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Abstract. We propose a representation of simple conceptual graphs with binary 
conceptual relations, which is based on finite-state automata. The representation 
enables the calculation of injective projection as a two-stage process: off-line 
calculation of the computationally-intensive subsumption checks and encoding 
of the results as a minimal finite-state automaton, and run-time calculation by 
look-up in the minimal finite-state automaton using the projection query as a 
word belonging to the automaton language. This approach is feasible since a 
large part of the projection calculations does not depend on the run-time query 
but only on the relatively static statements in the knowledge base. 
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1   Introduction 

Conceptual Graphs (CGs) are based on logic and graph theory [1]. Many researchers 
contributed to the CGs elaboration and extension, e.g. the notion of support was 
formally introduced in a later paper [2]. The CG graphical structure visualises the 
identity of the variables, constants and predicate arguments in the corresponding 
logical formulas. A labeled graph morphism, called projection, defines specialisation 
and generalisation relations over CGs. Given two CGs G and H it holds that H≤G iff 
there is a projection from G to H [1,2]. The injective projection is an isomorphism, 
i.e. the image of G in H is a subgraph Gp of H such that Gp is isomorphic to G. 

The most effective algorithms for computing CG projection rely on graph theory. 
They search for structural similarity and subgraph mappings between the projection 
query and the CGs in the Knowledge Base (KB). Given two CGs G and H, it is NP-
complete to decide whether G≥H. However there are large classes of CGs for which 
polynomial algorithms for projection exist when the underlying ordinary graphs are 
trees [3,4]. Projection is computed for the so-called Simple Conceptual Graphs 
(SCGs), which are equivalent to the positive, conjunctive and existential fragment of 
first order logic without functions [5]. Here we model the SCGs by finite-state 
automata (FSA), to exploit their operational efficiency. 

Section 2 defines important notions. The FSA-based encoding of SCGs is 
presented in section 3. Section 4 sketches the idea of injective projection calculation 
in run-time. Experimental evaluations and the conclusion are given in section 5. 



2   Basic Notions 

Here we define the support for binary conceptual relations only: 
Definition 1. A support S is a 4-tuple (TC, TR, I, τ) where: 

• TC is finite, partially ordered set of distinct concept types. For x,y∈TC, x≤y 
means that x is a subtype of y; we say that x is a specialisation of y; 

• TR is finite, partially ordered set of distinct relation types. TC∩TR=∅. Each 
type R∈TR has arity 2 and holds either between two different concept types x,y∈TC or 
between two distinct instances of a concept type x∈TC. Pairs (c1maxR,c2maxR)∈TCxTC, 
called star graphs, are associated to each type R∈TR; they define the greatest concept 
types that might be linked by R. A type R∈TR holds between x,y∈TC iff x≤c1maxR and 
y≤c2maxR. For R1,R2∈TR and R1≤R2, it holds that c1maxR1≤c1maxR2 and c2maxR1≤c2maxR2; 

• I is a finite set of distinct individual markers (referents) denoting specified 
concept instances. TC∩I=∅ and TR∩I=∅. The generic marker ∗, ∗∉(TC∪TR∪I), 
refers to an unspecified individual of a specified concept type x. For all i∈I, i≤∗; 

• The mapping τ: I→TC defines correspondences between instances and 
concept types. So concept types have instances in contrast to the relations types. □ 
Definition 2. A simple conceptual graph with binary conceptual relations G, defined 
over a support S, is a connected, finite bipartite graph (V = VC∪VR, U, λ) where: 

• The nodes V are defined by VC – the set of concept nodes (c-nodes) and VR – 
the set of relation nodes (r-nodes). VC≠∅, i.e. each SCG contains at least one node; 

• The edges U are defined by ordered pairs (x,r) or (r,y), where x,y∈VC and 
r∈VR. The edges are directed either from a c-node to a r-node – like the incoming arc 
(x,r), or from a r-node to a c-node – like the outgoing arc (r,y). For every r∈VR, there 
is exactly one incoming and one outgoing arcs, incident with r; 

• The mapping λ associates labels of S to the elements of VC∪VR. Each c∈VC 
is labeled by a pair (C, marker(C)), where C∈TC and marker(C)∈I∪{∗}. A c-node 
with generic marker is called a generic node, it refers to an unspecified individual of 
the specified concept type. A c-node with individual marker is called an individual 
node, it refers to a specified instance of the concept type. Each r∈VR is labeled by a 
type R∈TR. The 1st argument of R is mapped to the c-node linked to the incoming arc 
of r while its 2nd argument is mapped to the c-node linked to the outgoing arc of r. □ 

The SCGs introduced by definition 2 can contain cycles but no multi-edges and 
loops. They may contain nodes with duplicating labels since λ associates repeating 
labels to the elements of VC∪VR. Then all generic concept nodes of the same type are 
treated as distinct c-nodes of the underlying graph. Such nodes represent distinct 
instances, as we consider no coreference links between the c-nodes. We shall deal 
with non-blank, simplified SCGs [1] in normal form [5]. So we work with SCGs 
whose logical semantics is expressed by a 'minimal number' of support symbols. This 
is a kind of ′canonical′ format with exactly one label for each concept instance in the 
SCG logical formula and for each relation holding between two different instances. 

Definition 3. A injective projection π: G→H is a graph morphism such that 
πG⊆H has the properties: (i) for each concept c in G, πc is a concept in πG where 
type(πc) ≤ type(c). If c is individual, then referent(c) = referent(πc); (ii) for each 
relation r(c1,c2) in G, it holds that πr(πc1,πc2) is in πG; (iii) πG is isomorphic to G. □ 



Definition 4. A Finite State Automaton A is a 5-tuple ‹Σ,Q, q0,F, Δ›, where Σ is a 
finite alphabet, Q is a finite set of states, q0∈Q is the initial state, F⊆Q is the set  of  
final states,  and   Δ ⊆ Q x Σ x Q is the transition relation. The transition ‹q, a, p›∈Δ 
begins at state q, ends at state p and has the label a. □ 

Definition 5. Let A be a FSA. A path c in A is a finite sequence of k>0 transitions: 
c = ‹q0, a1, q1› ‹q1, a2, q2› … ‹qk-1, ak, qk›, where ‹qi-1, ai, qi›∈Δ for i = 1,…,k. The 
integer k is called the length of c. The state q0 is called beginning of c and qk is called 
the end of c. The string w = a1 a2 … ak  is called the label of c. The null path of q∈Q 
begins and ends in q with label ε, where ε is the empty symbol. □ 

Definition 6. Let A = ‹Σ, Q, q0, F, Δ› be a FSA. Let Σ* be the set of all strings over 
the alphabet Σ, including the empty symbol ε. The generalised transition relation Δ* 
is the smallest subset of QxΣ*xQ with the following two closure properties: (i) For all 
q∈Q  we have ‹q, ε, q›∈Δ*; (ii) For all q1, q2, q3∈Q and w∈Σ*, a∈Σ : if ‹q1, w, q2›∈Δ*   
and  ‹q2, a, q3›∈Δ, then ‹q1, w·a, q3›∈Δ*. □ 

Definition 7. The formal language L(A) accepted by a FSA A = ‹Σ, Q, q0, F, Δ› is 
the set of all strings, which are labels of paths leading from the initial to a final state: 
L(A):= { w∈Σ* | ∃ q∈F : ‹q0, w, q›∈Δ* }. These strings are called words of L(A). □ 

The FSAs accept regular languages. Every finite list of words over a finite alphabet 
of symbols is a regular language. Among the deterministic FSAs which accept a given 
language, there is a unique automaton (excluding isomorphisms) which has a minimal 
number of states [6]; it is called the minimal automaton of the language. There are 
algorithms which construct the minimal automata, given deterministic FSA. 

Definition 8. Let A = ‹Σ, Q, q0, F, Δ› be a FSA. Let Σ+ be the set of all strings w 
over the alphabet Σ, where |w|≥1. The automaton A is called acyclic iff for all q∈Q 
there exist no string w∈Σ+ such that ‹q, w, q›∈Δ*. □ 

Definition 9. A FSA with markers at the final states A is a 7-tuple 
‹Σ,Q,q0,F,Δ,E,μ›, where Σ is finite alphabet, Q is finite set of states, q0∈Q is the initial 
state, F⊆Q is set of final states, Δ⊆QxΣxQ is the transition relation, E is finite set of 
markers, and μ: F→E is a function assigning a marker to each final state. □ 

3   Off-line Encoding of SCGs as Finite State Automata 

We are looking for an internal encoding of the SCGs with binary conceptual relations, 
which maps the SCGs to words of symbols and provides a unified enumeration of: (i) 
all SCGs, defined according to a support, (ii) all their subgraphs and (iii) all injective 
generalisations of (i) and (ii). Actually we aim to interpret them as a a finite regular 
language over certain finite alphabet. The encoding has to reflect the particular 
topological structure of the SCGs but should not contain graph-dependent indices, 
since we intend to further use this conceptual resource in run-time, when its symbols 
have to be matched to the symbols of (all future) projection queries. Perhaps all the 
subgraphs and their injective generalisations are too many and the brute-force 
enumeration makes no sense even if it is calculated off-line. However, we can filter 
only the subgraphs which have conceptual interpretation according to the support. 
Definition 10. Let G be a SCG with binary conceptual relations. A conceptual 
subgraph Gcs⊆G is a connected graph which is a SCG according to definition 2. □ 



Example 1. Figure 1 introduces a sample support, using examples from [1] and [4]: 
TC = {ATTRIBUTE, STATE, EVENT, ENTITY, ACT, PHYS-OBJECT, NAÏVE, LOVE, 
          EGOISTIC, ANIMATE, ANIMAL, PERSON} with partial order shown at Fig. 1; 
TR = {ATTR, EXPR, OBJ } with partial order and star graphs shown at Fig. 1; 
I = {John, Mary} which are not ordered; τ(John) = PERSON, τ(Mary) = PERSON. 

Fig. 2 shows the SCGs G1 and G2, defined over the support given at Fig. 1. Figure 3A 
presents a conceptual subgraph of G2. Fig. 3B shows a connected subset of G2 nodes 
and edges, which has no conceptual interpretation according to the support. There 
exist connected bipartite graphs which cannot be interpreted as SCGs in any support, 
e.g. the one at Fig. 3B. Below by 'subgraphs' we shall mean 'conceptual subgraphs'. 

The formula operator φ, defined in [1], translates non-blank SCGs with binary 
conceptual relations to logical formulas with monadic predicates, corresponding to the 
c-nodes, and binary predicates rel(c1,c2) corresponding to the r-nodes. In the binary 
predicates, rel is a r-node label and c1,c2 are either variables for the generic c-nodes, 
or referents for the individual c-nodes. Replacing the variables by their c-nodes' labels 
and the referents by the string type:referent, where type is the label of the respective 
c-node in TC, we can encode the information of the monadic predicates within the 
binary ones. Then every SCG formula  rel1(c11,c12)  &  ….  &  relk(ck1,ck2) 
can be easily linearised as a sequence of triples which consist of support symbols: 
c11  rel1  c12     c21  rel2  c22    …     ck1 relk ck2 where cij, 1≤i≤k, j=1,2 are either concept 
type labels or strings type:referent. 

The symbols used in this encoding correspond directly to the support labels which 
are meaningful for all SCGs in the KB as well as for the potential run-time projection 
queries. However, some of the generic concept types' labels might be duplicated, due 
to two different reasons: (i) they represent equivalent instances whose configuration 
reflects the topological structure of the underlying connected bipartite graph; (ii) they 

 

 
Figure 1. Partial order of concept and relation types and star graphs 

 

 
Figure 2. A knowledge base of two SCGs with binary conceptual relations G1 and G2 

 

 
Figure 3A. A conceptual subgraph of G2        Figure 3B. Connected nodes of G2, which 

              do not form a conceptual subgraph. □ 



represent different unspecified instances belonging to the same concept type. 
Therefore we have to distinguish the two kinds of duplication and to mark the 
duplicated labels of the generic concept types, which refer to equivalent concept 
instances. For instance G2 contains such duplications; the sequence of triple labels  
LOVE  EXPR  PERSON   LOVE  OBJ  PERSON  corresponds to three facts: (f1) 
“there exists a person who loves another person”, (f2) “there exists a person who 
loves himself” and (f3) “there exist a person who experiences one kind of love and 
he/she is object of another love”. A marker for the equivalences of the unspecified 
instances will ensure proper SCG encoding and, in addition, proper run-time 
treatment. Please note that a projection query with labels e.g. LOVE EXPR 
ANIMATE  LOVE OBJ ANIMATE has to be projected in run-time to only one of 
(f1), (f2) and (f3) depending on its c-nodes identity. Therefore we need a unified 
approach to encode and recognise the c-nodes identity for all SCGs. 

Describing all possible identities of n arguments is connected to the task of finding 
all ways to partition a set of n elements into nonempty, disjoint subsets. Each partition 
defines an equivalence relation of its members. The number of partitions is given by 
the so-called Bell numbers B1, B2, ... . We are interested in partitions of even number 
of elements, since the arguments of binary conjuncts are even numbers. Let us 
consider in more detail the similarity between the partition task for a set of four 
elements and our task to define structural patterns for argument identity of two binary 
predicates with four arguments. Let the four set elements be x1, y1, x2, y2 and the SCG 
with two binary predicates be correspondingly rel1(x1, y1) & rel2(x2, y2). 

Table 1, column 1 lists the set partitions into disjoint equivalence classes. These 
classes are interpreted as encodings of the topological links in a SCG with two binary 
predicates. Each row of column 2 contains either a G1-G2 subgraph with arguments 
linked correspondingly to the class in column 1, or comments why there are no such 
subgraphs. There are 15 ways to partition a set of four elements into disjoint subsets: 

• Partition № 1 is irrelevant to our considerations as it corresponds to four 
distinct arguments of the two binary predicates – but the SCGs are to be connected; 

• Eight partitions (№ 2, 5, 8, 9, 10, 11, 14, 15) are irrelevant, as they correspond 
to loops in the underlying graph, which are not allowed by definition 2; and 

• Six patterns (corresponding to partitions № 3, 4, 6, 7, 12, 13) are relevant and 
provide a typology for the encoding of the links between two SCG binary predicates. 

Thus the linearised SCG labels and the respective labels' identity annotations: 
LOVE EXPR PERSON LOVE OBJ PERSON   1=3  (i.e.  x1=x2)        (1) 
LOVE EXPR PERSON LOVE OBJ PERSON   1=3|2=4  (i.e. x1=x2 and y1=y2)       (2) 
LOVE EXPR PERSON LOVE OBJ PERSON   2=4  (i.e.  y1=y2)        (3) 
uniquely encode the G2 subgraphs (f1), (f2) and (f3). Moreover, we can reconstruct the 
logical formulas of the corresponding SCGs, given (1), (2) or (3), by building 
monadic predicates and adding the variables and the respective existential quantifiers. 
Thus we have found the encoding we needed; it is based on insights stemming from 
both the logical and graphical CG nature. Now we can work with the linear sequences 
of support labels and the associated identity annotations, interpreting them as SCGs. 

We present an algorithm for the construction of a minimal acyclic automaton with 
markers at the final states, which builds a list of all KB subgraphs and their respective 
injective generalisations. All language' words are constructed here; results from 
automata theory build further the FSA itself [7]. We need some types and functions: 



Equivalence classes Examples of subgraph labels and comments 
1. {{x1},{y1},{x2},{y2}} irrelevant: distinct arguments build disconnected SCGs 
2. {{x1, y1}, {x2}, {y2}} x1=y1 is impossible as no loops are allowed 
3. {{x1,x2}, {y1}, {y2}} G1: LOVE EXPR PERSON:John LOVE OBJ PERSON:Mary 
4. {{x1}, {y1, x2}, {y2}} G2: LOVE  EXPR  PERSON   PERSON  ATTR  NAIVE 
5. {{x1, y1, x2}, {y2}} x1=y1 is impossible as no loops are allowed 
6. {{x1, y2}, {y1}, {x2}} G2: PERSON ATTR  EGOISTIC  LOVE  EXPR  PERSON 

7. {{x1}, {y1, y2}, {x2}} (f3)    LOVE  EXPR  PERSON    LOVE  OBJ  PERSON 
Acyclic subgraph of G2 with distinct 1st arguments of 

the two conjuncts and equivalent 2nd arguments 
8. {{x1}, {y1}, {x2,y2}} x2=y2 is impossible as no loops are allowed 
9. {{x1, y1, y2}, {x2}} x1=y1 is impossible as no loops are allowed 
10. {{x1, y1}, {x2, y2}} x1=y1, x2=y2 is impossible as no loops are allowed 
11. {{x1, x2, y2}, {y1}} x2=y2 is impossible as no loops are allowed 
12. {{x1, x2}, {y1, y2}} (f2)   LOVE  EXPR  PERSON     LOVE  OBJ  PERSON 

Cyclic subgraph of G2 with equivalent 1st and 
equivalent 2nd arguments of the two conjuncts 

13. {{x1, y2}, {y1, x2}} no such example in the sample graphs 
14. {{x1}, {y1, x2, y2}} x2=y2 is impossible as no loops are allowed 
15. {{x1, y1, x2, y2}} x1=y1=x2=y2 is impossible as no loops are allowed 

 
Table 1. Partitions of a 4-element set and corresponding patterns of identical SCG arguments 

 
 

CHAR-types: lin_labels, identity, new_lin_labels; 
Arrays of lists: list_subgraphs;  list_gen_graphs; 
Arrays: words_markers(CHAR, <CHAR,CHAR,CHAR>) and  

   sorted_words_markers(CHAR, {<CHAR,CHAR,CHAR>, ..., <CHAR,CHAR,CHAR>}); 
              function <identity(G), lin_labels(G)> = GRAPH_LINEARISATION(G, Σ) where G 

is a SCG presented in logical/graphical format over an ordered alphabet Σ. Given G, 
this function returns the pair (i) identity(G) – a sorted marker for identity of concept 
instances and (ii) lin_labels(G) which contains the linear sequence of sorted G labels, 
where each binary predicate in G is presented as a triple concept1-relation-concept2. 
The function integrates interfaces between our encoding and the other CG formats; it 
simplifies and normalises the input graph G and translates it to the desired linearised 
form. The sorted identity-marker is a string enumerating the equivalent c-nodes; it 
contains digits, '=' and '|' as shown in the samples (1), (2) and (3) above. 

function list_gen_graphs = COMPUTE_INJ_GEN(G, Σ1, Σ2, λ). This function 
returns the list of all injective generalisations written in alphabet Σ2, for a given graph 
G written in alphabet Σ1. The generalisations are calculated using the mapping λ, 
which defines how the symbols of Σ1 are to be generalised by symbols of Σ2. 

function new_lin_labels(Gsub) = ENSURE_PROJ_MAPPING(lin_labels(Gsub), 
                   identity(Gsub), Σ1, lin_labels(Ggen), identity(Ggen), Σ2, λ) 

Given a linearised subgraph Gsub, written in the ordered alphabet Σ1 and its injective 
generalisation Ggen, written in the ordered alphabet Σ2, this function checks whether 
the order of c-nodes in the sorted string lin_labels(Ggen) corresponds to the order of 
the respective specialised c-nodes in the sorted string lin_labels(Gsub). The check is 



done following the mapping λ, which defines how the symbols of Σ1 are to be 
generalised by symbols of Σ2. (Remember that Gsub and Ggen contain equal number of 
binary predicates, where the ones of Ggen generalise some respective predicates of 
Gsub). If the c-nodes order in lin_labels(Ggen) corresponds to the order of the respect-
tive specialised c-nodes in lin_labels(Gsub), new_lin_labels(Gsub) = lin_labels(Gsub). 
Otherwise, lin_labels(Gsub) is rearranged in such a way that the order of its nodes is 
aligned to the order of generalising nodes in Ggen. Let lin_labels(Ggen) be as follows: 

cgen
11  relgen

1  cgen
12     cgen

21  relgen
2  cgen

22   …   cgen
k1 relgen

k cgen
k2

where cgen
ij, 1≤i≤k, j=1,2 are labels of c-nodes and relgen

i, 1≤i≤k, are labels of r-nodes. 
Then lin_labels(Gsub) is turned to the sequence of labels 

csub
11  relsub

1  csub
12     csub

21  relsub
2  csub

22   …   csub
k1 relsub

k csub
k2 

where cgen
ij≥csub

ij for 1≤i≤k, j=1,2 and relgen
i≥ relsub

i for 1≤i≤k. The re-arranged labels 
of Gsub nodes are returned in new_lin_labels(Gsub). The string new_lin_labels(Gsub) is 
no longer lexicographically sorted but its nodes' order is aligned to the order of the 
generalising nodes in Ggen. The c-nodes' topological links in new_lin_labels(Gsub) are 
given by identity(Ggen). Thus an injective projection π: Ggen→Gsub is encoded. 

 

Algorithm 1. Construction of a minimal acyclic FSA with markers at the final states 
AKB = ‹Σ, Q, q0, F, Δ, E, μ› which encodes all subgraphs' injective generalisations for 
a KB of SCGs with binary conceptual relations {G1, G2,…, Gn} over support S. 

Step 1, defining the finite alphabet Σ: Let S = (TC, TR, I, τ) be the KB support 
according to definition 1. Define Σ={x | x∈TC or x∈TR}∪{ x:i | x∈TC, i∈I and τ(i)=x}. 
Order the m symbols of Σ using certain lexicographic order Ω = <a1,a2,…,am>. 

Step 2, indexing all c-nodes: Juxtapose distinct integer indices to all KB c-nodes, 
to ensure their default treatment as distinct instances of the generic concept types. 
Then ΣKB = {aij | ai∈Σ, 1≤i≤m and j is an index assigned to the KB c-node ai, 1≤j≤pi  

or j='none' when no indices are assigned to ai}. 
Order the symbols of ΣKB according to the lexicographic order 
ΩKB = <a1s1,…, a1su, a2p1,…, a2pv, ….., amq1,…, amqx> where s1,s2,…su are the indices 
             assigned to a1; p1,…,pv are the indices assigned to a2; q1,…qx are the indices 
             assigned to am and s1<s2<…<su, p1<p2<…<pv, ….. and q1<q2<…<qx . 
Define a mapping λ: ΣKB→Σ where λ(aij)=ai for each aij ∈ΣKB, 1≤i≤m and j is an index 
assigned in ΣKB to the symbol ai∈Σ. 

/*  Step 3, computation of all KB (conceptual) subgraphs:  */ 
for  i := 1  to  n  do  begin 
    list_subgraphs(i) := { Gsub-j

i | Gsub-j
i⊆Gi  according to definition 10}; end; 

/*  Step 4, computation and encoding of all injective generalisations:  */ 
var gen_index := 1; 
for  each  i and Gsub-j

i  in list_subgraphs(i)  do  begin 
     <identity(Gsub-j

i), lin_labels(Gsub-j
i)> := GRAPH_LINEARISATION(Gsub-j

i , ΣKB); 
      list_gen_graphs(i,j) := COMPUTE_INJ_GEN(Gsub-j

i, ΣKB, Σ, λ); 
          for  each  Ggen in  list_gen_graphs(i,j) do  begin 
         <identity(Ggen), lin_labels(Ggen)> := GRAPH_LINEARISATION(Ggen, Σ); 
          new_lin_labels(Gsub-j

i) := ENSURE_PROJ_MAPPING(lin_labels(Gsub-j
i),  

             identity(Gsub-j
i), ΣKB, lin_labels(Ggen), identity(Ggen), Σ, λ); 

          words_markers(gen_index, 1) := lin_labels(Ggen); 



          words_markers(gen_index, 2) := <identity(Ggen), new_lin_labels(Gsub-j
i), Gi>; 

          gen_index := gen_index+1; end;  end; 
sorted_words_markers := SORT-BY-FIRST-COLUMN(words_markers) ; 
while  sorted_words_markers(*,1) contains k>1 repeating words in column 1, 
      starting at row  p   do  begin 
      sorted_words_markers(p, 2) := {sorted_words_markers(p,2), 

            sorted_words_markers(p+1,2),…, sorted_words_markers(p+k-1,2)}; 
  for 1≤s≤k-1 do  begin  DELETE-ROW(sorted_words_markers(p+s,*)  end; end; 

L = {w1, w2,…,wz | wi∈ sorted_words_markers(*,1), 1≤i≤z and wi≤wj according to Ω, 
                for i≤j, 1≤i≤z and 1≤j≤z }. 

/*  Step 5, FSA construction: */ 
Consider L as a finite language over Σ, given as a list of words sorted according to Ω. 
Apply results of [7] and build directly the minimal acyclic FSA with markers at the 
final states AKB=‹Σ,Q,q0,F,Δ,E,μ›, which recognises L={w1,…,wz}. Then  

F={qwi|qwi is the end of the path beginning at q0 with label wi, for wi∈L, 1≤i≤z}.  
E={ Mi | Mi=sorted_words_markers(i,2), 1≤i≤z} and μ: qwi→ Mi where qwi∈F, 

                    sorted_words_markers(i,1) = wi  and sorted_words_markers(i,2) = Mi. □ 
 

 

Example 2. We list below 7 (out of 37) subgraphs of the KB at Fig. 2. They are 
given as markers <identity-type, linear-subgraph-labels, index-of-main-KB-graph>: 

M1: <none,  LOVE  EXPR  PERSON:John,  G1> 
M2: <1=3,  LOVE  EXPR  PERSON:John  LOVE  OBJ  PERSON:Mary,  G1> 
M3: <none,  LOVE  EXPR  PERSON, G2> 
M4: <1=3,  LOVE  EXPR  PERSON  LOVE  OBJ  PERSON,  G2> 
M5: <1=3|2=4,  LOVE  EXPR  PERSON  LOVE  OBJ  PERSON,  G2> 
M6: <2=4,  LOVE  EXPR  PERSON  LOVE  OBJ  PERSON,  G2>  
M7: <1=3|2=5, LOVE EXPR PERSON LOVE OBJ PERSON PERSON ATTR NAIVE, G2> 

Fig. 4 shows the minimal FSA with markers at the final states, which encodes the 33 
injective generalisations of the subgraphs in M1-M7. New markers M8-M11 were 
created at step 4 of algorithm 1, to properly encode all data. 

4   Injective Projection in Run-Time 

The injective projection is calculated by a look-up in the minimal acyclic FSA, 
which encodes all the KB generalisations, with a word built by the query graph labels. 
There are two main on-line tasks, given a query G: (i) Presenting G as a sorted 
sequence of support symbols, and calculation of its identity-type for linear time O(n); 
(ii) Look-up in the FSA AKB by a word wG. Its complexity is clearly O(n), where n is 
the number of G symbols. No matter how large the KB is, all injective projections of 
G to the KB are found at once with complexity depending on the input length only. 

Now we see the benefits of the suggested explicit off-line enumerations. Actually 
we enumerate all possible injective mappings from all injective projection queries to 
the KB subgraphs. It becomes trivial to check whether a SCG with binary conceptual 
relations is equivalent to certain SCG in the KB. Thus the lexicographic ordering of 
conceptual labels provides a convenient formal framework for SCGs comparison. 
 



 
Figure 4. Minimal FSA, encoding all injective generalisations for 7 subgraphs of G1 and G2. □ 

5   Initial Experiments 
We have generated randomly type hierarchies of 600 concept types and 40 relation 

types. The experimental KB consists of 291 SCGs with binary conceptual relations in 
normal form, each with length of 3-10 conjuncts. These SCGs have 6753 (conceptual) 
subgraphs with 10436190 different injective generalisations. After the lexicographic 
sorting of all words (injective generalisations' labels) is done, they belong to 13885 
identity-types- i.e. they are topologically structured in a relatively uniform way. The 
minimal acyclic FSA with markers at the final states, which recognises all injective 
generalisations, has 2751977 states and 3972096 transition arcs. The input text file of 
sorted words, prepared for the FSA construction, is 891,4 MB. The minimal FSA is 
52,44 MB but the markers-subgraphs are encoded externally, i.e. markers contains 
only pointers. The input text file is compressed about 18 times when building the 
minimal FSA, which is only 2,4 times bigger than the zipped version of the input file. 

The suggested approach implements off-line as much computations as possible and 
provides exclusive run-time efficiency. The implementation requires considerable off-
line preprocessing and large space since the off-line tasks operate on raw data. The 
star graphs impose strong constraints on the structural patterns while computing 
injective generalisations; this is intuitively clear but now we see experimental 
evidences about the ′uniformity′. Currently we plan an experiment with realistic data. 
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