
Towards a Conceptual Structure based on Type
theory.

Richard Dapoigny and Patrick Barlatier

Université de Savoie, Polytech’Savoie Laboratoire d’Informatique, Sytèmes,
Traitement de l’Information et de la Connaissance Po.Box 80439,

F-74944 ANNECY-Le-Vieux Cedex, France
Phone: +33 450 096529 Fax: +33 450 096559 richard.dapoigny@univ-savoie.fr

Abstract. Since a conceptual structure is a typed system it is worth-
while to investigate how a type theory can serve as a basis to reason
about concepts and relations. In this article, we look at this issue from
a proof-theoretical perspective using the constructive (or intuitionistic)
logic and the Curry-Howard correspondence. The resulting constructive
type theory introduces Dependent Record Types (DRT) which offers a
conceptual structure with a simple and natural representation. The cru-
cial aspect of the proposed typed system is its decidability while main-
taining a high level of expressivity.

1 Introduction

In most domains including the semantic Web, ontology and rules are the core
components for formal knowledge representation. As a result, there is a need for
an expressive formalism (e.g., Description Logics) able to reason about knowl-
edge extracted from ontologies. Recently, Description Logics have attempted to
represent action formalisms as fragments of Situation Calculus (or Fluent Cal-
culus) [1] but they reveal some decidability problems. In this paper we propose
a decidable alternative which focusses on the theoretical aspects of conceptual
structures with Type Theory and which shows how this structure is able to rea-
son about knowledge. This theory exploits a representation of knowledge that is
extracted from domain ontologies. The reasoning process is a typing (and sub-
typing) mechanism which allows one to infer implicitly some knowledge from
the knowledge that is explicitly present in the ontology. Already used to solve
difficult problems in Natural Language Processing (NLP) [4, 18, 7], Type Theory
has proved to be a natural candidate for formalizing linguistic statements as well
as real world situations. The logical formalism adopted here is a fragment of the
Constructive Type Theory (CTT) [15, 14]. In the second section we summarize
the basic mechanisms of the type-theoretic approach centered on the Dependent
record Types (DRT) structures (for further details, see for instance [10]). In the
third section, we describe the data structures that are at the basis of the reason-
ing process and in the fourth section, we illustrate the approach by revisiting a
context-aware scenario with the type-theoretical approach.



2 Type Theory

2.1 The basis of the Type Theory

In the Curry-Howard correspondence [12], propositions in some logical system
are translated into types in the type theory such that derivable propositions
give rise to inhabited types. For instance, we can interpret certain types as
propositions whereas their inhabitants are representations of proofs for those
propositions. As a result, propositions are types and proofs are programs [2].
Under this correspondence, connectives >, ∧ and ⊃ in propositional logic are
respectively expressed by type formers 1, × and→ in simple type theory, whereas
universal quantifiers ∀ and ∃ in predicate logic are translated into Π-types and
Σ-types in CTT.

Within this knowledge representation formalism, proofs can be checked au-
tomatically. A major benefit is the computability of any judgement: constructive
theory of types is functionally decidable [19]. The building blocks of CTT are
terms and the basic relation is the typing relation. The expression a : T itself is
called a judgment. The fundamental notion of typing judgement a : T classifies
an object a as being of type T . We call a an inhabitant of T , and we call T the
type of a. The context Γ in a judgement Γ ` a : T contains the prerequisites
necessary for establishing the statement a : T . Some types are always considered
wellformed and are introduced by means of axioms (sorts). We will use two sorts
here, Type and Prop, which denote respectively ’the sort of types’ and ’the sort
of propositions’. Dependant types are a way i) of expressing subsets and ii) to
enhance the expressive power of the language. The two basic constructors for
dependent types are the Π-types and the Σ-types.

Γ, x : A ` M : B

Γ ` λx : A.M : Πx : A.B
Π − intro

Γ ` M : A Γ ` N : B[M/x]
Γ `< M,N >: Σx : A.B

Σ − intro

For instance, one may define the following Π-type in order to represent the
fact that a bird referred as titi has wings: has wings : (Πx : bird.P (x)) in
which P (x) stands for a proposition that depends on x. An instance of the
Π-type would be has wings(titi) : P (x). Π-types also express the universal
quantification ∀ and generalize function spaces. Similarly, Σ-types model pairs
in which the second component depends on the first. Let us consider the pair
σ1 : Σx : bird.flies(x)). A proof for the Σ-type σ1 is given for example by the
instance < titi, q1 > indicating that for an individual titi, the proposition is
proved (q1 is a proof of flies(titi)).

Γ ` σ : Σx : A.B

Γ ` π1(σ) : A
π1 − elim

Γ ` σ : Σx : A.B

Γ ` π2(σ) : B[π1(σ)/x]
π2 − elim

The projection rules introduce π1 and π2 as elimination rules. A proof s : Σx :
T.p in a sum is a pair s =< π1s, π2s > that consists of an element π1s : T of the
domain type T together with a proof π2s : p[π1s/x] stating that the proposition
p is true for this element π1s.



Records are introduced first with the purpose of replacing bound variables
(e.g., x) with labels in order to get a more readable and more compact struc-
ture, and second to gather within a single structure all the knowledge related to
a semantic concept. The basic idea of the present work is to apply the formalism
of dependent types to ontological knowledge in order to get a better expressiv-
ity than first-order and classical logic formalisms. For that purpose, Dependent
Record Types (DRTs) [3, 13] are an extension of Π-types and Σ-types in which
types are expressed in terms of data. Dependent record types are much more
flexible than simple dependent types such as Π-types and Σ-types [16]. They
realize a continuum of precision from the basic assertions we are used to expect
from types, up to a complete specification of a representation (e.g., a context).

Definition 1 A dependent record type is a sequence of fields in which labels li
correspond to certain types Ti, that is, each successive field type can depend on
the values of the preceding fields:

< l1 : T1, l2 : T2(l1) . . . , ln : Tn(l1 . . . ln−1) > (1)

where the type Ti may depend on the preceding labels l1, ..., li−1.

A similar definition holds for record tokens where a sequence of values is such
that a value vi can depend on the values of the preceding fields l1, ..., li−1:

< l1 = v1, ..., ln = vn > (2)

Notice that a dependent record with additional fields not mentioned in the type
is still of that type. Another important aspect of the modelling with DRT is that
a record can have any number of fields (there is no upper limit). The introduction
rule for record types constructs inductively records by adding a new label l1 and
its type T to the previous one provided that the new type is consistent with the
logical context Γ (→ denotes the usual function symbol).

Γ ` R : record− type Γ ` T : R → type

Γ `< R, l : T >: record− type
record− type− intro (3)

Since contexts are part of situations, the concept of context can be expressed
as a Dependent Record Type including individuals as well as propositions2 [9,
10]. Context types (resulting from an ontology) are distinguished from context
objects (resulting from observation). Let us consider the initial situation in which

1 not already occurring in R.
2 Propositions are able to represent properties as well as constraints.



an incoming call is processed within an intelligent phone.




x : person
r : room
p1 : locatedIn(x, r)
b : building
p2 : part of(r, b)︸ ︷︷ ︸

C1:Context type




. . .
x = John
r = ECS210I
p1 = q1

b = ECS
p2 = q2

. . .︸ ︷︷ ︸
c1:Context token

In the record instance, q1 is a proof of locatedIn(John,ECS210I), and q2 is a
proof that part of(ECS210I, ECS).

Pre-defined values can be introduced with manifest types [8].

Definition 2 Given x of type T , x : T , a singleton type Tx is such that:

y : Tx iff y = x (4)

Given a record, a manifest field is a field whose type is a singleton type:

r :




. . .
l = x : T

. . .
for example : r :




. . .
tmin = 11PM : time
. . .

(5)

which means that tmin is a label of type time having a fixed value of 11PM .

2.2 Sub-typing

The question of sub-typing requires the knowledge of all possible coercions used
for a given term and their precise effect, which is untractable in practice. This
problem can be avoided by imposing semantic constraints on coercions [3]: this
is the case in record-based subtyping that we shall adopt here.

Definition 3 Given two record types R and R′, if R′ contains at least every
Σ-type occurring in R and if the types of these common Σ-types are in the
subsumption relation then R′ is a subtype of R which is written:

R′ v R (6)

Every record token of type R′ is also a token of type R, since it contains compo-
nents of appropriate types for all the fields specified in R. Since in type theory
the analogue of a proposition is the judgement, we can conclude that the judge-
ment in R is lifted to the judgement in R′. Type inclusion and corresponding
proof rules generalize record type inclusion to DRTs.



3 Reasoning with Ontological Knowledge in Type Theory

3.1 Representation of Intentional Concepts

The concept of context has no meaning by itself [5] and must be related to an
intentional concept: it is ontologically speaking considered as a moment universal
[11]. Therefore, an intentional concept such as an action, a process, a diagnostic
or a project will be functionally added to the context and we speak in that case, of
the context-of resp. the action, the process, the diagnostic or the project. Using
dependent types, an intentional concept is functionally deduced from its context
since the basic function concept is the typed version of the entailment relation in
classical logic. With π1 and π2 denoting respectively the Σ projection operators
resulting from elimination rules, the association between a context type and an
intentional concept can be represented by a Σ-type.

Definition 4 Given a Context Record Type C, an intentional concept is de-
scribed by a Σ-type such that φ : Σ c : C.IC(c) in which c is a valid context, IC
is a proposition reflecting the intention and witnessing a proof of the intention
achievement.

It denotes a pair φ =< π1φ, π2φ > that consists in an element π1φ : C of the
domain type of quantification together with a proof π2φ : IC[π1φ/c] showing that
the intentional proposition IC is proved for this element. In other words, it says
that the intentional proposition IC holds within this context. With the example
above, the following diagnostic could be proved: Σc1 : C1.locatedIn(c1.x, c1.b) it
relates a record c1 to a diagnostic that consists of a localization process. We can
see the association context + intentional concept as a package from the outside.

3.2 Data structures

A correspondence between CTT and an ontology is established which in turn
switches the theory into an internal logic. However, constructing such an ontol-
ogy requires an appropriate language and we have selected the RDF language
(W3C) to take in account the future extension to distributed systems. RDF is
able to express labelled graphs with triples < subject, predicate, object > where
the subject and object may represent resources (e.g., URIs). This ontology can
represent simple types with subjects whose instances are objects related to their
types by the predicate ”is-of-type”. Type constructors, are objects related to the
subject ”Type” with the same predicate ”is-of-type” as above. In such a way,
we get a single relation for both types and meta-types (i.e., sorts). The Σ-types
are mapped into XML descriptions which themselves describe RDF resources in
order to support sharing and reuse. The XML Schema structures are isomorphic
to Lisp expressions and allow type inferences within the Theorem Prover. The
relations referred to as ”has-part-of” predicate arrange Σ-types and DRTs into
a hierarchical structure which model easily sub-typing relations (see figure 1).



Fig. 1. Typing of basic concepts and relations.

4 Case Study

A key feature of the type-based reasoning is the ability to reason with simple
ontological concepts without unnecessary typing and to express compound re-
lations with Σ-types that can be aggregated into DRTs. Let us consider a user
named Harry which attends a meeting located in room ECS210I within the
ECS building (scenario extracted from [6]. We have to derive from the onto-
logical knowledge that Harry is inside the ECS building. In [17], the authors
underline that for such a scenario, OWL offers a mechanism that is not straight-
forward to cope with composite relationships. Instead of classes and properties
as in the classical scheme, we introduce basic concepts with atomic types, sim-
ple relations with Σ-types and complex relations with nested Σ-types or DRTs.
The natural sub-typing relation between types is the well-known is a relation.
Domain rules can propagate the sub-typing relation to more complex relations
such as the part of relation.

σ1 : Σx : person.Σy : room . locatedIn(x, y)

The Σ-type σ1 has a proof term < Harry, < ECS210I, p1 >> where p1 is the
type of proof locatedIn(Harry,ECS210I). Then, assuming the coercion:

Γ, x : person, y : room, z : building ` locatedIn(x, y) part of(y, z)
Γ ` y v z

Applying this coercion to σ1, any argument inhabitant of the type room can take
inhabitants of the type building as well and therefore, we can derive a proof for
locatedIn(Harry, ECS).



The user is located at 16 : 10 in the meeting room (current time) and the
meeting is scheduled to be held in the meeting room between 16 : 00 and 17 :
00. We have to deduce that John is in a meeting. For that purpose, a DRT
including all the required pre-conditions can be designed. Notice that constant
values are introduced through manifest fields, yielding complex constraints to
be described very simply. Then the DRT is related to a diagnostic (intentional
field) as described in section 3.1 and results in a pair σ1. In other words if the
DRT is proved, then the intentional type is proved as well.

σ1 : Σc1 :




t : time
t1 = ”16 : 00” : time
p1 : greaterThan(t, t1)
t2 = ”17 : 00” : time
p2 : lessThan(t, t2)
y : person
z : meetingRoom
p3 : locatedInAt(y, z, t)
m : meeting
p4 : holdIn(m, z)

. participatesIn(c1.y, c1.m)

5 Conclusion

On the one hand DRTs depict knowledge based on a support which encode the
ontological knowledge via the dependent types. Their high level of expressiveness
is obvious due to their wide use in NLP for solving linguistic subtleties. On the
other hand, Type-theory is free from both paradoxes and from unnecessary or
artificial formalization and it is more appropriate for automatic verification. The
theory is able to exploit as much domain knowledge as possible by providing
a mechanism by which this knowledge can be acquired, represented through
dependent types. One advantage claimed for this approach is that the ontology
can be checked for errors in the type-checking system. This approach also seems
a good candidate to bridge the gap between a logic formalism for reasoning about
actions and the ontological representation of knowledge. As for future work we
plan to investigate an intelligent graphical user interface to construct more easily
the reasoner.



References

1. F. Baader, C. Lutz, M. Milicic, U. Sattler and F. Wolter. Integrating Description
Logics and action formalisms: First results. Procs. of AAAI’05, AAAI Press, 572–
577, 2005.

2. H. Barendregt. Handbook of Logic in Computer Science, volume 2, chapter Lambda
Calculi with Types, pages 117–309. Oxford University Press, 1992.

3. G. Betarte. Type checking dependent (record) types and subtyping. Journal of
Functional and Logic Programming, 10(2):137–166, 2000.

4. P. Boldini. Formalizing context in intuitionistic type theory. Fundamenta Infor-
maticae, 42(2):1–23, 2000.

5. P. Brézillon and S. Abu-Hakima. Using Knowledge in Its Context: Report on the
IJCAI-93 Workshop. AI Magazine, 16(1):87–91, 1995.

6. H. Chen, T. Finin, and Anupam Joshi, Using OWL in a Pervasive Computing
Broker, In Workshop on Ontologies in Open Agent Systems (OAS), 9–16, 2003.

7. R. Cooper. Records and record types in semantic theory. J. Log. Comput., 15(2):99–
112, 2005.

8. T. Coquand, R. Pollack, and T. M. A logical framework with dependently typed
records. Fundamenta Informaticae, 20:1–22, 2005.

9. R. Dapoigny and P. Barlatier. Towards a context theory for context-aware systems.
In Procs. of the 2nd IJCAI Workshop on Artificial Intelligence Techniques for
Ambient Intelligence, 2007.

10. R. Dapoigny and P. Barlatier. Goal Reasoning with Context Record Types. In
Procs. of CONTEXT’07, 164–177, 2007.

11. P. Dockhorn-Costa, J. Paulo A. Almeida, L. F. Pires, G. Guizzardi and M. van Sin-
deren. Towards Conceptual Foundations for Context-Aware Applications. Procs.
of the AAAI’06 Workshop on Modeling and Retrieval of Context, 54–58, AAAI
Press, 2006.

12. W. A. Howard. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, chapter The formulae-as-types notion of construction, pages 479–
490. Academic Press, 1980.

13. A. Kopylov. Dependent Intersection: A New Way of Defining Records in Type
Theory. Procs. of the 18th Annual IEEE Symposium on Logic in Computer Science,
86–95, IEEE Computer Society Press, 2003.

14. Z. Luo. A Unifying Theory of Dependent Types : The Schematic Approach. LFCS,
p. 293–304, 1992.

15. P. Martin-Löf. Constructive mathematics and computer programming. Logic,
Methodology and Philosophy of Sciences, 6:153–175, 1982.

16. J. McKinna. Why dependent types matter. SIGPLAN Not., 41(1), 2006.
17. L. Ferreira Pires, M. van Sinderen, E. Munthe-Kaas, S. Prokaev, M. Hutschemaek-

ers and D.-J. Plas (editor), Techniques for describing and manipulating context
information, Freeband/A MUSE /D3.5v2.0, 2005.

18. A. Ranta. Type-Theoretical Grammar Oxford University Press, 1995.
19. S. Valentini. Decidability in intuitionistic type theory is functionally decidable.

Math. Logic, 42:300–304, 1996.


