
An FCA classification of durations of time for

textual databases

Ulrik Sandborg-Petersen

Department of Communication and Psychology
Kroghstræde 3, DK – 9220 Aalborg East, Denmark

ulrikp@hum.aau.dk

Abstract. Formal Concept Analysis (FCA) is useful in many applica-
tions, not least in data analysis. In this paper, we apply the FCA ap-
proach to the problem of classifying sets of sets of durations of time,
for the purposes of storing them in a database. The database system in
question is, in fact, an object-oriented text database system, in which all
objects are seen as arbitrary sets of integers. These sets need to be clas-
sified in textually relevant ways in order to speed up search. We present
an FCA classification of these sets of sets of durations, based on linguis-
tically motivated criteria, and show how its results can be applied to a
text database system.

1 Introduction

Formal Concept Analysis (FCA)[1, 2] has many applications, not least of which is
aiding a human analyst in making sense of large or otherwise incomprehensible
data sets. In this paper, we present an application of FCA to the problem of
classifying classes of linguistic objects that meet certain linguistically motivated
criteria, with the purpose of storing them in a text database system.

We have developed a text database system, called Emdros1, capable of storing
and retrieving not only text, but also annotations of that text [3, 4]. Emdros
implements the EMdF model, in which all textual objects are seen as sets of sets
of durations of time with certain attributes.

The rest of the paper is laid out as follows. In Sect. 2, I describe four prop-
erties of language as it relates to time. In Sect. 3, I describe the EMdF model.
In Sect. 4, I mathematically define a set of criteria which may or may not hold
for a given object type. This results in a Formal Context of possible classes of
objects, having or not having these criteria. In Sect. 5, I use FCA to arrive at a
set of criteria which should be used as indexing mechanisms in Emdros in order
to speed up search. In Sect. 6, I discuss the implementation of the criteria arrived
at in the previous section, and evaluate the performance gains obtained by using
them. Finally, I conclude the paper and give pointers to further research.

1 http://emdros.org



2 Language as durations of time

Language is always heard or read in time. That is, it is a basic human condition
that whenever we wish to communicate in verbal language, it takes time for us
to decode the message. A word, for example, may be seen as a duration of time
during which a linguistic event occurs, viz., a word is heard or read. This takes
time to occur, and thus a message or text occurs in time.

In this section, we describe four properties of language which have conse-
quences for how we may model linguistic objects such as words or sentences.

First, given that words occur in time, and given that words rarely stand
alone, but are structured into sentences, and given that sentences are (at one
level of analysis) sequences of words, it appears obvious that sequence is a basic
property of language. We will therefore not comment further on this property of
language.

Second, language always carries some level of structure; for example, the
total duration of time which a message fills may be broken down into shorter
durations which map to words. Intermediate between the word-level and the
message-level, we usually find sentences, clauses, and phrases. Thus, linguistic
units embed within each other. For a lucid discussion of the linguistic terms
involved, please see [5, 6].

Third, language carries the property of being resumptive. By this we mean
that linguistic units are not always contiguous, i.e., they may occupy multiple,
disjoint durations of time. For one such opinion, see [7].

A fourth important property of linguistic units is that they may “violate each
other’s borders.” By this we mean that, while unit A may start at time a and
end at time c, unit B may start at time b and end at time d, where a < b < c < d.
Thus, while A overlaps with B, they cannot be placed into a strict hierarchy.

3 The EMdF model

In his PhD thesis from 1994 [8], Crist-Jan Doedens formulated a model of text
which meets the four criteria outlined in the previous section. Doedens called
his model the “Monads dot Features” (MdF) model. We have taken Doedens’
MdF model and extended it in various ways, thus arriving at the Extended MdF
(EMdF) model. In this section, we describe the EMdF model.

Central to the EMdF model is the notion that textual units (such as books,
paragraphs, sentences, and even words) can be viewed as sets of monads. A
monad is simply an integer, but may be viewed as an indivisible duration of
time.2

Objects in the EMdF model are pairs (M, F ) where M is a set of monads,
and F is a set of pairs (fi, vi) where fi is the ith feature (or attribute), and vi

is the value of fi for this particular object. A special feature, “self” is always

2 Please note that we use the term “monad”, not in the well-established algebraic
sense, but as a synonym for “integer in the context of the EMdF model, meaning an
indivisible duration of time”.



present in any F belonging to any object, and provides an integer ID which is
unique across the whole database. The inequality M 6= ∅ holds for all objects in
an EMdF database.

Since textual objects can often be classified into similar kinds of objects with
the same attributes (such as words, paragraphs, sections, etc.), the EMdF model
provides object types for grouping objects.

4 Criteria

In this section, we introduce some linguistically motivated criteria that may or
may not hold for the objects of a given object type T . This will be done with
reference to the properties inherent in language as described in Sect. 2.

In the following, let Inst(T ) denote the set of objects of a given object type
T . Let a and b denote objects of a given object type. Let µ denote a function
which, given an object, produces the set of monads M being the first part of
the pair (M, F ) for that object. Let m denote a monad. Let f(a) denote µ(a)’s
first (i.e., lowest) monad, and let l(a) denote µ(a)’s last (i.e., highest) monad.
Let [m1 : m2] denote the set of monads consisting of all the monads from m1 to
m2, both inclusive.

Range types:

single monad(T ): means that all objects are precisely 1 monad long.
∀a ∈ Inst(T ) : f(a) = l(a)

single range(T ): means that all objects have no gaps (i.e., the set of mon-
ads constituting each object is a contiguous stretch of monads).
∀a ∈ Inst(T ) : ∀m ∈ [f(a) : l(a)] : m ∈ µ(a)

multiple range(T ): is the negation of “single range(T )”, meaning that
there exists at least one object in Inst(T ) whose set of monads is discon-
tiguous. Notice that the requirement is not that all objects be discon-
tiguous; only that there exists at least one which is discontiguous.

∃a ∈ Inst(T ) : ∃m ∈ [f(a) : l(a)] : m 6∈ µ(a)
≡ ¬(∀a ∈ Inst(T ) : ∀m ∈ [f(a) : l(a)] : m ∈ µ(a))
≡ ¬(single range(T))

Uniqueness constraints:

unique first monad(T ): means that no two objects share the same start-
ing monad.

∀a, b ∈ Inst(T ) : a 6= b ↔ f(a) 6= f(b)
≡ ∀a, b ∈ Inst(T ) : f(a) = f(b) ↔ a = b

unique last monad(T ): means that no two objects share the same ending
monad.

∀a, b ∈ Inst(T ) : a 6= b ↔ l(a) 6= l(b)
≡ ∀a, b ∈ Inst(T ) : l(a) = l(b) ↔ a = b

Notice that the two need not hold at the same time.



Table 1. All the possible classes of object types. Legend: sm = single monad, sr =
single range, mr = multiple range, ufm = unique first monad, ulm = unique last monad,
ds = distinct, ol = overlapping, vb = violates borders.

Class name sm sr mr ufm ulm ds ol vb

1.000 X X X
1.300 X X X X X
2.000 X X
2.001 X X X
2.100 X X X
2.101 X X X X
2.200 X X X
2.201 X X X X
2.300 X X X X
2.301 X X X X X
2.310 X X X X

Class name sm sr mr ufm ulm ds ol vb

3.000 X X
3.001 X X X
3.100 X X X
3.101 X X X X
3.200 X X X
3.201 X X X X
3.300 X X X X
3.301 X X X X X
3.310 X X X X

Linguistic properties:

distinct(T ): means that all pairs of objects have no monads in common.
∀a, b ∈ Inst(T ) : a 6= b → µ(a) ∩ µ(b) = ∅
≡ ∀a, b ∈ Inst(T ) : µ(a) ∩ µ(b) 6= ∅ → a = b

overlapping(T ): is the negation of distinct(T ).
¬(distinct(T ))
≡ ∃a, b ∈ Inst(T ) : a 6= b ∧ µ(a) ∩ µ(b) 6= ∅

violates borders(T ): ∃a, b ∈ Inst(T ) : a 6= b ∧ µ(a) ∩ µ(b) 6= ∅ ∧ ((f(a) <

f(b)) ∧ (l(a) ≥ f(b)) ∧ (l(a) < l(b)))

Notice that violates borders(T ) → overlapping(T ), since violates borders(T )
is overlapping(T ), with an extra, conjoined term.

It is possible to derive the precise set of possible classes of objects, based on
logical analysis of the criteria presented in this section. For details, please see
[9]. The possible classes are listed in Table 1.

The context resulting from these tables is then processed by the Concept
Explorer software (ConExp)3. This produces a lattice as in Fig. 1.

5 Application

It is immediately noticeable from looking at Fig. 1 that “ds” is quite far down
the lattice, with several parents in the lattice. It is also noticeable that “ol” is
quite far up in the lattice, with only the top node as its parent. Therefore, “ds”
may not be as good a candidate for a criterion on which to index as “ol”. Hence,
we decided to experiment with the lattice by removing the “ds” attribute.

3 See http://conexp.sourceforge.net. Also see [10].



Fig. 1. The lattice drawn by ConExp for the whole context.

By drawing this new lattice with ConExp, it is noticeable that the only
dependent attributes are “sm” and “vb”: All other attributes are at the very
top of the lattice, with only the top node as their parent. This means we are
getting closer to a set of criteria based on which to index sets of monads.

The three range types should definitely be accommodated in any indexing
scheme. The reasons are: First, “single monad” can be stored very efficiently,
namely just by storing the single monad in the monad set. Second, “single range”
is also very easy to store: It is sufficient to store the first and the last monad.
Third, “multiple range”, as we have argued in Sect. 2, is necessary to support in
order to be able to store resumptive (discontiguous) linguistic units. It can be
stored by storing the monad set itself in marshalled form, perhaps along with
the first and last monads.

This leaves us with the following criteria: “unique first monad”, “unique last
monad”, “overlapping”, and “violates borders” to decide upon.

In real-life linguistic databases, “unique first monads” and “unique last mon-
ads” are equally likely to be true of any given object type, in the sense that if
one is true, then the other is likely also to be true, while if one is false, then
the other is likely also to be false. This is because of the embedding nature of



language explained in Sect. 2: If embedding occurs at all within a single object
type, then it is likely that both first and last monads are not going to be unique.

Therefore, we decided to see what happens to the lattice if we remove one
of the two uniqueness criteria from the list of attributes. The criterion chosen
for removal was “unique last monads”. Once this is done, ConExp reports that
“unique first monads” subsumes 11 objects, or 55%. This means that “unique
first monads” should probably be included in the set of criteria on which to
index.

Similarly, still removing “ds” and “ulm”, and selecting “overlapping”, we
get the lattice drawn in Fig. 2. ConExp reports that “overlapping” subsumes 17
objects, or 85%, leaving only 3 objects out of 20 not subsumed by “overlapping”.
This indicates that “overlapping” is probably too general to be a good candidate
for treating specially.

It is also noticeable that “violates borders” only subsumes 4 objects. Hence
it may not be such a good candidate for a criterion to handle specially, since it
is too specific in its scope.

Thus, we arrive at the following list of criteria to handle specially in the
database: a) single monad; b) single range; c) multiple range; and d) unique first
monads.

6 Implementation and evaluation

The three range types can be easily implemented in a relational database system
along the lines outlined in the previous section.

The “unique first monads” criterion can be implemented in a relational
database system by a “unique” constraint on the “first monad” column of a
table holding the objects of a given object type. Notice that for multiple range,
if we store the first monad of the monad set in a separate column from the
monad set itself, this is possible for all three range types. Notice also that, if
we use one row to store each object, the “first monad” column can be used as a
primary key if “unique first monads” holds for the object type.

We have run some evaluation tests of 124 diverse Emdros queries against two
versions of the same linguistic database, each loaded into four backends (SQLite
3, SQLite 2, PostgreSQL, and MySQL). One version of the database did not
have the indexing optimizations arrived at in the previous section, whereas the
other version of the database did. The version of Emdros used was 3.0.1. The
hardware was a PC with an Intel Dual Core 2, 2.4GHz CPU, 7200RPM SATA-II
disks, and 3GB of RAM, running Fedora Core Linux 8. The 124 queries were
run twice on each database, and an average obtained by dividing by 2 the sum
of the “wall time” (i.e., real time) used for all 2 × 124 queries. The results can
be seen in Table 2.

As can be seen, the gain obtained for MySQL and PostgreSQL is almost
negligible, while it is significant for the two versions of SQLite.



Fig. 2. The lattice drawn without the “ds” and “ulm” attributes, and with “ol” se-
lected.

7 Conclusion

We have presented four properties that natural language possesses, namely se-
quence, embedding, resumption, and non-hierarchic overlap, and we have seen
how these properties can be modeled as sets of durations of time.

We have presented the EMdF model of text, in which indivisible units of time
(heard or read) are represented by integers, called “monads”. Textual units are
then seen as objects, represented by pairs (M, F ), where M is a set of monads,
and F is a set of attribute-value assignments. An object type then gathers all
objects with like attributes.

We have then presented some criteria which are derived from some of the four
properties of language outlined above. We have formally defined these in terms
of objects and their monads. We have then derived an FCA context from these
criteria, which we have then converted to a lattice using the Concept Explorer
Software (ConExp).



Table 2. Evaluation results on an Emdros database, in seconds.

Backend SQLite 3 SQLite 2 PostgreSQL MySQL

Avg. time for DB without optimizations 153.92 130.99 281.56 139.41
Avg. time for DB with optimizations 132.40 120.00 274.20 136.65

Performace gain 13.98% 8.39% 2.61% 1.98%

We have then analyzed the lattice, and have arrived at four criteria which
should be treated specially in an implementation.

We have then suggested how these four criteria can be implemented in a
relational database system. They are, in fact, implemented in ways similar to
these suggestions in the Emdros corpus query system. We have also evaluated
the performance gains obtained by implementing the four criteria.

Thus FCA has been used as a tool for reasoned selection of a number of
criteria which should be treated specially in an implementation of a database
system for annotated text.

Future work could also include: a) Derivation of more, pertinent criteria from
the four properties of language; b) Exploration of these criteria using FCA; c)
Implementation of such criteria; and d) Evaluation of any performance gains.

References

1. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In Ellis,
G., Levinson, R., Rich, W., Sowa, J.F., eds.: Proceedings of ICCS’95. Volume 954
of LNAI., Springer Verlag (1995) 32–43

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997) Translator-C. Franzke.

3. Petersen, U.: Emdros — a text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004. (2004) 1190–1193 http://emdros.org/petersen-
emdros-COLING-2004.pdf.

4. Petersen, U.: Principles, implementation strategies, and evaluation of a corpus
query system. In: Proceedings of the FSMNLP 2005. Volume 4002 of LNAI.,
Springer Verlag (2006)

5. Van Valin, Jr., R.D.: An introduction to Syntax. Cambridge University Press,
Cambridge, U.K. (2001)

6. Horrocks, G.: Generative Grammar. Longman, London and New York (1987)
7. McCawley, J.D.: Parentheticals and discontinuous constituent structure. Linguistic

Inquiry 13(1) (1982) 91–106
8. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-

guages. Editions Rodopi Amsterdam (1994) ISBN 90-5183-729-1.
9. Sandborg-Petersen, U.: Annotated Text Databases in the Context of the Kaj Munk

Corpus: One database model, one query language, and several applications. PhD
thesis, Aalborg University, Denmark (2008)

10. Yevtushenko, S.A.: System of data analysis ”concept explorer”. (in russian). In:
Proceedings of the 7th national conference on Artificial Intelligence KII-2000, Rus-
sia. (2000) 127–134


