tasks in order to compare behavior of devices in deep learning tasks; 
• to establish lowest and highest performance limits for the use of such devices in given cases; 

• to suggest an approach to harness the GPU/CPU computing power in a more complex task; 

• to consider a solution to selecting an appropriate device, according to sophistication of the task. 

2. Related Works and Small Data Problem Solving 

Here we discuss the problem approaches to test small data using a range of available hardware, 

used in data analysis and intelligent data processing. 

2.1. The small data problem and the solution 

If we compare the availability of HPC solutions from the beginning of applied computer science to 
today, we see that there were a few paradigm shifts in computing — centralized, decentralized, 

remote, and local, — which shown a significant change. Today, however, users have the opportunity 

to choose whether to use remote solutions such as cloud solutions or local services based on desktop 
computers or small computing servers. The advantage of the latest solution is obvious - complete 

control over the experiments, since all available resources are dedicated to specific computational 

tasks. However, despite the variety of possibilities, researchers sometimes have to guess the setup in 
order to adjust an experimental system for a specific purpose. For instance, in work by authors of the 

paper (Krak Yu.V. et al.) [6], one can observe, that even in tasks of planning of manipulation systems, 

there is also a margin of optimization, which, in turn, lies in algorithmic complexity, that supplements 

modern problems of task sophistication (implementation part) and all possible outcomes in 
optimization of either the software or hardware to fulfill such a task. In order to achieve this, there 

must be a way to estimate the capabilities of the current system. By means of well-known methods, it 

is possible to determine the basic connection between the resources used for small and large tasks. 
Moreover, when we discuss the most recent advances, we see this problem in detail; for instance in 

work by Zhao B. et al. [7] one can observe a simple example of benchmarking specific computational 

task, such as classification of hyperspectral datasets, which can give a hint on developing benchmarks 

for a specific machine learning task we observe in the current paper in following chapters. 
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Sometimes such tasks to be solved lay somewhere in-between of smaller tasks and really larger 
tasks that need to be done on dedicated servers or cloud solutions. We consider these tasks "small data 

solving tasks" because they are the basis for innovative solutions (big models) and there is room for 

unknown variables, sometimes one has to measure them using small tasks to obtain the required 

system parameters, their capabilities and identify the positive and negative parts of the solution used. 
Since we're mainly talking about common desktop or laptop solutions here, we'll focus on the 

features of their architecture - the PC ecosystem and its CPU, GPU (if available), and memory. 

In order to find out the unknown part in small data solving tasks, we think that a better approach is 
to use commonly used datasets related to image recognition, machine learning, and suitable hardware 

as well, since it has been proven to perform such tasks. For instance, in work by J. Lee at al [8], as 

well as work by Xu X. et al [9], one can find possible problems, related on optimization of neural 
network architecture as well as deep neural network inference (neural net activation on unknown 

data), which gives a roadmap to develop specific algorithms as well as finding a specific hardware 

that may meet our needs – best efficiency on small data tasks. With this approach, we can be 

reassured that the proposed hardware not only meets our needs in terms of efficiency, increased power 
consumption, and own cost, but is also suitable for specific small data solving tasks, as we consider 

further in the following paper chapters, using the given hardware and suggested methods. To this end, 

we also agreed on comparing the capabilities of the processor with the GPUs available hands-on in 
our lab, so that we can draw some important lessons from this comparison as well. 

2.2. The general idea to estimate the efficiency of a computational device 

At this point we would like to point out that while there are many solutions on the web, we cannot 

simply rely on them and their metrics: for example, there are many solutions that use benchmarks to 
estimate the computing power of a computer system, i.e. estimate the system against Performance 

levels for specific tasks (eg, computing lighting in 3D scenes, encoding video, computing complex 

mathematical expressions or formulas). As an example of this task one can observe the facial 
recognition problem that is quite intricate and memory consuming task, as well as time consuming; 

authors of the paper (Yu. Krak et al) in [10, 11] as well as  Porta-Lorenzo M. et al in [12] discussed 

this task. While the facial recognition not only the task to provide rough performance estimates, there 

are some others as well; as an analogy of facial expressions one can use sign language representations 
in either 2dimensional or three-dimensional space. In the works made by authors of the paper (Yu. 

Krak et al)  [13] and Wan J. et al. [14] we can observe applications of these task and establish baseline 

for performance. For obvious reasons, estimating the performance of 3D rendering does not mean that 
solving a system of linear equations works the same way as training a deep convolutional network. To 

do this, we need to develop benchmarks that make our assumptions more reliable.  

We may also know about system utilization—underutilization and overutilization—because both 

affect benchmark results and our assumptions about the efficiency of a computing device (CPU or 
GPU). That is why the computer acceleration of these task is so important; in work by Afif M. et al 

[15] one can see the application of GPU acceleration for computer vision tasks, as well as application 

of NVidia  CUDA technology for application of these tasks. It may give a key for possible 
applications in our paper. 

While it may not be an obvious solution, we are free to assume that it may be rather effective for 

certain tasks that we require. To aim on this goal, we may focus on utilizing various machine learning 
models and data dimensionality reduction methods, such as singular value decomposition [16], T-

stochastic neighborhood embedding [17] and autoencoders. Additionally, our goal is to expand our 

experiments in order to compare different devices behavior within neural network architectures to 

assess the most valuable information based on our system performance under various conditions. We 
believe that this approach will be beneficial for specific tasks that involve small datasets. According 

to our estimate, we will be able to determine whether we are utilizing the appropriate hardware for the 

task or suggest a specific one according to the needs. We are studying different techniques to optimize 
the hyperparameters of the methods we use and hence, to enhance our data. These methods are widely 

known of their ability of dimensionality reduction, data organization and grouping as well as being 

able to process small data quantities, what we decided to discuss more in detail further in paper. 
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3. Experiments with CPU devices and general approach for task solving 

Here, in section we discuss the experiments made with the general purpose computing devices for 
desktop machines in order to implement various tasks for machine learning, such as deep neural 

network models, by utilizing hands-on equipment currently available in our inventory. 

3.1. The general scheme of an experiment 

For our experiments, a method was suggested that allows us to scrutinize different devices and 

roughly estimate their performance. Hereby, we benefit from an environment that depends on the 
contents of the local or remote desktop computer (according to the task) and allows us all necessary 

controls to measure resource usage via the standard task manager, device monitor, benchmarking 

software or device-specific software such as GPU Resource Monitor. This highly benefits since we 
can determine resource consumption before and under load. Therefore, we are less prone and affected 

by the background tasks in system, which are likely not related to the experiment. 

In order to perform data analysis tasks, we prepare data in our environment; the key is to keep data 

in system memory (RAM disk, system RAM, video RAM, or RAM and VRAM together), so that we 
don't have to worry about caching data from disk, but is focused on RAM to VRAM transfers, that 

would be likely faster than using page file. The input data are pre-extracted features generated by 

cascade models including: singular value decomposition (SVD) [16], T-stochastic neighborhood 
embedding (TSNE) [17,18] and K-means clustering. This allows one to focus only on execution time 

(time elapsed) and factors that may affect deep neural network tasks such as: initialization of the 

network, training of the network, and testing of the network with test data. As an example of further 
usage of this data we may consider social network analysis task, discussed in the work by Madhuri K. 

et al [19]; while it is more connected to other topic it is very important for visual data analysis task. 

To document the experiments, we tracked information from Resource Monitor, and execution in 

the Jupyter environment—the Jupyter server's console (which prints timestamps when jobs are 
stopped and when autosaves are created), as well as Jupyter Notebook output and Resource Monitor. 

This allows us to control the flow of the experiment and see if the Python kernel might be stuck or if 

there is processor or GPU throttling. Theoretically, based on the graph alone, we can determine the 
boundaries of each load cycle - either for the next epoch or load a new batch of data. This also helps 

to determine load (in %) and detect underload or overload of the test system we use here. 

After the experiment, we look not only at the numerical data but also at the overall performance 
and note in our workbook if there are any issues with the equipment or the algorithm and why they 

might have arisen. We will then carefully analyze the behavior of this device several times for 

possible signs of such behavior. We are considering extending the task so that it can help spot issues. 

Since our test system consists of different devices, we will try to benefit from their capabilities if 
they are available. We also analyzed the behavior of the system, like performance rate per iteration. 

Since our scheme affects both processor and GPU devices, we will use it as a general template and 

customize it according to the characteristics of each device, so they won’t differ gradually. In general, 
this is quite a straightforward approach, which differs slightly for the processors or GPU devices. 

3.2. The theoretical and practical performance of processors and GPUs 

Let's discuss in more detail the experimental setup for testing different processors that we have 

actually tested in a lab environment. First, we would like to emphasize that we tested our device with 

different algorithms (especially deep neural networks) in experiments. The aim is not to favor one 
device over another, but to explore its capabilities in the context of different approaches. 

In our text environment, we tested two different computers equipped with AMD Zen2 processors 

[20], including a desktop processor (AMD Ryzen 5 3600X) and a mobile system (AMD Ryzen 7 

4800H ). The common approach here is based on benchmarking of the test system, so as we base our 
own approach on one proposed by Kounev S. et al. [21], but modifying the tasks for our needs based 

on the benchmarking method. The specifications of the processors are shown in Table 1; note that we 

also use performance metrics using the well known PassMark benchmark and PassMarkScore. 
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Table 1 
Performance of different processors used in experiments 

Processor Model Cores Threads Base Clock (GHz) PassMark Score 

AMD Ryzen 5 3600X 6 12 3.8 18259 
AMD Ryzen 7 4800H 8 16 2.9 18851 

The reasons we make use of this benchmark are simple: it contains many different tests that take 

into account the different capabilities of the tested system and average across tests. This gives us 
confidence in the results to compare the benchmark performance with the results of our deep learning-

related experiments (e.g. training, testing, and init). To conduct our tests, we use proven and known 

software and libraries that are widely used in the scientific, computer science and data analysis 
communities. We benefit from a Jupyter test environment based on the Python distribution Anaconda 

3.7 for all of our environments (Windows and Ubuntu). To perform deep learning tasks, we use 

TensorFlow. This library is widely known and used in many applications, that can be studied from the 
survey, proposed by Ramchandani M. et al in the work [22]; it gives a view of possible applications of 

the technology. We also tried using CUDA acceleration in some test systems when enabled (desktop 

computers have GPUs, but disabled). Because we aimed to compare the effectiveness using widely 

known and accepted benchmarks, we ran our experiments to compare our lab equipment. We also 
made an assumption this will give us a better understanding of the results (Table 2). 

Table 2 
Performance of different procedures on processors and GPUs 

Method Nvidia RTX 
20601,3 

Nvidia RTX 
2060 H2,3 

Ryzen5 
3600X1 

Ryzen5  
3600X1 

DNN init 0,1945 0,1856 0,251 0,234 
DNN train 64,782 67,476 7,27 7,12 
DNN test 0,7348 2,674 1,0946 1,0946 

The superscript numbers in Table 2 have the following meanings: 1 represents the Windows test 

environment, 2 represents the Ubuntu test environment, and 3 represents the environment that 
supports CUDA accordingly. Two numbers, e.g. 1, 3, show CUDA on Windows environment. 

We want to underscore that the equipment listed here is not only equipment we tested our methods 

against; we decided to sort out some obsolete and underperforming equipment like AMD Athlon X2 
or Intel Core2 E-series processors because they had no some optimizations (instruction set) to perform 

deep learning tasks more efficiently (as well as data dimensionality reduction). In further research we 

will include them to showcase some differences in newer and older architectures for such tasks. 

In our experiments, we found that hardware may behave differently than we would normally 
expect when performing such tasks. First, we found that there is a benefit to using some OS, but it can 

be considered negligible for deep neural networks - about 1-2% goes to testing and training, which is 

the most time-consuming task, so using of certain OS is mainly personal preference. 
However, when we had tested the both systems, we found some issues with the system 

performance when using a laptop graphics card: since GPUs are generally considered as ones that 

superior to CPUs, it also founds out in experiment that compared to desktop processors, the GPU has 
an obvious disadvantage, and it obviously depends on situation. We need some clarification, as well. 

To this end we decided to conduct a series of additional experiments. Based on the general 

performance of such devices in deep learning tasks, one could explain the behavior of the GPU, or 

why the graphics card may did not work as expected. 

4. The problem with graphics card performance and resolution 

The section discuss the problems: finding the bottlenecks and situations as well when one or 

another device are not an appropriate to perform a specific task. To justify this we discuss the area of 

maximal efficiency within memory and performance range to get the needed level of efficiency. 
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4.1. Solving the Problem: Libraries, Devices, and GPU Experiments 

In the previous experiments, we found out that we had issues when using a laptop GPU RTX 2060 
Mobile. Since we were unable to determine the cause of the problem, we made a decision to conduct 

an  experiment. It would allow us, in theory, to exclude conditions that might have or not affected our 

experiment. To achieve the goal, we decided to use other neural network libraries, to compare them to 
neural network library (TensorFlow with CUDA) and to use a desktop system based on previously 

tested AMD Ryzen 3600X and AMD Radeon RX6500XT desktop GPUs as well to take full 

advantage of our Work. We also chose to rely on publicly available datasets to avoid being 

overshadowed by some of the results we received. However, for experimental purposes, we may try to 
use this data for other tasks.  

Because of this here we use TensorFlow and PyTorch, with adapter or backend Direct ML. It 

allows to apply it on the hands on available equipment (AMD Radeon RX6500XT GPU unit). While 
this GPU may or may not be a fair comparison to the Nvidia RTX 2060, our primary goals are finding 

potential caveats or, simply, performance hits. They likely ones, that one GPU might experience as 

other, in the same situation. So here we make use of the data to test the capabilities: of GPUs alone, 
not GPU-to-GPU comparisons, face-to-face. 

To evaluate capabilities of our test system, we will test fixed number of neural network 

architectures, such as shallow networks, deep autoencoders, convolutional and recurrent 

convolutional networks, and general adversarial networks as well. This will allow us to sequentially 
test hardware with different architectures, estimate the efficiency level of these devices, and find the 

effective usage range of the CPU or GPU we are currently using in the following experiments. 

For instance a performance curve can be compared, using open source data on CUDA accelerated 
or OpenCL accelerated machine learning tasks. Using a baseline performance, we can estimate or 

infer desired performance in machine learning oriented tasks. This can be observed on figure 1, which 

compares competitive designs that can be used in our test suite against if we consider improving our 
performance (the values on the figure are scaled to Intel i3-8100 which has performance 1000 points, 

which means, for instance, that GTX1080 is 54.5 times more powerful than i3-8100). 

 

Figure 1: Comparison of possible near peer devices, comparable to our GPU using Passmark suite 

As we were able to use these plots, we can then make the following – to infer the baseline 

performance of our CPU, compare it against our GPU and compare the relative performance of our 

CPU against i3-8100. This allowed us to test such features, such as plotting the performance curves of 
a graphics card compared to the CPU we're currently using. However, as we discovered earlier, the 

GPU is highly dependent on the computation task and its sophistication is not linear, if compared to 

the task. In order to overcome this we suggested a benchmark suite based on autoencoder 
optimization procedure, which is based on some suggestions proposed by Osipyan H. et al in [23]. In 

the next sections we will discuss some experiments we came to, using some publicly available 

datasets, as well as some optimization procedures to help us to make the equipment to behave better. 
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4.2. Experiments with deep networks and tiny datasets 

We tested various models, including regular networks, convolutional networks, and autoencoders, 
on tiny datasets (the popular M.N.I.S.T. fashion [24] and M.N.I.S.T. Digits [25]), but found graphics 

cards to be useless in this case. Due to the low performance of graphics cards, we decided to 

investigate autoencoders that are more flexible than other models. Overall, our results suggest that 
using graphics cards may not be as effective at analyzing these datasets as we previously thought, and 

that other methods, such as exploring more complex models, which may us yield the extra 

performance as we want here. 

4.3. Experiments with autoencoders and the different lambda functions 

The first idea is to make an autoencoder structure more flexible and, as well as the possibility of 
forward and backward transformations (encoding and decoding). Since we opt to change 

transformations and create optimal transformations (likely many), we can also define a lambda 

function. For example, this function, describes properties of weights, an objective function etc. By 

modifying this function, the overall efficiency can be improved and several implementations of the 
same model can be referred to. Which, in turn, can consume fewer graphics card resources. 

We decided to use lambda expressions, which are passed by to the optimization procedure as 

restrictions on weights. They compute the orthogonality of weights, norm of matrices, and 
independence of weights; this allows simulating SVD behavior using restriction on weights. 

Using all these functions, we can create a linear autoencoder that behaves like a singular value 

decomposition (table 3). This approach can be observed in the work by Zhang C. et al [26] dedicated 
to some implementation areas for autoencoders, including encoding some complex functions, that 

encode input feature space representaton. However, if we don’t decide to use one, we may just create 

a non-linear autoencoder which creates a transformation in dimensionality reduction. 

Here we have interesting results: there is a performance difference using a non-linear (normal) 
autoencoder, or the processor (here AMD Ryzen 5 3600X) is up to three times more efficient than the 

graphics card used here (AMD Radeon R.X. 6500 X.T.). Conversely, the difference reversed when 

more lambda functions were used - more than 5 times if compared to just one single processor. In 
addition, we can see that the calculation time of the previous graphics card is almost the same (the 

estimated performance level, according to open data). This indicates a performance bottleneck. When 

the card overcomes this bottleneck, performance increases. It's also the best explanation for our RTX 
2060 mobile card: why it didn't deliver any advantages in our last experiment. However it may be 

argued, if we were able to change the conditions of the experiment, and adapt it for other type of data 

or other experimental setup. Additional experiments are needed to test our hypothesis. Now we know 

that simple jobs don't require a graphics card. However, when we are doing more time-consuming 
tasks, the GPU will give the best results. Indeed, we consider these results could improve with some 

tweaks. But in order to achieve them, one have to do what they say: when the equipment behaves 

accordingly, and achieves the desirable performance, it is really possible to find a performance band 
(interval), outside of which the device loses its level of efficiency. 

4.4. Experiment with convolution networks for human face recognition 

The experiments we do here are specifically applicable for face recognition. Here we use data 

available online - FER 2013 dataset [27] and a convolutional network performing facial expression 

classification. Since it's not about precision but about performance, this work is a review of 
equipment. To verify our experiments, we use the AMD Radeon Resource Monitor [28] (Fig. 2) and 

the Anaconda Jupyter console (Fig. 3), writing the necessary information in a text format. 

Notably, we can witness that the test system utilizes the GPU resources via Python  and DirectML 

backend, which is necessary to verify that the video card is used to test, instead of a CPU. The test 
results can be seen on Fig. 2. Of course, the benchmarking was done by injecting time steps of flags to 

measure from, as well as internal means, used in the TensorFlow-DirectML library to visualize the 
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utilization of the GPU time per each step, epoch or iteration of the training algorithm (Figure 4). It 
gave us a clue, how it behaves on different iterations of learning. 

Table 3 
Performance of learning procedure on an autoencoder with different parameters passed as lambda 
expression on each step 

Name CPU time, sec GPU time, sec 

Non-linear encoder and minimum number of iterations 0,46 0,61 
Non-linear and normal encoder number of iterations 2,19 6,97 

Quasi-linear encoder, weight orthogonality 27,55 7,36 
Quasi-linear encoder, orthogonality of weights, norm of matrices 32,98 7,68 

Linear encoder (orthogonality, norm, weight independence) 41,11 7,85 

 

Figure 2: AMD Radeon Adrenaline Edition performance monitor during the experiments 

 

Figure 3: Python interpreter console and Jupyter environment (Anaconda) 
As one can observe, the training algorithm may, on the first glance give not the best results. 

However, it was primarily designed to accommodate the need of novel algorithms and was proposed 

as competition, as can be found in [26, 27]. This competition was aimed to find a best algorithm for 

facial emotion recognition based on information crawled throughout Internet as open-source online 

image database. In the first iterations the results were around 65-70% (out of sample) and as of today 
in 2023 are known around 77-78% on the same accuracy metric. Since our intentions were to 

benchmark performance, the accuracy and loss plot are important features, hence they show that each 

iteration and epoch are quite unique (in terms of data and accuracy and loss values). After that we 
focused mainly on performance in time. Which, in turn, gave us some important results (Fig. 4). 

From here, we found that time is of great importance and that each iteration proves the overall 

efficiency per step on the long run. Also, according to AMD Monitor used to show the performance, 
approximately 1.2 GB of VRAM resources were used, which corresponds to the number of 

hyperparameters of our network and data. Moreover, if we compare the results from epoch 1 and 

epoch 2, we clearly see that it takes around 80 seconds to send data from RAM memory to video 

memory. The time required for computation is comparable for small datasets, but performance may 
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not be as noticeable as tasks become more complex. The performance difference between the graphics 
card and the processor is about 4.5 to 1 in one iteration, and can be as high as 20 to 1 as the number of 

iterations increases, indicating that the graphics card also needs a lot of computing time to process and 

load the data. However, as number of iterations increases, the time also increases, as we expected.  

 

Figure 4: Performance during the experiments. CPU (on the left) and GPU (on the right). 

 
Figure 5: Performance during the experiments. CPU (on the left) and GPU (on the right). 

Based on the library calls in the Jupyter console we inspected (especially during initialization, as 
shown in Fig. 2), it is possible to assume the Direct ML interface to utilize "tensors", but in the AMD 

architecture. In order to transfer data between AMD GPUs, the adapter has to use DirectX 12 libraries 

to convert tensors using Direct ML and DirectX 12 libraries, which of them aren't directly compatible 
between AMD and Nvidia because they have different memory structures. Since we were working on 

this problem, we are now better prepared for further experiments, that utilize AMD video cards. 

4.5. Additional experiments: if there is not enough memory 

Several studies have reported that Recurrent Convolutional Neural Networks (RCNNs) and Deep 

Convolutional Generative Adversarial Networks (DCGANs) require large amounts of memory to 
train due to their complex architectures and large number of parameters. We therefore conduct an 

experiment on these memory-intensive networks, specifically RCNN convolutional networks and 

generative adversarial networks. To achieve consistent results, we use systems with the same 
processor and graphics card, but a different network implementation - PyTorch library with Direct 

ML. We use different techniques to process the two datasets. For image segmentation on the 

Cityscapes dataset, we use a hidden network RCNN, which can efficiently segment images of 

pedestrians. For image generation, on the other hand, we used the DCGAN model.  
In fact, there in two experiments we conducted, it finds out that there is no sufficient memory. And 

in some cases it may seem concerning, if the model has to fit the available resources. However, not in 
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this case, since we are able to mediate the dedicated resources and tweak them in accordance with the 
task; however, there may be a need for some minimal usage, which may, in some cases not met the 

requirements to the system, as of one we have currently in our disposal hands-on. 

To find a proper solution, we recommend using both the graphics card and the processor. Here's 

how it works: the model is loaded into the video memory and a system memory, then we do a 
computation step and compute the gradients using the GPU. While we prefer to compute the entire 

network weights at once, here we faced some memory constraints, with memory usage reaching about 

3.8 GB video memory and 12.8 GB system memory (shared). As one can see, it is not trivial to handle 
such a large block of memory while using all the VRAM. (Figure 6). 

 

Figure 6: Memory usage, GPU and CPU time 

Another effect we could probably see: the graphics card got a speedup with the processor 
combined by 2.74x if compared to the processor alone. That means the card can come in handy when 

work needs to be done, even if it may look inefficient at first glance. However, video memory 

bottlenecks are very problematic because large chunks of memory have to be sent after each iteration 
or epoch. As can be seen, fine-tuning of the network or data is also required. We also want to 

underscore that while the DirectML technology is quite new, it is still in development and, hence, it 

may be possible that some of implementations for TensorFlow or PyTorch with DirectML may work 

not as good as at native corresponding libraries with CUDA enabled. Because of that an additional 
study may be needed. 

5. Discussion 

The aim of this study was to improve the dedicated hardware resource usage in small data tasks, 
which in our case included fine tuning the algorithms, hardware as well as using different methods. 
The results showed us that while we have got some results performance wise in terms of either 
accuracy or time per iteration, based on specific type of the networks or other deep learning 
algorithm, the theoretical performance curve (which is, in our case time per iteration or time per 
epoch) show us that there is no simple correlation between baseline performance of a device in some 
synthetic tests like rendering or OpenCL. In our case we had to develop own tests, that raised a 
question: what the test is the better to track down the performance of the device?  In order to do this, 
we decided to focus on some not that obvious construction as using synthetic network to imitate 
behavior of other algorithms. The key feature that the learned target function shoul not be imitated 1 
by 1, but mimic its nature. That’s why we used linear autoencoder approximation for singular value 
decomposition. While we may achieve it using some tweaks on neural network structure, instead we 
used few levels of approximation by lambda functions passed into the training procedure, that defined 
different levels of complicity of the task. Using them we discovered that performance is quite 
dependent not only dataset size or batches it processed, but rather in procedure. Hence, it raised the 
question – how complicated has to be the training procedure (in terms of inner functions) to achieve 
perfect performance ratio, that shows the difference between different devices?  

Lastly, we must focus also on the devices capabilities. As we believe, the AMD GPUs, while 
being capable in calculations for science, in particular deep learning, they use not fully their 
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capabilities since non-native code and usage of either RocM or DirectML. This raises again another 
question – how much we lose if using non native library like TensorFlow oe Pytorch with Direct ML? 
We believe this can be answered if running the Nvidia GPUs on native CUDA libraries and then – on 
modified, within DirectML environment, as used here in the experimental study. 

6. Conclusion 

Overall, the main findings of this paper can be summarized in the following. 
We found that one should not rely upon any particular architecture (CPU or GPU, neither vendor). 

But, as it seems more logical, also study its strengths and weaknesses. One should make informed 
decisions based on research. As asking -which one is better for the task? For example, we found that 
the hardware required for complex computer vision tasks (such as RCNN) is quite different from the 
hardware required to train the network on the MNIST dataset, which often called toy dataset. 

The process of fine-tuning isn't easy, but it is worth gaining new insights into the capabilities of 
specific hardware for specific tasks (such as image recognition and text processing). However, we 
have also noticed some shortcomings of modern neural networks related to computer vision. And they 
sometimes have some disadvantages compared with classical computer vision methods. 

Therefore, to unleash the full power of these new methods, a more advanced setup may be 
required, otherwise, the data may be scaled down, with its own known negative effects on accuracy. 

It is also worth mentioning that there is considerable competition between different vendors; as 
some devices may have comparable computing power to similar devices from other vendors.  

We also found that devices that perform similarly and produce the same results under ideal 
conditions (such as computer benchmarks) can sometimes perform quite differently on other tasks. 
For example, the variance between desktop and laptop processors of the same architecture (Zen2) is 
much greater than we expected; however, we believe that desktop processors of similar grade and 
performance may show more consistent and reliable predicted results. To truly achieve research goals, 
you would ideally need several different devices dedicated to one task, such as a processor for one 
task and a graphics card for another, or even multiples sharing them. This approach guarantees the 
most positive qualities that we will use with different devices, and decline the negative ones, 
balancing the efficiency and performance. We see that the researcher should be open-minded to new 
ideas and try different methods and laboratory equipment to achieve the research goals. This 
suggestion may be helpful in our future experiments, dedicated to computer vision, if we decide to 
expand the results and use other devices for more complex tasks and to improve, as a result, our 
current results. 

7. References 

[1] Kim J., Lee W., Kim Y. Feedback-supervised learning with a small dataset. KIISE transactions 
on computing practices. 2019. Vol. 25, no. 2. P. 130–135. 
https://doi.org/10.5626/ktcp.2019.25.2.130  

[2] Mahakalkar N., Mahajan A. R. Multi-GPU island-based genetic algorithm. International journal 
of recent advances in engineering & technology. 2020. Vol. 08, no. 02. P. 32–38. URL: 
https://doi.org/10.46564/ijraet.2020.v08i02.06 

[3] CUDA zon-library of resources. NVIDIA Developer. https://developer.nvidia.com/cuda-zone  
[4] Online resource on Microsort machine learning using DirectX technology on GitHub. 

https://github.com/microsoft/DirectML  
[5] Martínez, P.-A., Peccerillo, B., Bartolini, S., Garcia, J.-M., Bernabe, G. Applying Intel's oneAPI 

to a machine learning case study. Concurrency and computation: practice and experience. 2022. 
Vol. 34. Issue 13. E6917. P.1-15. https://doi.org/10.1002/cpe.6917  

[6] Krak, Y. V. Dynamics of manipulation robots: Numerical-analytical method of formation and 
investigation of computational complexity. Journal of Automation and Information Sciences, 
1999, 31(1-3), 121-128. doi:10.1615/JAutomatInfScien.v31.i1-3.  

[7] Zhao, B., Ragnarsson, H.I., Ulfarsson, M.O., Cavallaro, G., Benediktsson, J.A. Predicting 
classification performance for benchmark hyperspectral datasets. IEEE journal of selected topics 
in applied earth observations and remote sensing. 2022. Vol. 15. P. 4180-4193. 
https://doi.org/10.1109/jstars.2022.3173893  



22 

[8] Lee, J., Rhim, J., Kang, D., Ha, S. SNAS: fast hardware-aware neural architecture search 
methodology. IEEE transactions on computer-aided design of integrated circuits and systems. 
2022. Vol. 41. No. 11. P. 4826-4836. doi: 10.1109/TCAD.2021.3134843  

[9] Xu, X., Ding, Y., Hu, S.X., Niemier, M., Cong, J., Hu, Y., Shi, Y. Scaling for edge inference of 
deep neural networks. Nature electronics. 2018. Vol. 1, no. 4. P. 216–222. 
https://doi.org/10.1038/s41928-018-0059-3  

[10] Kryvonos, I. G., Krak, I. V., Barmak, O. V., Ternov, A. S., Kuznetsov, V. O. Information 
technology for the analysis of mimic expressions of human emotional states. Cybernetics and 
Systems Analysis, 2015, 51(1), 25-33. doi:10.1007/s10559-015-9693-1  

[11] Krak, Y. V., Barmak, A. V., Baraban, E. M. Usage of NURBS-approximation for construction of 
spatial model of human face. Journal of Automation and Information Sciences, 2011, 43(2), 71-
81. doi:10.1615/JAutomatInfScien.v43.i2.70 

[12] Porta-Lorenzo, M, Vázquez-Enríquez, M, Pérez-Pérez, A, Alba-Castro, JL, Docío Fernández, L. 
Facial Motion Analysis beyond Emotional Expressions. Sensors. 2022; Vol. 22. No 10 P.3839. 
https://doi.org/10.3390/s22103839  

[13] Kryvonos, I. G., Krak, I. V., Barmak, O. V., Bagriy, R. O. New tools of alternative 
communication for persons with verbal communication disorders. Cybernetics and Systems 
Analysis, 2016, 52(5), 665-673. doi:10.1007/s10559-016-9869-3  

[14] Wan, J., Ruan, Q., Li, W., Deng, S. One-Shot Learning Gesture Recognition from RGB-D Data 
Using Bag of Features. In: Escalera, S., Guyon, I., Athitsos, V. (eds). Gesture Recognition. The 
Springer Series on Challenges in Machine Learning. Springer, Cham. 2017. P.329-364. 
https://doi.org/10.1007/978-3-319-57021-1_11  

[15] Afif, M., Said, Y., Atri, M. Computer vision algorithms acceleration using graphic processors 
NVIDIA CUDA. Cluster computing. 2020. Vol. 23, no. 4. P. 3335–3347. 
https://doi.org/10.1007/s10586-020-03090-6 [16] Zuniga, C. D. Singular value decomposition for 
imaging applications. EBOOKS. 2021. 41 p. https://doi.org/10.1117/3.2611523.ch1  

[16] Balamurali, M. T-Distributed stochastic neighbor embedding. In: Daya Sagar, B., Cheng, Q., 
McKinley, J., Agterberg, F. (eds) Encyclopedia of Mathematical Geosciences. Encyclopedia of 
Earth Sciences Series. Springer, Cham, 2022. P. 1-9. https://doi.org/10.1007/978-3-030-26050- 
7_446-1  

[17] Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E., Vilanova. A. Hierarchical stochastic 
neighbor embedding. Computer graphics forum. 2016. Vol. 35, no. 3. P. 21–30. 
https://doi.org/10.1111/cgf.12878  

[18] Madhuri, K., Rao, M. K. S. Social media analysis using optimized k-means clustering. 
International journal of trend in scientific research and development. 2019. Vol. 3, Issueb2. P. 
953–957. https://doi.org/10.31142/ijtsrd21558  

[19] Suggs, D., Bouvier, D., Clark, M., Lepak K., Subramony, M. AMD “Zen 2”. 2019 IEEE hot 
chips 31 symposium (HCS), Cupertino, CA, USA, 18–20 August 2019. 2019. PP. 1-24. 
https://doi.org/10.1109/hotchips.2019.8875673  

[20] Kounev, S., Lange, K.-D., Kistowski, J. V. The SPEC CPU benchmark suite. Systems 
benchmarking. Cham, 2020. P. 231–250. https://doi.org/10.1007/978-3-030-41705-5_10  

[21] M. Ramchandani et al. Survey: tensorflow in machine learning.Journal of physics: conference 
series. 2022. Vol. 2273, no. 1. P. 012008. https://doi.org/10.1088/1742-6596/2273/1/012008  

[22] Osipyan, H., Edwards B. I., Cheok A. Deep neural network applications. CRC Press, 2022. 158 
p. https://doi.org/10.1201/9780429265686-2  

[23] GitHub - zalandoresearch/fashion-mnist: a MNIST-like fashion product database. benchmark. 
GitHub. https://github.com/zalandoresearch/fashion-mnist 

[24] Dataset for images and characters for image recognition. http://yann.lecun.com/exdb/mnist/  
[25] Zhang, C., Geng, Y., Han, Z., Liu, Y., Fu H., Hu, Q. Autoencoder in Autoencoder Networks. in 

IEEE Transactions on Neural Networks and Learning Systems, 2022, P. 1–13. doi: 
10.1109/TNNLS.2022.3189239 [27] FER-2013 facial expression dataset for Kaggle. 
https://www.kaggle.com/c/challenges-in representation-learning-facial-expression-recognition-
challenge/data  

[26] FER-2013 facial expression dataset for Kaggle. https://www.kaggle.com/c/challenges-in-
representation-learning-facial-expression-recognition-challenge/data 

[27] Advanced Micro Devices software for computer testing. 
https://www.amd.com/en/technologies/software 


	1. Introduction
	2. Related Works and Small Data Problem Solving
	2.1. The small data problem and the solution
	2.2. The general idea to estimate the efficiency of a computational device

	3. Experiments with CPU devices and general approach for task solving
	3.1. The general scheme of an experiment
	3.2. The theoretical and practical performance of processors and GPUs

	4. The problem with graphics card performance and resolution
	4.1. Solving the Problem: Libraries, Devices, and GPU Experiments
	4.2. Experiments with deep networks and tiny datasets
	4.3. Experiments with autoencoders and the different lambda functions
	4.4. Experiment with convolution networks for human face recognition
	4.5. Additional experiments: if there is not enough memory

	5. Discussion
	6. Conclusion
	7. References

