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Abstract
REST APIs have become widely adopted in the software industry, finding extensive usage for business-
critical purposes such as data exchange, mobile app development, and microservice architectures. Such
popularity has led to a proliferation of dedicated frameworks, making it challenging for developers and
organizations to choose which one to use for developing resource-efficient solutions. Adding to the
complexity is the possibility of adopting also different execution environments, such as GraalVM, that
offer advantages such as faster startup times, lower memory footprint, and polyglot capabilities.

Some prior works have investigated the performance of various frameworks for REST APIs. Still,
these studies often consider simplistic scenarios with a single endpoint, which fail to capture the
complexity and diversity of real-world REST API applications. Furthermore, the impact of different
execution environments on performance was often overlooked. Consequently, there remains a significant
knowledge gap in comprehensively assessing the combined influence of frameworks and execution
environments on the performance of REST APIs. This study aims to move a first step towards bridging
that gap, by conducting a thorough performance benchmark that encompasses real-world REST APIs
and considers also the effects of different execution environments.

More in detail, the study focuses on two of the most popular programming language and framework
combinations for REST APIs, namely JavaScript with the Express framework and Java with the Spring
framework. As for the execution environment, we consider both mainstream execution environments
for JavaScript and Java (Node and OpenJDK, respectively), and GraalVM, which can execute both Java
and JavaScript software. The benchmarking process involves conducting realistic load and stress tests
using state-of-the-art tools. Results reveal significant differences in performance across the considered
combinations, providing insights that could support developers and system architects in making more
informed decisions on the technologies to use for their REST API projects.
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1. Introduction

The REST (REpresentational State Transfer) paradigm has become a prominent architectural
style for designing distributed applications, providing a standardized approach for building
scalable and interoperable systems leveraging the widely-used HTTP protocol [1, 2]. REST
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APIs have gained wide adoption in the software industry, enabling critical functionalities such
as data exchange, mobile app development, and microservice-based architectures [3]. Such
popularity has led to the proliferation of dedicated frameworks, designed to streamline the
process of designing, implementing and managing REST APIs.

With the proliferation of dedicated frameworks, developers and organizations face the chal-
lenge of selecting the most appropriate technologies for effectively developing high-performance
REST APIs [4, 5]. This decision is influenced by various factors, including project requirements,
the availability of resources and expertise within the development team, the ease of use of the
framework and the availability of libraries and support. Performance aspects and resource
efficiency also play a critical role in the decision process. Indeed, selecting a high-performance
framework can significantly improve user satisfaction thanks to reduced latencies and response
times. These non-functional properties are as crucial as functional correctness in today’s highly
competitive web and mobile application market [6, 7]. Moreover, using more resource-effective
frameworks can also have a significant impact on deployment costs in pay-as-you-go public
cloud services [8], and lead to lower energy consumption in general, which is increasingly
important also from sustainability and green-computing perspectives. The decision-making
scenario is further complicated by the possibility of running the applications using emerging
and optimized execution environments, such as GraalVM [9], which promise faster startup
times, lower memory footprints, and polyglot capabilities.

To support practitioners in these decisions, a number of works in the literature have focused
on comparing programming languages and frameworks with controlled benchmarks. Most
works, however, focus on programming languages in a general-purpose context, comparing
different implementations of the same algorithms in terms of lines of code and running times
[10, 11]. More recently, some studies began investigating the performance impact of adopting
emerging execution environments such as GraalVM [12], but these works generally focus on a
single programming language, and in specific contexts (e.g.: running unit tests). Some recent
works have also compared different REST API frameworks written in different programming
languages, evaluating their performance under different workloads [4, 5]. These works, however,
relied on simplistic REST API implementations, which can hardly be considered representative
of the complexity of real-world applications, limiting their generalizability. Moreover, to the best
of our knowledge, no study has investigated the combined effect of different frameworks, written
in different programming languages, and different execution environments in the context of
REST APIs.

The goal of this paper is to move a first step towards filling that gap, by investigating the
combined impact on the performance of realistic REST APIs of two of the most popular frame-
works, and of different execution environments. To this end, we leveraged as subject REST
APIs two different implementations (one using Java with the Spring Boot framework, and the
other using JavaScript with the Express framework) of a prototype application provided by an
industrial partner, and configured them to run both on a mainstream execution environment
(OpenJDK for Java, Node for JavaScript) and on GraalVM. We deployed each REST API in a
controlled environment and systematically analyzed their performance by subjecting them to
automated performance tests. Results show that there exist significant differences in terms of
performance and stability among the different considered configurations of frameworks and ex-
ecution environments and provide useful insights based on which developers and organizations



can make more informed decisions.
The paper is organized as follows. Section 2 provides preliminary notions on the REST

paradigm and dedicated frameworks, on the GraalVM runtime, as well as on performance
testing practices, which are widely used to assess the performance of REST APIs. In Section 3,
we present an overview of the state of the art on comparison of programming languages,
frameworks, and execution environments, with a particular focus on the performance of REST
API frameworks. Section 4 provides a detailed description of the benchmarking process we
employed in our study, by describing the subject system, the considered combinations of
frameworks and execution environments, the performance testing workloads we used to assess
performance as well as the metrics we used to quantify it. In Section 5, we present and discuss
the results of our benchmarks, while in Section 6, we discuss some threats to the validity of our
findings. Last, in Section 7, we give some closing remarks and discuss future works.

2. Background

This section provides a brief overview of some preliminary concepts on which this paper is
based. More in detail, we start by describing REST APIs and by presenting the most popular
frameworks. Then, we describe the GraalVM polyglot runtime environment, hinting at the
characteristics that make it attractive in the REST API domain. Last, we provide some prelimi-
nary notions on performance testing practices, which we use in our study to benchmark each
framework/execution environment combination.

2.1. The REST Architectural Style

REST (REpresentational State Transfer) is a client/server architectural style designed to promote
simplicity, scalability, and interoperability between different systems communicating over a
network using the HTTP protocol [1]. At its core, REST is based on the concept of resources,
which can be entities or objects that needs to be accessed or manipulated over a network. Each
resource is uniquely identified by its Uniform Resource Identifier (URI).

REST APIs expose these resources and allow clients to perform various operations on them,
such as retrieving data, creating new resources, updating existing ones, or deleting them. The
operations are typically carried out by means of HTTP requests to the appropriate URIs, using
standard methods, such as GET, POST, PUT, and DELETE, which semantically align with the basic
actions of retrieving, creating, updating, and deleting resources, respectively [13, 14].

Another key aspect of the REST style is statelessness, meaning that the server does not need
to store any client-specific session information (state) between requests. Each request from
the client must contain all the necessary information for the server to understand and process
it. This statelessness makes REST APIs highly scalable and enables easy distribution and load
balancing across multiple servers [15, 2, 16].

Due to its simplicity, scalability, and uniform, standardized interface, the REST architectural
style has emerged as a prevalent choice in the software industry for developing robust and
interoperable web services [3]. According to a recent survey [17], REST is by far the most
widely-adopted architectural style for APIs, with an adoption rate exceeding 90%.



2.1.1. REST API frameworks

REST API frameworks provide developers with pre-built tools, libraries, conventions and ab-
stractions to simplify the process of designing, implementing, and managing RESTful APIs.
When starting a new project from scratch, choosing the most suitable framework is crucial, as
it can significantly impact time-to-market, quality, consistency, and performance. Nowadays, a
wide range of REST API frameworks is available, written in different programming languages,
which can make the selection process quite challenging. The popularity of a programming
language/framework plays a significant role in the decision process. Indeed, more popular
programming languages tend to have a larger developer community and extensive documenta-
tion support. A recent survey involving 850 professional programmers from over 100 different
countries revealed that, in 2022, JavaScript was the most widely used programming language
to develop REST API, with a 48% adoption rate, and Java also accounted for a significant 19%
of the share [18]. Within JavaScript, Express is by far the most popular backend framework,
followed by other frameworks such as Nest or Fastify [19]. As for Java, Spring Boot is the most
widely-adopted framework in the context of REST API development [20].

2.2. GraalVM

GraalVM is an emerging execution environment offering several advantages for running appli-
cations. It is a polyglot runtime that supports multiple programming languages, including Java,
JavaScript, Python, Ruby, and more [21]. GraalVM efficiently handles polyglot applications
with minimal performance loss, enabling developers to choose the most suitable language for
their problem-solving needs [9]. It leverages both Just-In-Time (JIT) compilation and Ahead-
Of-Time (AOT) compilation. The AOT compiler precompiles the code, creating a self-contained
executable known as a native image. This approach reduces the workload at runtime as libraries
and dependencies are already provided and loaded in advance. The JIT compiler in GraalVM
dynamically compiles the code during runtime, constantly examining and optimizing it [12, 22].
Additionally, GraalVM can lead to a smaller memory footprint compared to traditional virtual
machines, which can be beneficial, especially in resource-constrained environments. These
features make GraalVM an attractive choice for developers seeking performance optimization
and language flexibility in their applications, and its adoption has been observed in prominent
companies like Disney+, Facebook, and Twitter [21, 12]. Nonetheless, there is a lack of literature
addressing the extent of their usage in the REST API domain and the resulting improvements.

2.3. Performance Testing

Performance testing is the set of activities aimed at assessing the performance and correctness
of the behaviours of a system under varying load levels. The objective is to quantify the
performance of the system and identify potential load-related problems [23]. In the domain of
REST APIs, as well as in web domains in general, a load is typically represented by sequences
of requests generated by concurrent users, each performing different use cases over a specific
time period [24]. For example, performance tests can simulate load peaks that may occur
during the Christmas season for an e-store, helping assess whether the user experience remains
satisfactory.



Figure 1: Example of an user group specification, from [26]

A load is typically defined as a set of different groups of users, each of which represents
concurrent users that execute the same user session (sequence of interactions with the system)
[25, 26]. Furthermore, to allow for the definition of more realistic loads, the behaviour of each
user group can be customized by varying the following parameters:

• Initial delay: the time between the start of the test and the activation of the user group.
• Startup time: the time required to go from zero to the specified number of users.
• Hold load time: the time for which all activated users will remain active.
• Shutdown time: the time within which all activated users stop making requests.

Performance testing includes the broad set of activities aimed at evaluating that the system
behaves as expected, under different loads [23, 27]. Based on the specific goals, it is possible to
identify different types of performance testing such as load testing and stress testing.

Load testing is a type of performance testing that aims to ensure that the system under test
in production performs as expected under expected realistic loads [28]. The main goal is to
generate a load that is as realistic as what the system will find once it is released into production.

Stress testing focuses on putting a system under intense conditions in order to evaluate the
ability of a system or component to handle peak loads exceeding the anticipated load limits.
Stress testing is also used to assess the system’s ability to handle low resource availability such
as access to memory or servers [23, 27].

3. Related Works

Performance is a critical aspect of software development, as it directly impacts user experience,
system responsiveness, and overall efficiency. Consequently, a good deal of studies in the
literature have focused on investigating the performance of different programming languages, to
support developers and organizations in making informed decisions on programming language
selection based on their specific requirements and constraints. These studies aim to assess how
various programming languages perform in terms of execution speed, memory usage, scalability,
ease of use, and other relevantmetrics. By comparing the performance characteristics of different
languages. These performance studies often involve running benchmark tests, implementing
algorithms or tasks in different programming languages, and measuring their execution times,
resource consumption, or the number of lines of code that were required for the implementation.



For example, Prechelt et al. [11] compared seven different programming languages, namely
C, C++, Java, Perl, Python, Rexx, and Tcl. They implemented the same application in each
language, allowing for the evaluation of program length, programming effort, runtime effec-
tiveness, memory consumption, and reliability. The results showed that scripting languages
like Python create more concise programs but lack the speed and robustness of compiled and
strongly typed languages like C. Similarly, Nanz et al. [10] compared software from the Rosetta
Code repository, which includes around 700 programs of varying sizes written in different
programming languages. In that study, the authors evaluated similar metrics as the study by
Prechelet et al., including executable size, execution time, memory usage, and propensity to fail.

In the Web domain, Lei et al. [29] investigated the performance achievable by using three
well-known web technology stacks, namely JavaScript with Node, PHP, and Python. They
conducted objective systematic tests (benchmarks) involving ApacheBench, a stress testing
tool that generates synthetic workloads, sending approximately 10,000 requests to a simple
benchmark website offering three basic functionalities. Their study suggested that JavaScript
achieved the best performance in terms of response times among the considered alternatives.
Still, the study investigated generic web applications and is not specific to REST APIs. Moreover,
the considered scenarios are simplistic and hardly representative of real-world applications.
Lastly, the benchmarked technologies are nowadays obsolete (i.e., Node 0.10 which was used
in the study reached end-of-life in 2016), and much more recent versions are available. More
recently, benchmark studies focusing on REST APIs were conducted by Kemer and Samli [4]
and by Abbade et al. [5]. These studies compared the performance of different types of REST
APIs developed with various programming languages.

Kemer and Samli [4] compared the performance of REST APIs built in C#, Java, Go, Node.js,
and Python. To this end, they designed and implemented a set of applications in the simplest
form possible, without additional tasks or dependencies. The performance comparison was
conducted by carrying out load and stress tests using the K6 and Locust open-source tools. The
results showed that Python had unstable request handling with the slowest response times. Go,
C#, and Java performed the best, while Node.js had similar performance with slightly slower
average response times.

Similarly, Abbade et al. [5] compared the performance of a simple POST route endpoint
containing an authorization header and a JSON payload to be inserted into a MongoDB database.
They considered REST API applications developed using Java with Spring Boot, JavaScript with
the Express framework, and Python with Flask. Load testing was conducted using the Locust
tool, and results showed that JavaScript achieved the best performance, while Java proved to be
the most stable in terms of performance over time. Python had the worst results in terms of
response times and the number of managed and failed requests.

All these previous studies based their comparisons on REST API applications with a single
route, which can hardly be considered representative of the complexity of modern applications,
limiting the generalizability of the studies. Moreover, the comparisons were limited to different
REST APIs written in different languages (Java, JavaScript, Python, Go, etc.), and did not take
into account the potential impact of varying the underlying execution environment. Indeed, in
recent years, polyglot and optimized execution environments, such as GraalVM, are becoming
increasingly popular. While several studies have explored how such runtime environments
can improve execution time or memory footprint compared to mainstream solutions such as



OpenJDK and OracleJDK in specific domains such as unit test execution [12], their performance
impact in the domain of REST APIs remains, to the best of our knowledge, unexplored.

This work aims at advancing the state of the art by investigating the combined influence
of different modern and largely adopted programming languages/frameworks and runtime
environments on the performance achievable by realistic REST APIs.

4. Performance Benchmark

This section describes the performance benchmark we conducted to compare the performance
of two of the most popular REST API frameworks, namely Spring Boot (Java) and Express
(JavaScript). The comparison does not only take into account the frameworks but rather also
considers different execution environments. In particular, in addition to the mainstream Java
and JavaScript environments (i.e., OpenJDK and Node), we also consider GraalVM.

In the remainder of this section, we present the performance benchmark we conducted
by describing in detail the subject REST API, the considered combinations of frameworks
and execution environments, the performance testing activities we conducted to assess the
performance of each combination, the considered metrics and the adopted procedure.

4.1. The subject REST API

The REST API employed for the experiment is an industrial prototype developed by one of our
industrial partners. The API allows users to create accounts and log in. Club owners can register
their clubs and add information about facilities available, such as tennis courts or football fields.
Users can search for available facilities, make reservations for specific dates and times, and also
assign a satisfaction rating to each reservation. The API ensures secure access and protects user
data through authentication and authorization mechanisms. The endpoints of the REST API
and the supported HTTP methods, along with a brief description of the provided functionalities,
are reported in Table 1.

4.2. Considered Frameworks and Execution Environments

The benchmark REST API was implemented twice, utilizing different frameworks for each
implementation. The first implementation was developed using the Spring Boot framework
(version 3.0.0), leveraging the power of Java as the programming language. The second im-
plementation, on the other hand, leveraged the Express framework (version 4.16.4), which is
the most popular JavaScript back-end framework. Both the implementations rely on the same
PostgreSQL (version 15.1) relational database instance for data persistence.

As for the execution environments, we consider both mainstream Java and JavaScript execu-
tion environments (OpenJDK 17.0.2 and Node 19.5.0, respectively), and GraalVM 22.3.2, which
can execute both Java and JavaScript software. Thus, we consider four combinations of program-
ming framework and execution environment, with each framework being benchmarked with
both the mainstream runtime environment for its programming language, and with GraalVM.



Table 1
List of endpoints and supported HTTP methods provided by the REST API.

Method Path Description

POST /login authenticates users and generates an access token
GET /sports-facilities retrieves a list of sport facilities
GET /sports-facilities/{id} retrieves the sport facility with the given id
POST /sports-facilities/{id}/sports-field creates a sports field for the given facility
GET /sports-fields retrieves a list of sports fields
GET /sports-fields/{id} retrieves a sport field by its id
POST /users creates a new user
GET /users/{id} retrieves a user by id
GET /reservations retrieves a list of sports fields reservations
POST /reservations creates a reservation request for a sports field
GET /reservations/{id} retrieves the reservation with the provided id
PUT /reservations/{id}/status updates the status of the given reservation
GET /reservations/{id}/rating retrieves the rating for a given reservation
POST /reservations/{id}/rating create a rating for the given reservation

Table 2
User groups used for load testing.

Group name User behaviour description

Create facilities After logging in, users retrieve the list of sport clubs and add a new facility to
one of them.

Reserve a facility After signing up and logging in, users request the list of available facilities
and make a reservation for one of them.

Retrieve facilities After logging in, users retrieve a list of facilities that are currently available.
Rate reservations After signing up and logging in, users create a reservation for a sport facility

and subsequently provide a rating for the experience.
Accept reservations After signing up and logging in, users create a reservation for a facility, and

the club owner accepts the reservation.

4.3. Performance Testing

To compare the performance of each configuration, we conducted performance tests using
state-of-the-art tools. In particular, we carried out both load and stress testing activities, as also
done in benchmark studies in the web domain [4, 5].

4.3.1. Load Testing

The main purpose of load testing is to assess system performance under realistic load condi-
tions. To this end, we manually designed a workload consisting of five distinct user groups,
each representing a specific sequence of realistic user interactions. A brief description of the
considered user groups is provided in Table 2. The activity levels of each user group during load
testing, i.e., how many users are actively performing that sequence of actions at any given time,



Table 3
Characterization of a single user group within load testing.

Start
Thread Count

Initial
Delay (secs)

Startup
Time (secs)

Hold Load
Time (secs)

Shutdown
Time (secs)

20 0 10 1500 300
20 120 10 1380 300
20 240 10 1260 300
20 360 10 1140 300
20 480 10 1020 300
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Figure 2: Number of active users over time in the load testing activity.

is formalized in Table 3 and described as follows. The load test starts with 20 users performing
the sequence of actions in each user group. Subsequently, the load incrementally increases
every two minutes, by adding 20 additional users until reaching 100 concurrent users for each
user group. The workload lasts for approximately 30 minutes, with a peak usage period lasting
17 minutes, during which 500 active users exhibit one of the five user-group behaviours. The
distribution of active users over time in the considered workload is also visualized in Figure 2.

4.3.2. Stress Testing

As for the stress testing activity, the system is subjected to increased loads or adverse conditions
beyond its normal operational limits. The goal, in this case, is to identify the breaking point
or threshold (intended as the maximum number of concurrent users) at which the system
fails to perform adequately. For this activity, we designed a workload consisting of the same
user behaviours leveraged for load testing, but with a way steeper increase in the number of
concurrent users over time.

In particular, the workload starts with 100 concurrent users performing each of the considered
behaviours, and the number of users in each group is increased by 100 users every minute.
The test continues until one of the following failing conditions is met. Either (1) the average
response time exceeds 30 seconds for a continuous duration of 60 seconds, or (2) the response
error rate surpasses 50% for a continuous duration of 10 seconds.



4.4. Procedure and Metrics

The REST API involved in this study was implemented twice, using the two considered frame-
works, by practitioners working with our industrial partner, supervised by one of the authors of
this paper. To simplify the deployment of the different implementations of the REST API in each
considered execution environment, we set up a different Docker container for each of the four
considered combinations of framework and execution environment. The PostgreSQL instance
required by the REST API to manage data persistence has also been deployed in a separate
container. The orchestration of the REST API containers and the PostgreSQL container has
been managed by leveraging the Docker Compose tool. In our experimental setup, we adopted a
systematic approach to evaluate the performance of each configuration. To ensure accurate and
reliable results, we deployed each configuration individually on a dedicated Linux server with
an AMD Ryzen 9 5900X 12-Core processor, 64GB RAM, and a 1TB SSD. This approach allowed
us to isolate the effects of programming languages, frameworks, and execution environments
on the performance of the REST APIs. As for the Java execution environments, we configured
both OpenJDK and GraalVM to use at most 16GB of heap space.

To generate the workloads for load and stress testing, we leveraged Apache JMeter, a widely-
used, state-of-the-art tool for performance testing [30, 26]. We implemented the load and stress
testing workloads described in the previous section as JMeter scripts and ran each of them
on every considered combination of framework and execution environment. To ensure no
performance interference, the workloads were executed on a different server, featuring an
Intel(R) Core(TM) i9-9940X CPU, 64 GB RAM, and a 1TB SSD, connected to the main server
running the REST API via a local high-speed network. To account for fluctuations due to
the interference of external factors and to ensure accuracy and reliability, we performed five
repetitions of the load and stress testing for each of the considered framework/execution
environment configurations, computing, for each metric, the average across the repetitions.

For each execution of the load and stress tests, we leveraged the capabilities offered by
the JMeter tool to collect detailed data on the way each generated request was handled. In
particular, we collected, for each request to the REST API that was generated by the tool, the
elapsed response time (i.e., the time elapsed from just before sending the request to just after
the response has been completely received), and the HTTP status of the response, indicating
whether the response was handled correctly or some error occurred. Starting from these raw
data, we computed additional metrics that have also been used in several other empirical works
aimed at comparing the performance of REST API frameworks [5, 4].

More in detail, in the context of load testing, we computed:

• the overall sample count, i.e., the number of requests that were processed during the
execution of the load test. REST APIs which perform better manage more requests in the
same amount of time.

• the error rate, i.e., the percentage of requests that were not handled correctly by the
REST API, which resulted in an error response.

• Mean and median elapsed response times.
• Throughput, i.e., the number of requests being processed per second.
• Application Performance Index (Apdex), a well-known metric to quantify user satis-
faction with the performance of software applications [31]. Apdex can assume values



between 0 and 1, with 0 indicating complete dissatisfaction, and 1 representing complete
satisfaction. This metric is computed based on two thresholds: the tolerance threshold 𝑇
and the frustration threshold 𝐹. These thresholds represent, respectively, the maximum
ideal response time, and the maximum acceptable response time. Requests that are han-
dled within the tolerance threshold 𝑇, are considered satisfied, while requests that took
more than 𝑇, but less than the frustration threshold 𝐹 are considered tolerated. Given
these definitions, the Apdex metric for a load test is defined as follows:

Apdex =
Num. Satisfied + Num. Tolerated/2

Num. of Requests

In this study, the tolerance threshold 𝑇 and frustration threshold 𝐹 used to calculate the
Apdex metric are set to 1 second and 10 seconds, respectively, according to the guidelines
presented by Nielsen in [32].

As for stress testing, we considered the time-to-failure metric [33], commonly used to
evaluate performance under stress. It measures the time a system or component takes to reach
a failure state under the applied stress load. REST APIs that can handle increasing workloads
more gracefully (i.e., that scale better) will last longer under heavy workloads.

5. Benchmark Results and Discussion

The results of the load testing benchmark are reported in Table 4, which lists, for each considered
combination of framework and execution environment, the sample count, the error rate, average
and median elapsed response times (in seconds), throughput and Apdex metric. Overall, the
Express and Node configuration significantly outperforms all the other configurations, managing
to process more than double the number of requests over the same time. This is also witnessed
by the remarkably lower average and median elapsed response times, on a higher throughput
and in a better user experience, as confirmed by the Apdex score. Moreover, despite serving the
highest number of requests with the shortest response times and with the best user experience,
the Express and Node configuration also exhibits the smallest error rate among the considered
configurations, with remarkably no request resulting in an error, proving to be also the most
reliable configuration.

Considering the impact of the execution environments, the results highlight that different
trends seem to exist, depending on the considered programming language. When dealing with
JavaScript code and with the Express framework, using GraalVM leads to significantly worse
performance w.r.t. the Node runtime. Indeed, the Express/GraalVM configuration achieves the
worst performance among all the considered configurations, in terms of sample count, response
times, and throughput, with a remarkably high 4% error rate. When dealing with Java code
and with the Spring Boot framework, on the other hand, switching to GraalVM can improve
performance w.r.t. the mainstream OpenJDK runtime, leading to serving 12% more requests
with 10% faster average response time, and improvements in throughput and Apdex as well.
These improvements come at the cost of a slightly higher error rate (0,5% with GraalVM, 0,2%
with OpenJDK), and higher median response times.



Table 4
Results of the load testing benchmark.

Configuration Sample
Count

Errors
(%)

Average
Resp. Time

Median
Resp. Time Throughput APDEX

Java - Spring
GraalVM 80477 0,5 8,9 6,5 44,5 0,36
OpenJDK 71729 0,2 9,9 5,9 39,7 0,34

JS - Express
GraalVM 60648 4,0 14,4 10,6 33,7 0,39
Node 176047 0,0 4,9 4,7 97,3 0,55
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Figure 3: Elapsed response times over time during load testing, for each repetition of the experiments.

The results of the load testing benchmark are also visualized in Figure 3, which shows, for
each configuration and repetition of the benchmark, the average response times over time
computed at a 1-minute granularity during the execution of the load test. As can be seen from
the figure, Express with Node.js has the most stable behaviour in each configuration and the best
response times (never exceeding 10 seconds) compared to the other configurations. Spring Boot
with OpenJDK also shows stable behaviour in every configuration but with a higher response
time than Express. GraalVM, on the other hand, both when used with Express and with Spring
Boot, results in unstable behaviour with sudden spikes in response times.

The distribution of response times for each REST API endpoint involved in the load testing
activities is depicted with box plots in Figure 4. The figure highlights that there seems to be
no particular difference between the response times distributions for each endpoint in each
configuration, with the only exception being the configuration with Express and GraalVM,
for which the endpoints involving POST requests are associated with longer response times.
Moreover, the greater variability of GraalVM configurations is confirmed by the presence of a
larger number of outliers.
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Figure 4: Elapsed response times distribution during load testing, for each endpoint and for each
repetition of the experiment.

Table 5
Time to failure (in seconds) in stress testing (higher is better).

Java (Spring) JavaScript (Express)

GraalVM OpenJDK GraalVM Node

Repetition 1 136 128 120 190
Repetition 2 79 129 107 190
Repetition 3 85 130 114 191
Repetition 4 86 132 114 193
Repetition 5 85 95 112 191

Average 94,2 122,8 113,4 191

Load testing results: Express with Node.js outperforms all other combinations of frame-
works and execution environments, both in terms of response times and stability thereof
during the load tests. The other combinations achieve roughly comparable performance,
with those leveraging GraalVM generally exhibiting a greater variability in response times.

As for the stress testing benchmark, time-to-failure results are reported in Table 5. In all
the repetitions and for all the considered framework/environment configurations, the stress
tests failed because of the violation that concerned the average response time (see Section 4.3.2).
These results show that the Express/Node configuration is also the most effective in handling the
stress workload, with remarkably higher time-to-failure than all other configurations. Indeed,
the average time-to-failure of the Express/Node configuration amounts to 191 seconds, which is
56% higher than the second-best configuration, namely Java/OpenJDK, which failed the stress
test after 123 seconds on average. In this context, the adoption of GraalVM leads to worse
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Figure 5: Elapsed response times over time during stress testing. Test failure is highlighted with a red
bar.

performance in both Java and JavaScript applications, with the Java/GraalVM configuration
being the one that performs the worst, failing on average after only 94 seconds. In Figure 5, we
depict the average elapsed response time, computed in a 30-second sliding window, of the REST
API under different configurations during the stress tests. The plots interrupt when a failure
occurs, which is to say when the average response times in the 30-second window exceeds
30 seconds. The failing time is represented by the red vertical bar. These plots show that the
Express/Node configuration is not only the most effective one in terms of overall time-to-failure
but also seems to exhibit a slightly sub-linear increase in response times as the number of
concurrent users increases, as opposed to the other configurations which exhibit a more linear
(and steep) worsening in response times as the load increases.

Stress testing results: Express with Node.js proved to be the most effective configuration
for handling the stress workload, with a 56% higher time-to-failure than the second-best
configuration, i.e., Java Spring with OpenJDK. In the stress testing setting, the adoption of
GraalVM leads to a worsening in performance with both Spring and Express.

6. Threats to Validity

In this section, we discuss threat some threats that could have affected the results of the bench-
marks and their generalisation, according to the guidelines proposed by Wohlin et al. in [34].

6.1. Threats to Internal Validity

Threats to internal validity are factors that can undermine the causal conclusions or relationships
established within a study, challenging the ability to draw accurate inferences about cause-



and-effect relationships. In this benchmark study, we ensured a fair comparison between
the different configurations of frameworks and execution environments by deploying each of
them, in isolation, on the same Linux server, with the same environment. By leveraging the
Docker tool, we ensured that each repetition of the benchmarks started from the exact same
initial configuration. Moreover, to limit the influence of external factors, we ensured that no
other unnecessary service was running on the server, and that the REST API did not depend
on external services, whose network latency could influence the benchmark results. As for
the metrics used for capturing the dependent variables, they were computed automatically
by the JMeter tool, which is recognized as a state-of-the-art and reliable performance testing
solution [26].

An additional threat to the internal validity of our study lies in the possible presence of errors
in the different implementations of the considered REST API. Indeed, some bugs could have
been introduced when implementing the REST API using one of the considered frameworks,
and this could affect the benchmark results. To mitigate this threat, each implementation of the
REST API was subjected to the same automated functional test suite, that both implementations
passed. Moreover, two of the authors of this paper manually reviewed the source code of the
implementations on an endpoint-by-endpoint basis, to ensure that no bugs were introduced.

6.2. Threats to External Validity

These threats concern the generalizability of the findings to real-world scenarios beyond the
specific context examined. One possible threat is posed by the selection of the REST API
used in the study. Indeed, despite being an industrial prototype managing multiple resources
with several endpoints and supporting all the operations that are typically present in REST
APIs, including the presence of authentication and authorization mechanisms, the considered
application might not be representative of every industrial REST API project. To mitigate this
threat, future works should include additional REST APIs, possibly representing different kinds
of industrial projects (e.g.: I/O intensive APIs, computation intensive ones, etc.).

An additional threat to the generalizability of the findings lies in the synthetic workloads
employed to conduct load and stress testing. Indeed, despite our efforts in designing realistic
workloads, the synthetic sequence of requests generated by performance testing tools may not
be able to fully capture the complexities and variability encountered in real-world environments.

Lastly, the findings of this benchmarking study may be time-sensitive, as performance
characteristics of programming languages, frameworks, and execution environments can evolve
over time. New releases, updates, or optimizations in the evaluated technologies could impact
the results and limit the study’s long-term validity.

7. Conclusions

The REST paradigm has gained popularity as an architectural style for designing scalable and
interoperable distributed systems. REST APIs have become widely adopted in the software
industry, facilitating critical functionalities such as data exchange and mobile app development.
This increased adoption has led to the development of dedicated frameworks aimed at simplifying
the design and implementation of REST APIs.



However, the abundance of available frameworks presents a challenge for developers and or-
ganizations when selecting the most suitable technologies for building REST APIs. Performance
and resource efficiency are among the key factors influencing the decision-making process.
Indeed, choosing a high-performance framework can enhance user satisfaction by reducing
latencies and response times, and opting for resource-efficient frameworks can contribute to
cost savings in cloud services and promote sustainability efforts in terms of energy consumption.
Adding to the complexity, the possibility of adopting emerging execution environments like
GraalVM could lead to enticing benefits such as faster startup times, reduced memory footprints,
and polyglot capabilities, further complicating the decision-making process.

Existing literature has explored the performance of programming languages and frameworks
through controlled benchmarks. However, most studies focus on general-purpose contexts
or single programming languages, lacking a comprehensive investigation of combined effects.
Moreover, previous works evaluating REST API frameworks have often used simplistic im-
plementations that do not reflect the complexity of real-world applications, limiting their
applicability. To bridge this gap, this paper investigated the combined impact of different
frameworks written in different programming languages and executed in different environ-
ments on the performance of realistic REST APIs. Results showed that significant differences in
performance exist among the considered configurations, revealing that the Express JavaScript
framework with the Node runtime outperformed all the other configurations in terms of stability
and performance. The adoption of GraalVM, while proving to be pejorative for the JavaScript
REST API, led to some benefits in performance for the REST API implemented with Java and
the Spring Boot framework, but these improvements came at the cost of reduced stability and
sudden spikes in response times.

In future works, we plan to extend our study by considering a larger number of REST API
frameworks, including Python ones such as FastAPI or Django, which are very popular. We
also plan to consider also additional factors, beyond performance, influencing the effectiveness
of a framework. In particular, we plan to take into account ease of use and the effort required
to implement the API. Future research could also focus on the resource efficiency of different
frameworks, monitoring memory and CPU usage as well as energy consumption, and possibly
compare the hosting costs in public cloud providers necessary to guarantee the same service
levels using different frameworks and execution environments.

Data Availability Statement

The subject REST API implementations, the Docker environments to run them in the different
execution environments, as well as the JMeter scripts to run the load and stress tests, are
available in the replication package at [35]. The replication package also includes the outputs
of each execution of the load and stress tests on each configuration, as well as all the code
necessary to compute the considered metrics, and data analytics scripts we used to analyze the
raw data and produce plots and results presented in this paper.
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