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Abstract 
The paper presents the formulation of the vector optimization problem on the combinatorial 

configuration of permutations with fuzzily specified data of the vector functions of the criteria and 

the feasible domain. The properties of the set of feasible solutions of the given problem are 

described. To solve the formulated problem, two approaches based on the method of guaranteed 

result and the method of successive concessions are proposed. Methods of solving multi-criteria 

problems with vague input information are presented. The main advantages of using new models 

are that they are linear, can generate different solutions of vector (multi-criteria) problems by 

changing the threshold values and set tolerance limits of fuzzy goals. There are lots of fuzzy data 

in the real world, and these data should be used in intelligent systems. One can find successful 

fuzzy systems in almost all industrial areas where optimization, learning, and handling imprecise 

knowledge play a role, i.e. classification, prediction, planning, control, and decision-making – just 

to mention a few fruitful areas. Fuzzy rule-based models often turn out to be helpful, 

understandable, not complex, and easy to handle.  
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1. Introduction 

In the decision-making process, situations often arise that have one or another degree of 

uncertainty, and therefore the quality of problem solving depends on the complete consideration of all 
factors affecting their consequences. Often these factors are subjective, and this applies as a decision 

maker, as well as the decision-making process itself. In addition, the decision maker does not always 

have at his disposal all the information necessary for his justified actions. This is one of the main 
difficulties that arise in the decision-making process. Such situations reflect the insufficiency of 

information for setting the problem, therefore, under unclear conditions and criteria, decision-making 

becomes problematic. When modeling real problems, vagueness appears, in particular, in the form of 

a description of functions and parameters on which they depend [1]. A convenient mathematical tool 
used to describe and take into account such information is the theory of fuzzy sets, first proposed in 

[2] and described, in particular, in [3-4]. Fuzzy sets are widely used in various applications of 

artificial intelligence, the theory of pattern recognition, decision-making, etc. [4-8]. 
In many theoretical and practical problems, there is a need to make a decision taking into account 

several optimality criteria [9-12]. At the same time, multi-criteria optimization problems are quite 

common in practice, in which a finite set of alternatives (solutions) are specified, which can be 
evaluated both quantitatively and qualitatively [12, 13]. The peculiarity of such problems, as a method 

of mathematical modeling of various applied problems, is that the multi-criteria selection of the most 
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appropriate solution is carried out from a set of unimproved solutions. The Pareto principle plays an 
exceptional role in solving such problems, according to which the optimal solution should be chosen 

among the Pareto-optimal solutions forming the compromise area. Note that this principle is not 

universal and applies only when a number of conditions are met. Even if these conditions are met, 

constructing a set of Pareto-optimal solutions can cause significant difficulties [14]. 
Another approach to solving the problem of multi-criteria optimization is the idea of successive 

concessions, based on the ranking of criteria in order of decreasing importance and solving a single-

criteria optimization problem, in which the most important criterion takes an extreme value, and 
restrictions are imposed on the others. The disadvantage of this approach is the complication of the 

conditions of the input problem, namely the limitations of the admissible area and the need to analyze 

different variants of the problem. The transition to a single-criteria problem is possible by aggregating 
individual criteria into a generalized criterion using the appropriate convolution [8-10].  

Despite the external attractiveness of such an approach, it raises a number of questions: it is not 

clear how to determine the type of aggregation function; it is difficult or impossible to justify the 

principle of evaluating its parameters, in particular weighting factors, degree indicators, as well as 
problematic interpretation of the obtained results [11-12]. Therefore, the problem of finding a set of 

Pareto-optimal solutions of the vector optimization problem is of great practical and theoretical 

importance. It should be noted that in most applied problems, the formal formulation of the 
optimization of a vector mathematical model is not only difficult, but also in a number of cases the 

main parameters may be vaguely specified. Models and methods of fuzzy optimization are used in 

economics, management, medicine, multi-objective planning, when solving operations research 
problems, in transport systems. Vaguely specified data in such models can be both in the description 

of the objective functions of the problem and its admissible area [7, 15]. 

Decision-making methods based on fuzzy models allow for convenient and high-quality evaluation 

of alternatives according to individual criteria. Unlike other methods, adding new alternatives does 
not change the order of previously ranked sets. When evaluating alternatives according to criteria, 

both linguistic evaluation and evaluation based on point evaluations using membership functions are 

possible. The main problem of multi-criteria selection using fuzzy models is providing information 
about the relationship between criteria and methods of calculating integral estimates. Methods based 

on different approaches give different results. Each approach has its limitations and features. The 

study of the problem of decision-making in a fuzzy environment became possible thanks to the 

publication of the article by R. Bellman and L. Zadeh [1]. 
The present paper continues researches, presented in works [7, 12]. This paper formulates the 

formulation of the vector optimization problem on the combinatorial configuration of permutations as 

a problem with vaguely specified data. Thus, the Edgeworth–Pareto principle extends to a wider class 
of multi-criteria problems in which the set of admissible solutions is fuzzy or the objective function 

has fuzzy parameters. In works, in particular, [15−19] investigated problems with many criteria with 

fuzzy objective functions, and in [20−28] - problems on combinatorial sets. Obviously, it is expedient 
to consider problems combining the above. 

2. Preliminaries 

Fuzzy subsets are formed by introducing the generalized concept of belonging, i.e., the expansion 

of the two-element set of values of the characteristic function to the continuum. 

This means that the transition from full membership of an object to full non-belonging occurs 
smoothly, not in a jump, so the membership is expressed by a number from the interval, and not by 

one of the two values of the elements of the set, as in the case of indicators of ordinary subsets. 

Regardless of whether fuzzy or clear subsets are used, the determination of degrees of belonging 

relies on some subjective decision maker criteria. In some cases, the determination of the 
corresponding values of the degrees of belonging of the elements of fuzzy sets leads to significant 

difficulties in working with fuzzy concepts. Formally, the general problem of fuzzy mathematical 

programming is described in the following way [15]. 

Let X is a universal set of alternatives, : [0, 1]A X 
 

is a given fuzzy subset of feasible 

alternatives, Y is a universal set of evaluations of the results of choices of alternatives from the set 
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X , and : [0, 1]R Y Y    is a given fuzzy preference ratio on the set.  

Choices of alternatives are evaluated by fuzzy values of a given fuzzy objective function 

: [0, 1]X Y   . The task is to make a rational choice of alternatives based on the information given 

in the form described above. The next step on the way to refine the model considered here is to 
describe the parameters of the problem in the form of fuzzy sets. At the same time, in addition to 

specifying sets of possible parameter values, additional information is introduced into the model in 

the form of membership functions of these fuzzy sets. These functions can be considered as a method 
of an approximate display by an expert in an aggregated form of his informal idea about the real value 

of a given parameter. The values of the membership function are the weights that the expert assigns to 

the different possible values of this parameter. There is no doubt that taking into account such 
additional information complicates the input mathematical model. 

For further exposition, we define a generalization of the concepts of multiset, n -sample, and 

combinatorial set of permutations for the case of vaguely specified information. 

Definition 1 [7, 12, 28]. A fuzzy multiset X defined on a universal multiset X  is a set of pairs 

 , ( ) ,Xx x where ,x X ( )X x
 
the function, ( )X x :  0,1X  , is called the membership function 

of the multiset X . 

The value ( )X x
 
for a particular x  is called the degree of belonging of this element to the fuzzy 

multiset X . 

As you know, multisets, according to the definition, form a subclass of the class of fuzzy multisets. 

A number of operations are performed on fuzzy sets, as well as on classical sets, such as union, 
intersection, Cartesian product, difference, etc.  

These operations also apply to fuzzy multisets [7]. 

Let be a given fuzzy multiset 

        1 1 2 2, , , ,..., , ( ) ,q qA A AA a a a a a a     its basis 

      1 1 2 2( ) , ( ) , , ( ) ,..., , ( )k kA A AS А e e e e e e    , where 

    min , , , ,
j j ti i i i qA A

e a a a j t i j t N       , 

 1 1,...,j ke R j N k     and  

multiplicity of elements ( ) , ,j j kk e r j N  1 2 ... kr r r q    .  

An ordered fuzzy n -sample from a fuzzy multiset A  is called a set 

    1 2 2 2
, ( ) , , ( ) , , , ( ) ,

n ni i i i i iA A Aa a a a a a a        (1) 

where 
jia А

 
,j ki N  kj N  , s ti i , if s t ,ks N  kt N  . 

Definition 2. [7] A fuzzy subset ( )Р A whose elements are fuzzy n -samples of the form (1) from a 

fuzzy multiset A  is called a fuzzy Euclidean combinatorial set if the following conditions are satisfied 

for an arbitrary pair of its elements  

       1 1 2 2, , , ,..., , ( )n nA A Aa a a a a a a     and 

       1 1 2 2, , , ,..., , ( )n nA A Ab b b b b b b    : 

   ( ) ( : , ( ) , ( )n j j j jA A
a b j N a a b b       , 

that is, a set ( )Р A  has the following property: two elements of a set ( )Р A
 
are different from each 

other if, regardless of other differences, they differ in the order of placement of the symbols that 

make them up and in the degree of belonging to a fuzzy subset ( )Р A . 
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A fuzzy set of permutations with repetitions of n  real numbers, among which k  are different, is 

called a general fuzzy set of permutations and is denoted by ( )nkР A . 

Definition 3. [7] A convex combination of fuzzy sets 1 2, ,..., nA A A
 
in nR is called a fuzzy set 

A with a membership function of the form 

   
1

n

A i i
i

x x



    , where 0i  , ni N ,

1

1
n

i
i

  . 

We will consider the elements of the set of permutations with repetitions as points of the 

arithmetic Euclidean space nR . 

It is known that each element of the set ( )nkР A  is an ordered set of n real numbers, among which 

k are different. Without losing generality, we arrange the elements of the set  A  as follows: 

1 2 .na a a        (2) 

As is known [29−31], the convex hull of a set of permutations in Euclidean space is a polyhedron 
of permutations, the set of vertices of which coincides with the set of permutations. 

A permutation polytope of order n is an ( 1)n  -dimensional convex polytope embedded in an n-

dimensional Euclidean space that is the convex hull of all n! points obtained by permuting the 

coordinates of the vector  1,2,..., .n  According to Ziegler, Günther [29], the permutation polyhedron 

began to be realized in the works of Schute in 1911 [30].  

The term "permutation polyhedron" itself (more precisely, its French version "permutoèdre") first 

appeared in an article by Guibaud G.-T and Rosenstahl P. in 1963. Bowman V.-J. in 1972 in a more 
general situation, used the term "permutation polytope" for any polytope whose vertices are in one-to-

one correspondence with permutations of some set [31]. 

Along with the classical permutation polyhedron, we describe the general permutation polyhedron 

( )nk A , which is the convex hull of the general set of permutations ( )nkР A
 
[7, 12]: 

    
1 1 1 1

, ,
j

n n i i

j j j
j j j j

x a x a
   

         (3)  

, , , , ,j n j t i nN j t j t N i N           , ( ) vert ( )nk nkP A A  . 

A fuzzy convex polyhedron can also be represented as a convex hull of a fuzzy combinatorial set 

of permutations:  

( ) conv ( )nk nkA P A  . 

3. Formulation of the vector optimization problem on the combinatorial 
configuration of permutations with fuzzy specified data  

The vector problem of combinatorial optimization is considered 

 ( , ) : max ( ) | ,nZ F X F x x X R   

1( ) ( ( ),..., ( ))lF x f x f x ,  

: , ,n
i lf R R i N   

vert ( )nkX A D  , ( ) conv ( ),nk nkA P A   

where ( )nkP A  − combinatorial set of permutations, nD R  − convex polyhedron. 

A fuzzy subset  , ( ) ,XX x x  is given on the set X . 

 , ( ) ,XX x x   where ,x X  and ( ) : [0,1]X x X   − set membership function X .  
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By maximization we mean the selection of a fuzzy subset R  from a fuzzy set X , which 

corresponds to the largest value, as a vector function F , and membership functions ( )X x  of a fuzzy 

set of alternatives. These alternatives in multicriteria optimization problems are called efficient 
(Pareto optimal). An interesting case is when the vector optimization problem is a problem with a 

fuzzy-defined vector objective function. 

A fuzzy decision making problem defined over a feasible set X  of decision variable vectors 

assumes the existence of several fuzzy goals , 1,..., ,kG k l  that are fuzzy subsets of X  under a set of 

fuzzy restrictions , 1,..., ,iR i m
 
that are also fuzzy subsets of X . Bellman and Zadeh [1] described a 

solution to such problem (i.e. a decision), through a fuzzy subset of X , i.e. a set  ( ) |, ,Xx D x x   

where the membership function  

 : 0,1  Dµ X   is defined by aggregating the fuzzy goals and restrictions using the min operator  

    min  1,.( .., 1,...) ( ) | ( ,) |
k iD G Rx x k l x i m      . 

The classic way to construct a fuzzy goal related to any kind of objective functions ,if  that has to 

be maximized is to involve a threshold ( )ig  and a tolerated limit ( )i it g  on the given threshold, and 

define the membership function ( ( ))
fi

if x ( ( ))iX f x , where 

 

0, ( ) ,

( )
( ( )) 1 , ( ) , 1,..., .

1, ( ) .

fi

i i

i i
i i i i l

i i

i i

f x t

f x t
f x t f x g i N l

g t

f x g

 



      


 

 

Due to the established inequality between the threshold ig  and the tolerance limit it , ( ( ))
if if x  

is a component-wise increasing function. The greater the degree of belonging of the alternative x to 

the fuzzy set of the goal, that is, the greater the value of the function ( ( ))
if if x , the higher the degree 

of achievement of this goal will be if alternative x is chosen as a solution х. 

Further on, Zimmermann [4] proposed the following mathematical problem 

max   

,  1,..., ,( )
kG x k l      

0,  1,.. ,( ) .,
iR x i m     

0 1, ,x X     

to derive the optimal decision, namely the solution with the maximal membership value. 
The solution of a fuzzy multicriteria optimization problem can be reduced to the solution of a crisp 

problem by transforming the constraints into the form 

max, ( ( )) , ,k kf x x X      

where  − level (cut) of a fuzzy set .X  

4. Approaches to solving the vector optimization problem on combinatorial 
configurations with fuzzy specified data 

There are quite a few methods for solving multicriteria problems, but most of them are designed to 

solve problems of choosing solutions in a well-defined space. A small modification makes them 

applicable even in conditions of fuzzy.  
In particular, in practice, classical optimization theory is often applied to fuzzy models, where 

there is no reason to set coefficients in the form of precisely defined numbers because such an 

artificial narrowing of a priori information can lead to distortion of the obtained results. 
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4.1.  Problem solving based on the guaranteed result method 

To solve the problem formulated above, the guaranteed result method is considered, which gives a 
good result even for the smallest of the criteria, i.e., a compromise solution is obtained by solving the 

following optimization problem: 

1,2,...
min ( ) maxi

i l
z f x


  , .x X  

As you know, taking into account the normalization of criteria, methods of guaranteed results are 

the most promising direction in solving multi-criteria optimization problems. 

For normalized criteria 

*

( )
( ) : , ,nk

k l
k

f x
x R R k N

f
     

where 
* max ( ) : , ,n
k k l

x X
f f x R R k N


    the maximin problem is formulated in the form: 

min ( ) max : , , .
l

n
k l

k N
z x x X R R k N


           (4) 

Let us consider two cases when the criteria are equal and unequal (with a given priority). 

Consider the case when the criteria are equivalent. 
Problem (4) is equivalent to problem 

z=→max       (5) 

under conditions  

( ), ,

,

k lx k N

x X

   


          

(6) 

vert ( )nkX A D  , ( ) conv ( ),nk nkA P A 
 

where ( )nkP A  − combinatorial set of permutations, nD R − convex polyhedral set. 

Problem (5) − (6) is called a -problem. It has a linear objective function and m l constraints. 

If all functions ( ), ,k lf x k N
 

( ),i mg x i N
 

are linear, then the -problem belongs to linear 

programming. In this case, it is proved that the optimal solution *x of the -problem is Pareto optimal. 

Consider the case when the priority of the criteria is set. Let there be two criteria 1( )f x
 
and 2 ( )f x , 

and 1( )x and 2 ( )x − are the corresponding normalized criteria. Let's divide the feasible region into 

two parts 1 2X X X in such a way that the inequality 1 2( ) ( )x x  
 
is satisfied in the region 1X , 

that is, the first criterion has priority over the second, and in the region 2X  the inequality 

1 2( ) ( )x x  
 
is satisfied, the second criterion has priority over the first. 

For the numerical characteristic of the priority, the connection coefficient is introduced 

1 2( ) ( ) ( ) ,( ): x p x xp x     which determines how many times the relative estimate 1( )x  is greater 

than 2 ( )x . If x* is an optimal point for equivalent criteria, then ( )* 1p x  . 

If *
1x  is the optimum point according to the first criterion, where *

1 1( ) 1x  , *
2 1( ) 1x  , that is 

*
1 1x X , and it means that *

1( ) 1p x  . 

Similarly, if *
2x  is the optimum point according to the 2nd criterion, where *

1 2( ) 1x  , *
2 2( ) 1x  , 

then it means that *
2( ) 1p x  . 

Let the first criterion have priority over the second. Then the coefficient ( )p x must be set in the 

interval *
1( )(1; )p x , and then the -problem must be formulated and solved, including the equality in 

the system of constraints  

1 2( ) ( ) ( )x p x x   . 
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As a result, we will get the point x*, which will belong to the set 1X , where the first criterion has 

priority over the second. t is proved that for convex problems of multicriteria optimization, the point 

x*, which is the solution of the -problem, is unique and Pareto optimal. The disadvantage of the 

considered method is the subjectivity of setting the connection coefficient ( )p x . 

Solving the problem of multicriteria optimization by the method of a guaranteed result, as a rule, 

goes through the following stages: 
1. Development of a mathematical model of the system based on set goals and limitations; at 

the same time, the opinion of experts is often used. 

2. Preliminary analysis of the system separately for each partial criterion; use methods and 
software tools of single-criteria optimization. 

3. Standardization of criteria. 

4. Solving the multicriteria optimization problem with equivalent criteria. 
5. Determining the priorities of the criteria and solving the multi-criteria optimization 

problem with assigned priorities. 

4.2.  Approach to solving the problem based on the method of successive 
concessions 

The development of methods for solving the given problem in conditions of vague certainty 

requires knowledge and use of the results of the operations of finding the sum, product, minimum and 

maximum of vague values. 
By a fuzzy number, we will understand a fuzzy set with a definition area in the form of an interval 

of the real axis 1R . We denote the set of all fuzzy numbers 1R defined by 1R . 

Let x  and y  be two fuzzy numbers with carriers 1 2( , )xS a a and 1 2( , )yS a a , respectively:  

2 1 2 1,a a b b  ; 

1 1 1:g R R R   - some function. 

Then, according to the principle of generalization, the fuzzy number is determined by the 

membership function 

 
,

( , )

( ) sup min ( ), ( )

a S b Sx y

D x y
g a b z

z a b

 



        (7) 

Let us denote  − one of the four arithmetic operations: +, −,  , /; ( , )g a b a b  . Then formula 

(7) determines the result of an arithmetic operation  on fuzzy numbers x and y  .  

If ( )g  − is a function of not two, but n arguments, then the principle of generalization is 

formulated analogously to formula (7). When comparing two vague values, it is necessary to define 

the equality of these values. 

Definition 4. Two fuzzy values (two numbers)  1 1 1, ( )x x  and  2 2 2, ( )x x  we will consider 

equal if 1 2x x  and 1 1 2 2( ) ( )x x   . 

Definition 5. If the condition 1 2x x , 1 1 2 2( ) ( )x x    and one of these inequalities is strict, then 

the fuzzy quantity  1 1 1, ( )x x is greater than the fuzzy quantity  2 2 2, ( )x x . 

An approach based on the method of successive concessions has been developed. When solving a 
multi-criteria problem by the method of successive concessions, a qualitative analysis of the relative 

importance of partial criteria is first made. 

The peculiarity of this method is that the problem criteria must be pre-numbered in descending 

order of their importance, thus the main criterion 1( )f x is less important than 2 ( )f x , followed by 

other partial criteria 3( )f x , 4 ( )f x  ,…, ( )lf x . The most important criterion is maximized 1( )f x  and 

its largest value is determined *
1f . Then the value of the permissible reduction (concession) 1 0  of 
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the criterion 1( )f x  is assigned and the largest value *
2f of the second criterion is found 2 ( )f x , 

provided that the value of the first criterion must not be less than *
1 1f  .  

The amount of the concession is again assigned 2 0  , but according to the second criterion, 

which is used together with the first when finding the conditional maximum of the third criterion, etc. 

Finally, the last most important criterion is maximized ( )lf x , provided that the value  of each 

criterion ( )rf x from 1l  the previous ones must be no less than the corresponding value *
r rf  , 

then the solutions obtained as a result are considered optimal. 
Thus, the choice of the solution of the problem is carried out by performing a multi-step procedure 

and consists in sequentially including the constraints of the problem ( , )Z F X and taking into account 

the structural features of its admissible area.  
The optimal solution is considered to be the solution of the last problem from the following 

sequence of problems: 

 *
1 1max ( )f f x x X  , 

 * *
2 2 1 1 1max ( ) , ( )f f x x X f x f     ,..., 

 * *
1 1 1max ( ) , ( ) ,l l r r r lf f x x X f x f r N        . 

It should be noted that in the case when all r  
are zero, the method of successive concessions 

selects only lexicographically optimal strategies; these strategies deliver the largest solution to the 

most important criterion in the set of admissible values 1( )f x . Therefore, the amount of concessions 

intended for a multi-criteria task can be considered as a kind of measure of deviation of the priority 

(degree of relative importance) of partial criteria from the rigid, lexicographic one. 

The concept of structures of dominance and non-dominated solutions in multi-criteria problems 
allows us to consider general cases in which there is information about the preferences of the 

decision-maker. In [16], the concepts of fuzzy convex and fuzzy polar cones are introduced, which 

generalize the structures that will be used to define the concepts of optimality according to Pareto, 
Slater, and Smale. If there is no information about both the preferences for a set of alternatives and the 

preferences for a set of criteria, then as a rule, the simplest methods are used: minimax, maximax, etc. 

If there is information only about the comparative importance of evaluations according to each of the 
criteria, they use methods of sequential consideration of alternatives according to individual criteria 

(lexicographic method, method of permutations, method of sequential reduction, etc.). If the decision-

maker's preferences on sets of criterion evaluations are expressed in ordinal scales and set in relation 

to the weight of the criteria, then voting methods are used, the most common of which in decision-
making is the B. Roux method. If the relative weights of the criteria and the relative values of the 

criterion evaluations for individual criteria can be obtained, then many different methods are used, in 

particular, direct methods of evaluating alternatives using predetermined evaluation functions (for 
example, additive weighted convolution of evaluations for all criteria), utility theory methods that 

require dialogue with the decision-maker and submission to his known axiomatics. 

If along with the information about the importance of the criteria, the ideal criterion evaluations 

are known, it is possible to apply methods for evaluating the achievement of goals. 

5. Conclusions 

The paper presents the formulation of the vector optimization problem on the combinatorial 

configuration of permutations with vaguely specified data. The vagueness is specified in the 

description of the objective function and the admissible domain of the problem. The Edgeworth–

Pareto principle applies to a class of multicriteria problems in which the set of possible solutions is 
fuzzy, or the objective function has fuzzy parameters. 

Methods of solving multi-criteria problems with vague input information are presented. Depending 

on the specifics of the task, it is possible to apply other methods of multicriteria selection modified in 
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case of vaguely specified information. The generalization of clear methods, as a rule, does not present 
particular difficulties, if the methods of presenting vague concepts, implementing vague calculations, 

comparing vague numbers, and forming a vague set of better alternatives are chosen in accordance 

with the conditions of the problem being solved. 

As a result of the research of the vector combinatorial problem, which is based on the use of 
information about the convex hull of the admissible domain, the study of the properties of the 

polyhedron, the vertices of which are defined by a vaguely specified combinatorial set of 

permutations, a method of solving complex multicriteria problems on the specified combinatorial set 
was developed and substantiated. In the coming papers, we plan to investigate more special vector 

models on various combinatorial configurations with vaguely specified data, to develop new versions 

of algorithms for solving the specified problems. The construction of randomized versions of 
algorithms is also of considerable interest. 

The obtained results are important and relevant, as they can be applied in the functioning of 

complex real systems, for example, economic, ecological and a number of other artificial and natural 

systems. They can have a continuation for the development of new fuzzy optimization models on 
various combinatorial configurations and methods for solving vector optimization problems using the 

concepts of fuzzy combinatorial objects and be used, including for the construction of computer 

technologies with the organization of intelligent calculations when solving complex decision-making 
problems. 

6. References 

[1] Bellman R.E. and Zadeh L.A. Decision-making in a fuzzy environment,” Management Science. 

1970. Vol. 17, N. 4. P-141–164. 

[2] Zadeh L.A. Fuzzy sets. Inform. and Control. 1965. Vol. 8. P. 338–353. 
[3] Kaufman A. Introduction to the Theory of Fuzzy Subsets. Vol. 1. New York: Academic Press. 

1975. 432 p. 

[4] Zimmermann H.-J. Fuzzy Set Theory and Its Applications. Third Edition. Kiuwer Academic 

Publishers Boston / Dordrecht / London. 2001. 435 p. 
[5] Carlsson C. and Fuller R. Fuzzy Reasoning in Decision Making and Optimization. Physica-

Verlag, Heidelberg. 2002. 338 p. 

[6] Lodwick W.A., Untiedt E. Introduction to Fuzzy and Possibilistic Optimization. Fuzzy 
Optimization. Recent Advances and Applications. Springer, Heidelberg. 2010. P. 33−62. 

[7] Semenova N.V., Kolechkina L.N. and Nagirna A.M. Vector optimization problems with linear 

criteria over a fuzzy combinatorial set of alternatives. Cybernetics and Systems Analysis. 2011. 
Vol. 47, N 2. P. 250–259. https://doi.org/10.1007/s10559-011-9307-5. 

[8] Zheldak T.A., Koriashkina L.S., Us S.A. Fuzzy sets in management and decision-making 

systems. Ministry of Education and Science of Ukraine, National technical Dniprovska University 

polytechnic". Dnipro: NTU "DP". 2020. 387 p.  http://ir.nmu.org.ua/handle/123456789/156356. 
[9] Ehrgott M. Multicriteria optimization. Berlin; Heidelberg: Springer, 2005. 323 p. 

[10] Johannes J. Vector optimization. Theory, applications, and extensions. Second edition. Berlin; 

Heidelberg: Springer-Verlag, 2011. 481 p. 
[11] Steuer R. Multiple criteria optimization: theory, computation and application. New York: John 

Wiley, 1986. 546 р. 

[12] Semenova, N.V., Kolechkina, L.M. Vector Discrete Optimization Problems on Combinatorial 
Sets: Research and Solution Methods [in Ukrainian]. Kyiv: Nauk. Dumka, 2009. 266 p. 

[13] Takehide Soh , Mutsunori Banbara, Naoyuki Tamura, and Daniel Le Berre, 2017, Solving 

Multiobjective Discrete Optimization Problems with Propositional Minimal Model Generation, 

Springer International Publishing AG 2017 J.C. Beck (Ed.): CP 2017, LNCS 10416, pp. 596–614, 
2017. DOI: 10.1007/978-3-319-66158-2 38 

[14] Nogin V.D. A logical justification of the Edgeworth–Pareto principle. Zh. Comput. Math. Math. 

Phys. Vol. 42, N 7. 2002, P.915–920.  

https://link.springer.com/chapter/10.1007/978-3-642-13935-2_2#auth-Weldon_A_-Lodwick
https://link.springer.com/chapter/10.1007/978-3-642-13935-2_2#auth-Elizabeth-Untiedt
https://doi.org/10.1007/s10559-011-9307-5
http://ir.nmu.org.ua/handle/123456789/156356


266 

[15] Orlovski S.A. Problems of Decision-Making with Fuzzy Information. WP-83-28. Working 
Papers are interim reports on work of the International Institute for Applied Systems Analysis. 

Austria, Laxenburg. 1983. 56 p. 

[16] Takeda E., Nishida T. Multiple criteria decision problems with fuzzy domination structures. 

Fuzzy Sets and Syst. 1980. Vol. 3. P. 123136 

[17] Mashchenko S.O. Maximizing alternatives in a decision-making problem with a goal type-2 
fuzzy set. Cybernetics and Systems Analysis. 2019. Vol. 55, P. 933–942. 

https://doi.org/10.1007/s10559-019-00203-x. 

[18] Zhukovin V.E. Fuzzy multicriteria decision making models. Tbilisi. 1988. 231 p. 
[19] Zaichenko E.Yu., Zaichenko Yu.P. Multicriteria decision-making problems under fuzzy 

conditions. System monitoring and information technologies. 2016, N. 4. P. 79-87. 

[20] Korte B. and Vygen J. Combinatorial Optimization: Theory and Algorithms. Springer: Berlin–

Heidelberg–New York. 2012. 
[21] Papadimitriou C. H. and Steiglitz K. Combinatorial Optimization: Algorithms and Complexity, 

Dover Publications, Mineola. 2013. 

[22] Pardalos P.M., Du D-Z., and Graham R.L. (eds.), Handbook of Combinatorial Optimization. 
Springer: New York. 2013. 

[23] Hulianytskyi L., Riasna I. Formalization and classification of combinatorial optimization 

problems. Optimization Methods and Applications, S. Butenko et al. (eds.). New York: Springer, 

2017. P. 239–250. 
[24] Panos M. Pardalos, Antanas Zilinskas, and Julius Zilinskas. Non-Convex Multi-Objective 

Optimization. Springer Optimization and Its Applications. Springer International Publishing, 

2017 
[25] Bökler, F. K., 2018. Output-Sensitive Complexity of Multiobjective Combinatorial Optimization 

with an Application to the Multiobjective Shortest Path Problem (Ph.D. thesis). Technische 

Universität Dortmund.  
[26] Koliechkina L., Pichugina O., Yakovlev S. A Graph-Theoretic Approach to multiobjective 

permutation-based optimization. In: Ja´cimovi´c, M., Khachay, M., Malkova, V., and Posypkin, 

M. (eds.) Optimization and Applications. Springer International Publishing, Cham 2020. P. 383–

400. 
[27] Koliechkina, L., Pichugina, O. Multiobjective Optimization on Permutations with Applications. 

DEStech Transactions on Computer Science and Engineering. 2018. P. 61–75. 

[28] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 
5th edition, 2012.  

[29] Ziegler Günter M. Lectures on Polytopes. Graduate Texts in Mathematics. Vol. 152. Springer 

Science & Business Media: 2012. 370 p. 
[30] Schoute P.H. Analytic treatment of the polytopes regularly derived from the regular polytopes. 

Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. 1911. Vol. 11, N 

3. 87 p. Googlebook, P. 370−381. 

[31] Bowman V.J. Permutation polyhedra. SIAM Journal on Applied Mathematics. 1972. Vol. 22, N 
4. P. 580–589. https://doi.org/10.1137/0122054. 

https://doi.org/10.1007/s10559-019-00203-x
https://en.wikipedia.org/wiki/G%C3%BCnter_M._Ziegler
https://en.wikipedia.org/wiki/Pieter_Hendrik_Schoute
https://books.google.com/books?id=qC5LAAAAYAAJ&pg=PA357&lpg=PA357&dq=Analytic+treatment+of+the+polytopes+regularly+derived+from+the+regular+polytopes&source=bl&ots=SSICDM5u2d&sig=YyC2qp3xlErwN8b2_slTPfFEle4&hl=en&ei=tdBQTN6kFIeonQf_5dyPBw&sa=X&oi=book_result&ct=result&resnum=5&ved=0CCMQ6AEwBA#v=onepage&q&f=false
http://links.jstor.org/sici?sici=0036-1399(197206)22%3A4%3C580%3APP%3E2.0.CO%3B2-P
https://dx.doi.org/10.1137%2F0122054

	1. Introduction
	2. Preliminaries
	3. Formulation of the vector optimization problem on the combinatorial configuration of permutations with fuzzy specified data
	4. Approaches to solving the vector optimization problem on combinatorial configurations with fuzzy specified data
	4.1.  Problem solving based on the guaranteed result method
	4.2.  Approach to solving the problem based on the method of successive concessions

	5. Conclusions
	6. References

