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Abstract  
The article considers the issue of predicting workloads in a cluster for use in the proactive 

scaling of computing resources. Although classical prediction methods have a sufficient level 

of accuracy, their use on the scale of hundreds of different workloads requires manual data 

preprocessing and model tuning. The new generation of prediction methods is more versatile, 

including those capable of independently detecting seasonalities, trends, and anomalies. The 

paper considers applying these methods to provide accurate predictions for workloads without 

significant manual intervention. Given the current trend of using microservice architecture, 

where there are many unique workloads, this attribute can be helpful. Numerous research 

papers focus on the subject of proactive scaling, exploring statistical approaches and artificial 

intelligence-based methods. However, most of these studies primarily assess the accuracy of 

the models while overlooking an essential aspect, which is universality. Universality refers to 

a model's capacity to handle diverse workload patterns without requiring manual adjustments. 

The primary focus is to investigate the feasibility of using these methods as a comprehensive 

solution for automated scaling. 
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1. Introduction 

The emergence of orchestrators such as Kubernetes, Nomad, and others has dramatically simplified 

many aspects of computing resource management and made significant changes in approaches to 

infrastructure development, mainly through the introduction of the containerization paradigm [1]. 
Containers can significantly reduce the application's availability time compared to virtualization and 

optimize resource utilization while improving application performance [2]. This is achieved due to the 
absence of a guest operating system and using cgroups to manage allocated resources. 

Orchestration and containerization gave impetus to the development and popularization of 
microservice architecture. A microservice is a lightweight application whose functionality follows the 
principle of single responsibility. This separation of functions makes it possible to scale system 
components separately and allocate cluster resources more granularly. 

In particular, these solutions, together with the decomposition of the system into microservices, 
provide significant opportunities for automating resource management, including computing. Scaling, 
in particular automatic scaling, is one of the most effective tools for managing the cluster's computing 
resources and maintaining the required level of service quality. Individual applications, groups of 
applications, or the entire cluster can be scaled horizontally and vertically. Scaling approaches can be 
reactive, proactive, and hybrid, which includes components of both previous approaches [3]. 

2. Related work 

Proactive scaling approaches can be broadly divided into time series based and machine learning 
based. Time series approaches are easier to interpret and do not require a lot of time and computational 
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resources. The main drawback of the approach is the prediction accuracy, that relies heavily on the 
selected metric and how well historical data is pre-processed.  

In the work [4], the authors proposed a solution for proactive scaling based on ARIMA, using the 

Hyndman-Khandakar algorithm for more accurate selection of model parameters. The accuracy of the 

model was tested on the example of web requests to the Wikipedia server, obtaining an accuracy rate 

of 91%. It is worth noting that ARIMA does not support work with complex seasonality and the authors 

evaluated the model on the weekly load pattern. 

In another paper [5], the authors presented a solution that allows combining multiple time series 

forecasting algorithms (Simple Exponential Smoothing, Moving Average, ARMA, Holt-Winters) using 

a genetic algorithm. This work shows that there is no best algorithm for all existing time series and that 

a combination of such methods can be more accurate than each of them individually. 

ML-based are able to detect nonlinear features of systems, but require a lot of time and data to train 

the model. In the work devoted to Google Autopilot [6], it is noted that the predictions are produced 

with the help of several ML models, which, in addition to historical data of computing resources usage, 

are able to include such events as OOM and CPU throttling, in the forecasting process. The authors also 

point out that one of the problems of this approach is the interpretation and the possibility of explaining 

the predictions. 

3. Predictive scaling and Kubernetes 

Firstly, we must consider the disadvantages of reactive scaling, as discussed in our previous work 

[7]. With reactive scaling, there is a delay between when the load increases and when additional 

resources become available. During this delay, the application may experience performance degradation 

or unavailability. In addition, reactive scaling does not work effectively with sudden or unpredictable 

load peaks. Also, this type of scaling can be resource-intensive and inefficient if the load changes 

rapidly. Suppose the limits for reactive scaling are set too sensitive. In that case, you may end up with 

a system constantly scaling up and down, resulting in suboptimal resource utilization and degraded 

QoS. Predictive scaling can compensate for these shortcomings by predicting peak loads [8]. However, 

it should be considered that in the case of atypical loads, reactive scaling can be more effective [9]. A 

predictive approach is practical when a seasonal load pattern persists for a long time. It makes it possible 

to scale up the application in time and maintain a high level of QoS, and on the other hand, to free up 

resources when they are no longer needed. 

3.1. Requirements to prediction methods 

This paper is devoted to studying the feasibility of using the selected models for prediction in 

conditions close to working in a Kubernetes cluster, considering all its limitations and capabilities. 

In this paper, it is assumed that the load pattern of any component has a clear seasonality or trend. 

Otherwise, there is no point in applying this approach. Therefore, the first requirement for the predictive 

models considered in this paper is the ability to work with one or more seasonality. Also, the models 

considered in this paper should be accurate since the more accurate the forecast, the more optimally the 

amount of computing resources is calculated. Given the current trend of microservices, scaling all 

possible cluster components makes sense. Also, given that each component of the microservice 

architecture has its unique features and functionality, the load pattern is individual for each component, 

and there can be an unlimited number of such components. This leads to the conclusion that processing 

historical metrics and manually adjusting model parameters for each component is a process that cannot 

be scaled. The main advantage and feature of predictive models is that it is possible to estimate the load 

at any point in the future. This means that we can adapt the target subsystem to future loads in terms of 

performance and saving computing resources. However, predictions in the context of workloads are 

only sometimes accurate for many reasons. The workload on a subsystem depends on many technical 

and non-technical factors, such as network stability, data center availability, holidays, and even political 

and economic situations. No model can account for all of these factors, but it can be made adaptive and 

resilient to such things. If a model is very accurate but takes too long to train, its effectiveness also 
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decreases. It is necessary to formulate the requirements for predictive models taking into account all of 

the above: 

1. Versatility 

2. High accuracy of predictions 

3. Work with complex seasonality 

3.1.1.  Architecture of Kubernetes 

Kubernetes, as an open-source platform, facilitates the management of workloads and applications. 

It offers automation for load balancing, application deployment, scaling, data storage management, and 

access control. A cluster in Kubernetes refers to a collection of virtual or physical machines connected 

within a single network. This coherence is achieved through specialized software on each machine 

called kubelet agent. In the context of a Kubernetes cluster, each machine is considered a node. Each 

node is allocated specific computing resources as part of the resource management subsystem. 

During application deployment, each instance is assigned to a node with sufficient computing 

resources to ensure proper functionality. The deployment specification includes minimum resource 

requirements, known as requests and limits. While a containerized application instance can utilize more 

resources than the specified requests if available on the node, it is restricted from using more resources 

than the limits configuration defines. This ensures efficient resource utilization and management within 

the Kubernetes cluster. In this paper, we consider scaling automation in two stages. The first stage 

involves obtaining historical data, processing it, obtaining resource or workload predictions, and 

validating them. The second stage involves determining the point in time when applying new resource 

constraints will have the most negligible impact on quality indicators. This paper considers only a part 

of the first stage, namely obtaining predictions. 

3.1.2. Kubernetes limitations 

Kubernetes uses a ready-made solution for resource monitoring - Prometheus, which has its 

specifics. In this paper, we will use this solution as a data source. First, it has a relatively short storage 

time for historical metrics, usually several weeks. Second, metrics can be lost due to system failures. 

Third, the frequency of metrics collection is approximately one minute due to the limitations of kubelet 

[10]. Predicting memory values has its specifics because if the limit is exceeded, a denial of service due 

to OOM may occur. This paper does not cover this feature. 

3.2. Prediction methods 

There are several predictive models, but we have chosen to analyze relatively new approaches that 

meet the above requirements in this paper – TBATS, Prophet and NeuralProphet. 

3.2.1. TBATS 

The first forecasting method considered in this article is TBATS [11], whose name is an acronym 

for the main components of the model: trigonometric seasonality, Box-Cox transformation, ARIMA, 

trend, and seasonality components. TBATS is designed to forecast complex time series with several 

seasonalities of different lengths. In TBATS, the original time series is subjected to the Box-Cox 

transformation [12], the primary purpose of which is to make the variance of the data stable, which is a 

crucial assumption for many statistical models, especially for linear regression and time series models. 

After that, the transformed time series is modeled as a linear combination of an exponentially smoothed 

trend, seasonal components, and ARMA components. Seasonal components are modeled by 

trigonometric functions using a Fourier series. TBATS is capable of adjusting some parameters 

independently using AIC [13]. This method was chosen for this work because of its versatility and 

ability to adapt to time series of varying complexity, which means there is no need to adapt the model 

to the load of each existing component in the system. 
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3.2.2. Prophet 

Prophet is a time series forecasting library developed at Facebook [14]. The main goal of the 

development was to create a simple, transparent, and understandable model-generation algorithm that 

would allow for quick and reliable predictions. 

This algorithm is based on an additive regression model [15] with several components. 

( ) ( ) ( ) ( ) ( ),y t g t s t h t e t   
                                                 (3)  

 where ( )g t  - trend component, ( )s t  - seasonal component, ( )h t  - anomaly component and  ( )e t  - 

an error function. In addition to the additive regression model, Prophet also uses the Fourier transform. 

Among the advantages of this model are the ability to work with any time series, the ability to work 

efficiently with large data sets and missing data, and flexibility in customization. 

3.2.3. NeuralProphet 

NeuralProphet [16] is a time series prediction library developed on top of the PyTorch library. This 

library develops Facebook's Prophet model but uses neural networks. The main difference of this library 

is the ability to use the power of deep learning to predict time series with different trends and 

seasonality.The basis of this library is an autoregressive neural network [17], which combines classical 

autoregressive time series prediction methods with modern approaches based on artificial intelligence.  

This library consists of several components: trend, seasonality, regression of future variables, 

autoregression of historical variables, and regression of lagged variables. The following equation can 

describe their dependence: 

ˆ ( ) ( ) ( ) ( ) ( ) ( ),ty T t S t E t F t A t L t     
                  (4) 

where ( )T t  - trend function, ( )S t - seasonal function, ( )E t  - event and holiday function, ( )F t  - 

regression effects for future-known exogenous variables, ( )A t - auto-regression effects based on past 

observations, ( )L t - regression effects for lagged observations of exogenous variables [16]. 

This library lies at the intersection of static and neural network methods and has the advantages of 

both approaches. In addition, NeuralProphet includes the ability to select component parameters 

automatically, has the ability to work with time series of different seasonality, and allows the use of 

side variables to improve the results of predictions. 

3.2.4. Other methods 

In this paper, we do not consider SARIMA since this method does not support the work with several 

seasonalities in one time series. Also, finding the optimal model parameters is a non-trivial task. Also, 

this paper does not consider the LTSM method, as it has been considered in many papers. In addition, 
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approaches that rely entirely on neural networks are difficult to understand and require a significant 

understanding of neural network architecture. 

4. Experiments 

This section is devoted to conducting practical experiments to evaluate the accuracy of the models 

under certain conditions. The purpose of these experiments is not only to compare the selected methods 

with each other and determine the most accurate ones but also to assess the feasibility of using these 

methods in general. 

4.1. Accuracy evaluation 

To evaluate the accuracy of time series prediction models, two accuracy metrics are suitable: 

 Root mean square error (RMSE); 

 Mean absolute percentage error (MAPE). 

RMSE allows you to compare the deviations in the initial values and helps you assess the 

prediction's overall accuracy. 
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where ( )x t  – an actual value at the moment of time ,t ˆ
tx  – prediction at the moment of time ,t  аnd 

n  – a number of datapoints in the dataset. 

The assessment of the universality of the method is determined based on the assessment of accuracy 

without additional adjustment of the models. Determining how the model can adapt to various load 

patterns is essential. 

4.2. Typical workloads 

To compare the selected time series prediction methods, it is necessary first to identify typical 

application load patterns [18]. Figure 1 shows graphs of typical loads: 

 Monotonically increasing; 

 on/off patters; 

 bursty pattern; 

 random pattern; 

 mix of several patterns; 

The random pattern is not considered in this paper, as predictions of this type are impossible. All 

other patterns have either a steady trend or some seasonality. This is the basis for the load patterns 

selected for training. 

4.1. Dataset 

To verify the accuracy and versatility of the models, we chose the metrics of an artificially generated 

load that is stationary with daily and weekly seasonality. The data for training and validation were 

obtained from Prometheus. This combination of seasonality was chosen because it reflects the cyclical 

nature of human behavior in society, which is driven by social norms and habits. In a typical week, 
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especially in a business environment, a distinct rhythm is caused by working days and days off. Daytime 

seasonality, in turn, reflects the repetition of people's actions throughout the day: working hours, time 

for rest, sleep, and so on. Generally, any other seasonality can be selected, and the goal is to test the 

models on complex seasonality.  

The frequency of the values in the generated time series is one hour and has a minimal impact on 

the accuracy of the models compared to lower data frequencies. Anomalies and distortions are 

introduced by artificially distorting the data.  

 

Figure 1: Classification of typical load patterns 

4.2. Experiment: daily and weekly fluctuations without data distortion 

In the first experiment, we compare the selected models on the example of the above-described time 

series with two periodicities of different lengths - daily and weekly. The data were not pre-processed. 

The purpose of this experiment is to investigate the prediction capabilities of the selected models on 

complex load patterns without any data distortion and to investigate the effect of the size of historical 

data during training on prediction accuracy. The models are trained on datasets of different lengths, 

including 1, 2, and 3-week periods. 

Based on the graphs and accuracy values, we can conclude that each model accurately predicts the 

load under these conditions.  

However, it is worth noting that TBATS is 6% more accurate than the other models that showed 

the same result. It is worth noting that the minimum number of periods of historical data to detect 

seasonality and, accordingly, anomalies are two periods. Therefore, it makes sense to test the behavior 

of these methods on short historical data. Reducing the duration of training data had almost no effect 

on accuracy in the case of TBATS and Prophet, but NeuralProphet's accuracy deteriorated by 44%, 

although it is still quite high. 

Table 1 
Prediction of daily and weekly fluctuations without data distortion based on a three-week dataset 

Model RMSE MAPE 
TBATS 32.464 0.081 

Prophet 46.16 0.0856 
NeuralProphet 53.705 0.0891 

This experiment is also conducted on the basis of a non-stationary time series with an existing 

upward trend. 
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Figure 2: Prediction of daily and weekly fluctuations without data distortion based on a three-
week dataset  

Table 2. Prediction of daily and weekly fluctuations without data distortion based on a two-week 
dataset 

Model RMSE MAPE 

TBATS 32.943 0.084 
Prophet 51.236 0.089 

NeuralProphet 71.378 0.130 

 

Figure 2. Prediction of daily and weekly fluctuations with two input periods 

Table 3. Prediction of daily and weekly fluctuations without data distortion based on a weekly 
dataset 

Model RMSE MAPE 
TBATS 32.943 0.084 

Prophet 51.236 0.089 
NeuralProphet 71.378 0.130 
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Table 4. Predicting daily and weekly fluctuations without data distortion based on a three-week 
trending dataset 

Model RMSE MAPE 
TBATS 50.17 0.087 

Prophet 73.307 0.101 
NeuralProphet 70.156 0.093 

 

Figure 3. Prediction of daily and weekly fluctuations with one input period 

4.3. Experiment: daily and weekly fluctuations with anomalies 

In the next experiment, distortions are included in the historical data. Some of the days have atypical 

increased or decreased values. In real information systems, such distortions can be caused by holidays, 

network equipment failure, or load-balancing problems. 

 

Figure 5. Prediction of daily and weekly fluctuations with three input periods and 10% of days with 
anomalies 
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Table 4  
Prediction of daily and weekly fluctuations with three input periods and 10% of days with anomalies 

Model RMSE MAPE 
TBATS 135.949 0.174 

Prophet 163.716 0.263 
NeuralProphet 161.726 0.297 

On accuracy compared to the first experiment is halved in this experiment, with Prophet and 

NeuralProphet's accuracy decreasing by more than 200%. 

 

Figure 5. Prediction of daily and weekly fluctuations with three input periods and anomalies in 20% 
of days 

Table 6.  
Prediction of daily and weekly fluctuations with three input periods and anomalies in 20% of days 

Model RMSE MAPE 
TBATS 134.313 0.243 

Prophet 134.848 0.209 
NeuralProphet 274.135 0.476 

In such extreme conditions, the accuracy of predictions decreases significantly. In particular, the 

accuracy of the NeuralProphet model, in this case, is critically low, but the general pattern is 

nevertheless preserved. 

5. Conclusions 

The results of the experiments show that, in general, all three selected models are able to predict 

complex load patterns with several seasonalities without preliminary data processing and with 

anomalies quite accurately. TBATS is more accurate than Prophet and NeuralProphet in all the 

experiments, but the difference in accuracy is no more than 16%. TBATS and Prophet predicted the 

load quite accurately with only one week of data, and the accuracy degradation is only 10%. 

NeuralProphet requires additional parameter settings or data pre-processing in some of the experiments. 

Anomalies significantly affect the accuracy, and pre-processing of historical data is necessary.  

Given the results and requirements, all three selected models can be used to automate resource 

scaling in Kubernetes. However, it is necessary to consider the features and prerequisites for their use. 
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