
Finite State Automata and Simple Conceptual Graphs with
Binary Conceptual Relations

Galia Angelova and Stoyan Mihov

Institute for Parallel Processing, Bulgarian Academy of Sciences

25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
{galia, stoyan}@lml.bas.bg

Abstract. We propose a representation of simple conceptual graphs with binary
conceptual relations, which is based on finite-state automata. The representation
enables the calculation of injective projection as a two-stage process: off-line
calculation of the computationally-intensive subsumption checks and encoding
of the results as a minimal finite-state automaton, and run-time calculation by
look-up in the minimal finite-state automaton using the projection query as a
word belonging to the automaton language. This approach is feasible since a
large part of the projection calculations does not depend on the run-time query
but only on the relatively static statements in the knowledge base.

Keywords: projection, off-line preprocessing, efficient run-time calculations

1 Introduction

Conceptual Graphs (CGs) are based on logic and graph theory [1]. Many researchers
contributed to the CGs elaboration and extension, e.g. the notion of support was
formally introduced in a later paper [2]. The CG graphical structure visualises the
identity of the variables, constants and predicate arguments in the corresponding
logical formulas. A labeled graph morphism, called projection, defines specialisation
and generalisation relations over CGs. Given two CGs G and H it holds that H≤G iff
there is a projection from G to H [1,2]. The injective projection is an isomorphism,
i.e. the image of G in H is a subgraph Gp of H such that Gp is isomorphic to G.

The most effective algorithms for computing CG projection rely on graph theory.
They search for structural similarity and subgraph mappings between the projection
query and the CGs in the Knowledge Base (KB). Given two CGs G and H, it is NP-
complete to decide whether G≥H. However there are large classes of CGs for which
polynomial algorithms for projection exist when the underlying ordinary graphs are
trees [3,4]. Projection is computed for the so-called Simple Conceptual Graphs
(SCGs), which are equivalent to the positive, conjunctive and existential fragment of
first order logic without functions [5]. Here we model the SCGs by finite-state
automata (FSA), to exploit their operational efficiency.

Section 2 defines important notions. The FSA-based encoding of SCGs is
presented in section 3. Section 4 sketches the idea of injective projection calculation
in run-time. Experimental evaluations and the conclusion are given in section 5.

2 Basic Notions

Here we define the support for binary conceptual relations only:
Definition 1. A support S is a 4-tuple (TC, TR, I, τ) where:

• TC is finite, partially ordered set of distinct concept types. For x,y∈TC, x≤y
means that x is a subtype of y; we say that x is a specialisation of y;

• TR is finite, partially ordered set of distinct relation types. TC∩TR=∅. Each
type R∈TR has arity 2 and holds either between two different concept types x,y∈TC or
between two distinct instances of a concept type x∈TC. Pairs (c1maxR,c2maxR)∈TCxTC,
called star graphs, are associated to each type R∈TR; they define the greatest concept
types that might be linked by R. A type R∈TR holds between x,y∈TC iff x≤c1maxR and
y≤c2maxR. For R1,R2∈TR and R1≤R2, it holds that c1maxR1≤c1maxR2 and c2maxR1≤c2maxR2;

• I is a finite set of distinct individual markers (referents) denoting specified
concept instances. TC∩I=∅ and TR∩I=∅. The generic marker ∗, ∗∉(TC∪TR∪I),
refers to an unspecified individual of a specified concept type x. For all i∈I, i≤∗;

• The mapping τ: I→TC defines correspondences between instances and
concept types. So concept types have instances in contrast to the relations types. □
Definition 2. A simple conceptual graph with binary conceptual relations G, defined
over a support S, is a connected, finite bipartite graph (V = VC∪VR, U, λ) where:

• The nodes V are defined by VC – the set of concept nodes (c-nodes) and VR –
the set of relation nodes (r-nodes). VC≠∅, i.e. each SCG contains at least one node;

• The edges U are defined by ordered pairs (x,r) or (r,y), where x,y∈VC and
r∈VR. The edges are directed either from a c-node to a r-node – like the incoming arc
(x,r), or from a r-node to a c-node – like the outgoing arc (r,y). For every r∈VR, there
is exactly one incoming and one outgoing arcs, incident with r;

• The mapping λ associates labels of S to the elements of VC∪VR. Each c∈VC
is labeled by a pair (C, marker(C)), where C∈TC and marker(C)∈I∪{∗}. A c-node
with generic marker is called a generic node, it refers to an unspecified individual of
the specified concept type. A c-node with individual marker is called an individual
node, it refers to a specified instance of the concept type. Each r∈VR is labeled by a
type R∈TR. The 1st argument of R is mapped to the c-node linked to the incoming arc
of r while its 2nd argument is mapped to the c-node linked to the outgoing arc of r. □

The SCGs introduced by definition 2 can contain cycles but no multi-edges and
loops. They may contain nodes with duplicating labels since λ associates repeating
labels to the elements of VC∪VR. Then all generic concept nodes of the same type are
treated as distinct c-nodes of the underlying graph. Such nodes represent distinct
instances, as we consider no coreference links between the c-nodes. We shall deal
with non-blank, simplified SCGs [1] in normal form [5]. So we work with SCGs
whose logical semantics is expressed by a 'minimal number' of support symbols. This
is a kind of ′canonical′ format with exactly one label for each concept instance in the
SCG logical formula and for each relation holding between two different instances.

Definition 3. A injective projection π: G→H is a graph morphism such that
πG⊆H has the properties: (i) for each concept c in G, πc is a concept in πG where
type(πc) ≤ type(c). If c is individual, then referent(c) = referent(πc); (ii) for each
relation r(c1,c2) in G, it holds that πr(πc1,πc2) is in πG; (iii) πG is isomorphic to G. □

Definition 4. A Finite State Automaton A is a 5-tuple ‹Σ,Q, q0,F, Δ›, where Σ is a
finite alphabet, Q is a finite set of states, q0∈Q is the initial state, F⊆Q is the set of
final states, and Δ ⊆ Q x Σ x Q is the transition relation. The transition ‹q, a, p›∈Δ
begins at state q, ends at state p and has the label a. □

Definition 5. Let A be a FSA. A path c in A is a finite sequence of k>0 transitions:
c = ‹q0, a1, q1› ‹q1, a2, q2› … ‹qk-1, ak, qk›, where ‹qi-1, ai, qi›∈Δ for i = 1,…,k. The
integer k is called the length of c. The state q0 is called beginning of c and qk is called
the end of c. The string w = a1 a2 … ak is called the label of c. The null path of q∈Q
begins and ends in q with label ε, where ε is the empty symbol. □

Definition 6. Let A = ‹Σ, Q, q0, F, Δ› be a FSA. Let Σ* be the set of all strings over
the alphabet Σ, including the empty symbol ε. The generalised transition relation Δ*
is the smallest subset of QxΣ*xQ with the following two closure properties: (i) For all
q∈Q we have ‹q, ε, q›∈Δ*; (ii) For all q1, q2, q3∈Q and w∈Σ*, a∈Σ : if ‹q1, w, q2›∈Δ*
and ‹q2, a, q3›∈Δ, then ‹q1, w·a, q3›∈Δ*. □

Definition 7. The formal language L(A) accepted by a FSA A = ‹Σ, Q, q0, F, Δ› is
the set of all strings, which are labels of paths leading from the initial to a final state:
L(A):= { w∈Σ* | ∃ q∈F : ‹q0, w, q›∈Δ* }. These strings are called words of L(A). □

The FSAs accept regular languages. Every finite list of words over a finite alphabet
of symbols is a regular language. Among the deterministic FSAs which accept a given
language, there is a unique automaton (excluding isomorphisms) which has a minimal
number of states [6]; it is called the minimal automaton of the language. There are
algorithms which construct the minimal automata, given deterministic FSA.

Definition 8. Let A = ‹Σ, Q, q0, F, Δ› be a FSA. Let Σ+ be the set of all strings w
over the alphabet Σ, where |w|≥1. The automaton A is called acyclic iff for all q∈Q
there exist no string w∈Σ+ such that ‹q, w, q›∈Δ*. □

Definition 9. A FSA with markers at the final states A is a 7-tuple
‹Σ,Q,q0,F,Δ,E,μ›, where Σ is finite alphabet, Q is finite set of states, q0∈Q is the initial
state, F⊆Q is set of final states, Δ⊆QxΣxQ is the transition relation, E is finite set of
markers, and μ: F→E is a function assigning a marker to each final state. □

3 Off-line Encoding of SCGs as Finite State Automata

We are looking for an internal encoding of the SCGs with binary conceptual relations,
which maps the SCGs to words of symbols and provides a unified enumeration of: (i)
all SCGs, defined according to a support, (ii) all their subgraphs and (iii) all injective
generalisations of (i) and (ii). Actually we aim to interpret them as a a finite regular
language over certain finite alphabet. The encoding has to reflect the particular
topological structure of the SCGs but should not contain graph-dependent indices,
since we intend to further use this conceptual resource in run-time, when its symbols
have to be matched to the symbols of (all future) projection queries. Perhaps all the
subgraphs and their injective generalisations are too many and the brute-force
enumeration makes no sense even if it is calculated off-line. However, we can filter
only the subgraphs which have conceptual interpretation according to the support.
Definition 10. Let G be a SCG with binary conceptual relations. A conceptual
subgraph Gcs⊆G is a connected graph which is a SCG according to definition 2. □

Example 1. Figure 1 introduces a sample support, using examples from [1] and [4]:
TC = {ATTRIBUTE, STATE, EVENT, ENTITY, ACT, PHYS-OBJECT, NAÏVE, LOVE,
 EGOISTIC, ANIMATE, ANIMAL, PERSON} with partial order shown at Fig. 1;
TR = {ATTR, EXPR, OBJ } with partial order and star graphs shown at Fig. 1;
I = {John, Mary} which are not ordered; τ(John) = PERSON, τ(Mary) = PERSON.

Fig. 2 shows the SCGs G1 and G2, defined over the support given at Fig. 1. Figure 3A
presents a conceptual subgraph of G2. Fig. 3B shows a connected subset of G2 nodes
and edges, which has no conceptual interpretation according to the support. There
exist connected bipartite graphs which cannot be interpreted as SCGs in any support,
e.g. the one at Fig. 3B. Below by 'subgraphs' we shall mean 'conceptual subgraphs'.

The formula operator φ, defined in [1], translates non-blank SCGs with binary
conceptual relations to logical formulas with monadic predicates, corresponding to the
c-nodes, and binary predicates rel(c1,c2) corresponding to the r-nodes. In the binary
predicates, rel is a r-node label and c1,c2 are either variables for the generic c-nodes,
or referents for the individual c-nodes. Replacing the variables by their c-nodes' labels
and the referents by the string type:referent, where type is the label of the respective
c-node in TC, we can encode the information of the monadic predicates within the
binary ones. Then every SCG formula rel1(c11,c12) & …. & relk(ck1,ck2)
can be easily linearised as a sequence of triples which consist of support symbols:
c11 rel1 c12 c21 rel2 c22 … ck1 relk ck2 where cij, 1≤i≤k, j=1,2 are either concept
type labels or strings type:referent.

The symbols used in this encoding correspond directly to the support labels which
are meaningful for all SCGs in the KB as well as for the potential run-time projection
queries. However, some of the generic concept types' labels might be duplicated, due
to two different reasons: (i) they represent equivalent instances whose configuration
reflects the topological structure of the underlying connected bipartite graph; (ii) they

Figure 1. Partial order of concept and relation types and star graphs

Figure 2. A knowledge base of two SCGs with binary conceptual relations G1 and G2

Figure 3A. A conceptual subgraph of G2 Figure 3B. Connected nodes of G2, which

 do not form a conceptual subgraph. □

represent different unspecified instances belonging to the same concept type.
Therefore we have to distinguish the two kinds of duplication and to mark the
duplicated labels of the generic concept types, which refer to equivalent concept
instances. For instance G2 contains such duplications; the sequence of triple labels
LOVE EXPR PERSON LOVE OBJ PERSON corresponds to three facts: (f1)
“there exists a person who loves another person”, (f2) “there exists a person who
loves himself” and (f3) “there exist a person who experiences one kind of love and
he/she is object of another love”. A marker for the equivalences of the unspecified
instances will ensure proper SCG encoding and, in addition, proper run-time
treatment. Please note that a projection query with labels e.g. LOVE EXPR
ANIMATE LOVE OBJ ANIMATE has to be projected in run-time to only one of
(f1), (f2) and (f3) depending on its c-nodes identity. Therefore we need a unified
approach to encode and recognise the c-nodes identity for all SCGs.

Describing all possible identities of n arguments is connected to the task of finding
all ways to partition a set of n elements into nonempty, disjoint subsets. Each partition
defines an equivalence relation of its members. The number of partitions is given by
the so-called Bell numbers B1, B2, We are interested in partitions of even number
of elements, since the arguments of binary conjuncts are even numbers. Let us
consider in more detail the similarity between the partition task for a set of four
elements and our task to define structural patterns for argument identity of two binary
predicates with four arguments. Let the four set elements be x1, y1, x2, y2 and the SCG
with two binary predicates be correspondingly rel1(x1, y1) & rel2(x2, y2).

Table 1, column 1 lists the set partitions into disjoint equivalence classes. These
classes are interpreted as encodings of the topological links in a SCG with two binary
predicates. Each row of column 2 contains either a G1-G2 subgraph with arguments
linked correspondingly to the class in column 1, or comments why there are no such
subgraphs. There are 15 ways to partition a set of four elements into disjoint subsets:

• Partition № 1 is irrelevant to our considerations as it corresponds to four
distinct arguments of the two binary predicates – but the SCGs are to be connected;

• Eight partitions (№ 2, 5, 8, 9, 10, 11, 14, 15) are irrelevant, as they correspond
to loops in the underlying graph, which are not allowed by definition 2; and

• Six patterns (corresponding to partitions № 3, 4, 6, 7, 12, 13) are relevant and
provide a typology for the encoding of the links between two SCG binary predicates.

Thus the linearised SCG labels and the respective labels' identity annotations:
LOVE EXPR PERSON LOVE OBJ PERSON 1=3 (i.e. x1=x2) (1)
LOVE EXPR PERSON LOVE OBJ PERSON 1=3|2=4 (i.e. x1=x2 and y1=y2) (2)
LOVE EXPR PERSON LOVE OBJ PERSON 2=4 (i.e. y1=y2) (3)
uniquely encode the G2 subgraphs (f1), (f2) and (f3). Moreover, we can reconstruct the
logical formulas of the corresponding SCGs, given (1), (2) or (3), by building
monadic predicates and adding the variables and the respective existential quantifiers.
Thus we have found the encoding we needed; it is based on insights stemming from
both the logical and graphical CG nature. Now we can work with the linear sequences
of support labels and the associated identity annotations, interpreting them as SCGs.

We present an algorithm for the construction of a minimal acyclic automaton with
markers at the final states, which builds a list of all KB subgraphs and their respective
injective generalisations. All language' words are constructed here; results from
automata theory build further the FSA itself [7]. We need some types and functions:

Equivalence classes Examples of subgraph labels and comments
1. {{x1},{y1},{x2},{y2}} irrelevant: distinct arguments build disconnected SCGs
2. {{x1, y1}, {x2}, {y2}} x1=y1 is impossible as no loops are allowed
3. {{x1,x2}, {y1}, {y2}} G1: LOVE EXPR PERSON:John LOVE OBJ PERSON:Mary
4. {{x1}, {y1, x2}, {y2}} G2: LOVE EXPR PERSON PERSON ATTR NAIVE
5. {{x1, y1, x2}, {y2}} x1=y1 is impossible as no loops are allowed
6. {{x1, y2}, {y1}, {x2}} G2: PERSON ATTR EGOISTIC LOVE EXPR PERSON

7. {{x1}, {y1, y2}, {x2}} (f3) LOVE EXPR PERSON LOVE OBJ PERSON
Acyclic subgraph of G2 with distinct 1st arguments of

the two conjuncts and equivalent 2nd arguments
8. {{x1}, {y1}, {x2,y2}} x2=y2 is impossible as no loops are allowed
9. {{x1, y1, y2}, {x2}} x1=y1 is impossible as no loops are allowed
10. {{x1, y1}, {x2, y2}} x1=y1, x2=y2 is impossible as no loops are allowed
11. {{x1, x2, y2}, {y1}} x2=y2 is impossible as no loops are allowed
12. {{x1, x2}, {y1, y2}} (f2) LOVE EXPR PERSON LOVE OBJ PERSON

Cyclic subgraph of G2 with equivalent 1st and
equivalent 2nd arguments of the two conjuncts

13. {{x1, y2}, {y1, x2}} no such example in the sample graphs
14. {{x1}, {y1, x2, y2}} x2=y2 is impossible as no loops are allowed
15. {{x1, y1, x2, y2}} x1=y1=x2=y2 is impossible as no loops are allowed

Table 1. Partitions of a 4-element set and corresponding patterns of identical SCG arguments

CHAR-types: lin_labels, identity, new_lin_labels;
Arrays of lists: list_subgraphs; list_gen_graphs;
Arrays: words_markers(CHAR, <CHAR,CHAR,CHAR>) and

 sorted_words_markers(CHAR, {<CHAR,CHAR,CHAR>, ..., <CHAR,CHAR,CHAR>});
 function <identity(G), lin_labels(G)> = GRAPH_LINEARISATION(G, Σ) where G

is a SCG presented in logical/graphical format over an ordered alphabet Σ. Given G,
this function returns the pair (i) identity(G) – a sorted marker for identity of concept
instances and (ii) lin_labels(G) which contains the linear sequence of sorted G labels,
where each binary predicate in G is presented as a triple concept1-relation-concept2.
The function integrates interfaces between our encoding and the other CG formats; it
simplifies and normalises the input graph G and translates it to the desired linearised
form. The sorted identity-marker is a string enumerating the equivalent c-nodes; it
contains digits, '=' and '|' as shown in the samples (1), (2) and (3) above.

function list_gen_graphs = COMPUTE_INJ_GEN(G, Σ1, Σ2, λ). This function
returns the list of all injective generalisations written in alphabet Σ2, for a given graph
G written in alphabet Σ1. The generalisations are calculated using the mapping λ,
which defines how the symbols of Σ1 are to be generalised by symbols of Σ2.

function new_lin_labels(Gsub) = ENSURE_PROJ_MAPPING(lin_labels(Gsub),
 identity(Gsub), Σ1, lin_labels(Ggen), identity(Ggen), Σ2, λ)

Given a linearised subgraph Gsub, written in the ordered alphabet Σ1 and its injective
generalisation Ggen, written in the ordered alphabet Σ2, this function checks whether
the order of c-nodes in the sorted string lin_labels(Ggen) corresponds to the order of
the respective specialised c-nodes in the sorted string lin_labels(Gsub). The check is

done following the mapping λ, which defines how the symbols of Σ1 are to be
generalised by symbols of Σ2. (Remember that Gsub and Ggen contain equal number of
binary predicates, where the ones of Ggen generalise some respective predicates of
Gsub). If the c-nodes order in lin_labels(Ggen) corresponds to the order of the respect-
tive specialised c-nodes in lin_labels(Gsub), new_lin_labels(Gsub) = lin_labels(Gsub).
Otherwise, lin_labels(Gsub) is rearranged in such a way that the order of its nodes is
aligned to the order of generalising nodes in Ggen. Let lin_labels(Ggen) be as follows:

cgen
11 relgen

1 cgen
12 cgen

21 relgen
2 cgen

22 … cgen
k1 relgen

k cgen
k2

where cgen
ij, 1≤i≤k, j=1,2 are labels of c-nodes and relgen

i, 1≤i≤k, are labels of r-nodes.
Then lin_labels(Gsub) is turned to the sequence of labels

csub
11 relsub

1 csub
12 csub

21 relsub
2 csub

22 … csub
k1 relsub

k csub
k2

where cgen
ij≥csub

ij for 1≤i≤k, j=1,2 and relgen
i≥ relsub

i for 1≤i≤k. The re-arranged labels
of Gsub nodes are returned in new_lin_labels(Gsub). The string new_lin_labels(Gsub) is
no longer lexicographically sorted but its nodes' order is aligned to the order of the
generalising nodes in Ggen. The c-nodes' topological links in new_lin_labels(Gsub) are
given by identity(Ggen). Thus an injective projection π: Ggen→Gsub is encoded.

Algorithm 1. Construction of a minimal acyclic FSA with markers at the final states
AKB = ‹Σ, Q, q0, F, Δ, E, μ› which encodes all subgraphs' injective generalisations for
a KB of SCGs with binary conceptual relations {G1, G2,…, Gn} over support S.

Step 1, defining the finite alphabet Σ: Let S = (TC, TR, I, τ) be the KB support
according to definition 1. Define Σ={x | x∈TC or x∈TR}∪{ x:i | x∈TC, i∈I and τ(i)=x}.
Order the m symbols of Σ using certain lexicographic order Ω = <a1,a2,…,am>.

Step 2, indexing all c-nodes: Juxtapose distinct integer indices to all KB c-nodes,
to ensure their default treatment as distinct instances of the generic concept types.
Then ΣKB = {aij | ai∈Σ, 1≤i≤m and j is an index assigned to the KB c-node ai, 1≤j≤pi

or j='none' when no indices are assigned to ai}.
Order the symbols of ΣKB according to the lexicographic order
ΩKB = <a1s1,…, a1su, a2p1,…, a2pv, ….., amq1,…, amqx> where s1,s2,…su are the indices
 assigned to a1; p1,…,pv are the indices assigned to a2; q1,…qx are the indices
 assigned to am and s1<s2<…<su, p1<p2<…<pv, ….. and q1<q2<…<qx .
Define a mapping λ: ΣKB→Σ where λ(aij)=ai for each aij ∈ΣKB, 1≤i≤m and j is an index
assigned in ΣKB to the symbol ai∈Σ.

/* Step 3, computation of all KB (conceptual) subgraphs: */
for i := 1 to n do begin
 list_subgraphs(i) := { Gsub-j

i | Gsub-j
i⊆Gi according to definition 10}; end;

/* Step 4, computation and encoding of all injective generalisations: */
var gen_index := 1;
for each i and Gsub-j

i in list_subgraphs(i) do begin
 <identity(Gsub-j

i), lin_labels(Gsub-j
i)> := GRAPH_LINEARISATION(Gsub-j

i , ΣKB);
 list_gen_graphs(i,j) := COMPUTE_INJ_GEN(Gsub-j

i, ΣKB, Σ, λ);
 for each Ggen in list_gen_graphs(i,j) do begin
 <identity(Ggen), lin_labels(Ggen)> := GRAPH_LINEARISATION(Ggen, Σ);
 new_lin_labels(Gsub-j

i) := ENSURE_PROJ_MAPPING(lin_labels(Gsub-j
i),

 identity(Gsub-j
i), ΣKB, lin_labels(Ggen), identity(Ggen), Σ, λ);

 words_markers(gen_index, 1) := lin_labels(Ggen);

 words_markers(gen_index, 2) := <identity(Ggen), new_lin_labels(Gsub-j
i), Gi>;

 gen_index := gen_index+1; end; end;
sorted_words_markers := SORT-BY-FIRST-COLUMN(words_markers) ;
while sorted_words_markers(*,1) contains k>1 repeating words in column 1,
 starting at row p do begin
 sorted_words_markers(p, 2) := {sorted_words_markers(p,2),

 sorted_words_markers(p+1,2),…, sorted_words_markers(p+k-1,2)};
 for 1≤s≤k-1 do begin DELETE-ROW(sorted_words_markers(p+s,*) end; end;

L = {w1, w2,…,wz | wi∈ sorted_words_markers(*,1), 1≤i≤z and wi≤wj according to Ω,
 for i≤j, 1≤i≤z and 1≤j≤z }.

/* Step 5, FSA construction: */
Consider L as a finite language over Σ, given as a list of words sorted according to Ω.
Apply results of [7] and build directly the minimal acyclic FSA with markers at the
final states AKB=‹Σ,Q,q0,F,Δ,E,μ›, which recognises L={w1,…,wz}. Then

F={qwi|qwi is the end of the path beginning at q0 with label wi, for wi∈L, 1≤i≤z}.
E={ Mi | Mi=sorted_words_markers(i,2), 1≤i≤z} and μ: qwi→ Mi where qwi∈F,

 sorted_words_markers(i,1) = wi and sorted_words_markers(i,2) = Mi. □

Example 2. We list below 7 (out of 37) subgraphs of the KB at Fig. 2. They are
given as markers <identity-type, linear-subgraph-labels, index-of-main-KB-graph>:

M1: <none, LOVE EXPR PERSON:John, G1>
M2: <1=3, LOVE EXPR PERSON:John LOVE OBJ PERSON:Mary, G1>
M3: <none, LOVE EXPR PERSON, G2>
M4: <1=3, LOVE EXPR PERSON LOVE OBJ PERSON, G2>
M5: <1=3|2=4, LOVE EXPR PERSON LOVE OBJ PERSON, G2>
M6: <2=4, LOVE EXPR PERSON LOVE OBJ PERSON, G2>
M7: <1=3|2=5, LOVE EXPR PERSON LOVE OBJ PERSON PERSON ATTR NAIVE, G2>

Fig. 4 shows the minimal FSA with markers at the final states, which encodes the 33
injective generalisations of the subgraphs in M1-M7. New markers M8-M11 were
created at step 4 of algorithm 1, to properly encode all data.

4 Injective Projection in Run-Time

The injective projection is calculated by a look-up in the minimal acyclic FSA,
which encodes all the KB generalisations, with a word built by the query graph labels.
There are two main on-line tasks, given a query G: (i) Presenting G as a sorted
sequence of support symbols, and calculation of its identity-type for linear time O(n);
(ii) Look-up in the FSA AKB by a word wG. Its complexity is clearly O(n), where n is
the number of G symbols. No matter how large the KB is, all injective projections of
G to the KB are found at once with complexity depending on the input length only.

Now we see the benefits of the suggested explicit off-line enumerations. Actually
we enumerate all possible injective mappings from all injective projection queries to
the KB subgraphs. It becomes trivial to check whether a SCG with binary conceptual
relations is equivalent to certain SCG in the KB. Thus the lexicographic ordering of
conceptual labels provides a convenient formal framework for SCGs comparison.

Figure 4. Minimal FSA, encoding all injective generalisations for 7 subgraphs of G1 and G2. □

5 Initial Experiments
We have generated randomly type hierarchies of 600 concept types and 40 relation

types. The experimental KB consists of 291 SCGs with binary conceptual relations in
normal form, each with length of 3-10 conjuncts. These SCGs have 6753 (conceptual)
subgraphs with 10436190 different injective generalisations. After the lexicographic
sorting of all words (injective generalisations' labels) is done, they belong to 13885
identity-types- i.e. they are topologically structured in a relatively uniform way. The
minimal acyclic FSA with markers at the final states, which recognises all injective
generalisations, has 2751977 states and 3972096 transition arcs. The input text file of
sorted words, prepared for the FSA construction, is 891,4 MB. The minimal FSA is
52,44 MB but the markers-subgraphs are encoded externally, i.e. markers contains
only pointers. The input text file is compressed about 18 times when building the
minimal FSA, which is only 2,4 times bigger than the zipped version of the input file.

The suggested approach implements off-line as much computations as possible and
provides exclusive run-time efficiency. The implementation requires considerable off-
line preprocessing and large space since the off-line tasks operate on raw data. The
star graphs impose strong constraints on the structural patterns while computing
injective generalisations; this is intuitively clear but now we see experimental
evidences about the ′uniformity′. Currently we plan an experiment with realistic data.

References
1. Sowa, J. Conceptual Structures – Inform. Processing in Mind and Machine. Reading, 1984.
2. Chein, M. and M.-L. Mugnier. Conceptual Graphs: fundamental notions. Revue

d'Intelligence Artificielle, Vol. 6, no. 4, 1992, pp. 365-406.
3. Mugnier, M.-L. and M. Chein. Polynomial Algorithms for Projection and Matching, In: 7th

Annual Workshop on Conceptual Graphs (AWCG'92), 1992, pp. 49-58.
4. Mugnier, M.-L. On Generalization / Specialization for Conceptual Graphs. Journal of

Experimental and Theoretical Computer Science, Vol. 7, 1995, pp. 325-344.
5. Baget, J.-F. and M.-L. Mugnier. Extensions of Simple Conceptual Graphs: the Complexity

of Rules and Constraints. JAIR, vol. 16, 2002, pp. 425-465.
6. Hopcroft, J. and J. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, MA, 1979.
7. Daciuk, J., St. Mihov, B. Watson, and R. Watson, Incremental Construction of Minimal

Acyclic Finite State Automata, J. of Comp. Linguistics, Vol. 26, Issue 1, 2000, pp. 3-16.

