
An Empirical Study on the Performance of
Vulnerability Prediction Models Evaluated Applying
Real-world Labelling
Giulia Sellitto

1
, Alexandra Sheykina

1
, Fabio Palomba

1
and Andrea De Lucia

1

1Software Engineering (SeSa) Lab, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (Salerno), Italy

Abstract

Software vulnerabilities are infamous threats to the security of computing systems, and it is vital to

detect and correct them before releasing any piece of software to the public. Many approaches for the

detection of vulnerabilities have been proposed in the literature; in particular, those leveraging machine

learning techniques, i.e., vulnerability prediction models, seem quite promising. However, recent work

has warned that most models have only been evaluated in in-vitro settings, under certain assumptions

that do not resemble the real scenarios in which such approaches are supposed to be employed. This

observation ignites the risk that the encouraging results obtained in previous literature may be not as well

convenient in practice. Recognizing the dangerousness of biased and unrealistic evaluations, we aim to

dive deep into the problem, by investigating whether and to what extent vulnerability prediction models’

performance changes when measured in realistic settings. To do this, we perform an empirical study

evaluating the performance of a vulnerability prediction model, configured with three data balancing

techniques, executed at three different degrees of realism, leveraging two datasets. Our findings highlight

that the outcome of any measurement strictly depends on the experiment setting, calling researchers to

take into account the actuality and applicability in practice of the approaches they propose and evaluate.

Keywords
Vulnerability Prediction, Realistic Evaluation, Empirical Study

1. Introduction

Software vulnerabilities are flaws or oversights in a piece of software that allow attackers to do

something malicious, e.g., expose or alter sensitive information, disrupt or destroy a system, or

take control of a computer program [1]. Many infamous cases of vulnerabilities being exploited

are reported every year; the most notorious remain those leaking private users’ data and causing

monetary losses in the millions. It is vital for software developers to release secure systems;

therefore, any vulnerability affecting the code must be found and corrected before production.

The activity of discovering security flaws in software is known as vulnerability discovery, and

a plethora of approaches have been proposed in the literature, leveraging static, dynamic, or

Joint Conference of the 32nd International Workshop on Software Measurement (IWSM) and the 17th International
Conference on Software Process and Product Measurement (MENSURA), September 14–15, 2023, Rome, Italy
$ gisellitto@unisa.it (G. Sellitto); asheykina@unisa.it (A. Sheykina); fpalomba@unisa.it (F. Palomba);

adelucia@unisa.it (A. De Lucia)

� https://giuliasellitto7.github.io/ (G. Sellitto); https://fpalomba.github.io/ (F. Palomba);

https://docenti.unisa.it/003241/en/home (A. De Lucia)

� 0000-0002-5491-0873 (G. Sellitto); 0000-0001-9337-5116 (F. Palomba); 0000-0002-4238-1425 (A. De Lucia)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gisellitto@unisa.it
mailto:asheykina@unisa.it
mailto:fpalomba@unisa.it
mailto:adelucia@unisa.it
https://giuliasellitto7.github.io/
https://fpalomba.github.io/
https://docenti.unisa.it/003241/en/home
https://orcid.org/0000-0002-5491-0873
https://orcid.org/0000-0001-9337-5116
https://orcid.org/0000-0002-4238-1425
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


hybrid analysis [2, 3, 4]. More recently, machine learning and deep learning have been applied

to the task of finding vulnerabilities; in such cases, the activity is called vulnerability prediction.

Leveraging machine learning algorithms, any piece of software can be labelled as vulnerable
or neutral, whether it is affected by a known vulnerability or not (yet). Many vulnerability

prediction models (VPMs) have been defined in the literature [5, 6], each operating at different

granularity, i.e., revision- (or commit-) level, file- (or class-) level, or function- (or method-) level,

and leveraging different pieces of information, i.e., structural properties of the code, textual

features, or amount of modifications performed over time. The performance of such VPMs

seems promising, hinting at their expected large utility in software development life cycles.

However, Jimenez et al. [7] have recently alerted the research community working on VPMs,

warning about the importance of taking into account the degree of realism under which such

models are trained and evaluated. They warned that evaluations are often performed in in-vitro
settings which are not properly realistic, and lead to biased results, as they do not align with

the real-world scenarios in which VPMs are supposed to be employed.

The ideal usage of such models consists in leveraging vulnerability data collected through

the history of the project evolution to predict the flaws threatening the current version being

developed. Nevertheless, most VPMs have been evaluated in the literature via the well-known

cross-validation strategy, which allows a fair assessment of their performance, but splits data

into folds without considering the time relationships among them. Indeed, in every but one

round of cross-validation, data from the future is used to train the model, which is then tested

against data from the past; this does not resemble the actual usage scenario of VPMs, and makes

the evaluation unhelpful in practice.

Perhaps more concerning, evaluations of VPMs are performed under what Jimenez et al. called

the perfect labelling assumption [7], i.e., supposing that all vulnerabilities known from time t
onwards are available at all times, even before t. This practically translates into the fact that data

used for training and testing are labelled according to an oracle that is accessible to researchers

at evaluation time. However, in real-world scenarios, new vulnerabilities are discovered as

software systems evolve over time; therefore, it is not guaranteed that at any time every

vulnerability has already been discovered and localized in the affected code.

Recognizing the dangerousness of biased and unrealistic evaluations, Jimenez et al. [7]

exercised VPMs in real-world scenarios, and found that the performance of such models,

although seeming promising at first glance, drop significantly when evaluated in realistic

settings. This issue is a severe threat potentially invalidating all the effort spent by the research

community on the proposal and evaluation of VPMs, as they risk not being applicable in practice,

and therefore result useless.

Our goal is to dive deep into the problem, by investigating whether and to what extent VPMs’

performance changes when evaluated in realistic settings. To do this, we perform an empirical

study exercising a well-known vulnerability prediction model at three different degrees of

realism, to analyse whether it would be suitable in real-world scenarios. First, we operate

at zero realism, adopting the perfect labelling assumption, i.e., we run the experiments in a

flawless in-vitro setting. Afterwards, we take a small step toward proper realism, by applying a

release-based evaluation strategy, considering the time relationship between past and future

data, but still under the perfect labelling assumption, i.e., leveraging the knowledge of an oracle

that we, as researchers, can count on. Finally, we exercise the VPM performing a release-based



evaluation applying real-world labelling on training and testing data, to wear practitioners’ shoes

and leverage the only information that is available at training time to label data samples. We

leverage the model and dataset by Walden et al. [8] and follow the ideas and recommendations

of Jimenez et al. [7] to evaluate the performance of the well-known VPM based on twelve source

code metrics, configured with three data balancing techniques, using two software projects

written in PHP as datasets.

We find out that the performance of VPMs drop considerably when they are evaluated outside

the in-vitro context, highlighting the fact that the outcome of a measurement strictly depends

on the experiment setting. Therefore, we encourage researchers working on VPMs to take into

account the true applicability in practice of the proposed approaches, to make research efforts

more meaningful in the implementation context, and to enhance the cooperation between

academia and industry.

Structure of the paper. This paper is organized as follows. In Section 2, we introduce the

background concepts involved in our study, along with relevant literature on the matter. In

Section 3, we report the details of our study design following the Goal-Question-Metric (GQM)

template [9], and we discuss the analysis of the results in Section 4. We further elaborate on

our findings in Section 5, extracting meaningful take-away messages for the communities of

researchers and practitioners. We recognize the threats to the validity of our work in Section 6,

reporting the strategies we followed to mitigate them. Finally, in Section 7, we conclude the

paper drawing a summary of our investigation, and we make all the data, scripts, and results of

our study available in Appendix A.

2. Background and Related Work

Much work has been done by researchers to address the problem of detecting vulnerabilities

in software, adopting different approaches and techniques. Traditional methods such as static

analysis, dynamic analysis, and hybrid analysis are used, as well as machine learning techniques

for the vulnerability prediction task [5]. One of the first studies that investigated a machine

learning approach for vulnerability prediction was by Neuhaus et al. [10]; they designed a tool,

Vulture, which predicts vulnerabilities in C/C++ functions.

Most vulnerability prediction models proposed over the years operate at file-level granularity,

leveraging different pieces of information to feed the model [5]. Meneely and Williams [11, 12]

considered developer activity metrics as predictors of the presence of security vulnerabilities

in the source code of the Linux kernel, the PHP programming language and the Wireshark

network analyzer. They investigated the Linus’ Law defined by Raymond [13] about the number

of developers involved in the software project, and found that developer activity metrics can be

used as indicators of the vulnerability of the source code file. They extended such findings by

working with Shin [14] to investigate the usage of execution complexity metrics along with

code churn and developer metrics as indicators of software vulnerabilities. They conducted

their empirical studies on two open-source projects, i.e., Red Hat Linux and Mozilla Firefox

web browser, and found out that the leveraged metrics exhibited significant discriminative

power over the prediction of vulnerable files.

Zimmerman et al. [15] carried out an empirical study to further extend the feature set to be



employed for vulnerability prediction, by considering program complexity, code churn, test

coverage, dependency measures, and organizational structure of the company in the context of

Windows Vista. They observed that dependency metrics led to significantly high performance

in terms of recall values, complementing the weaknesses of other features computed on the

source code, such as complexity measures.

Walden et al. [8] proposed two models based on source code metrics and textual features,

respectively, and evaluated them by performing an empirical study on a vulnerability dataset

collected from three open-source PHP web applications i.e., PhpMyAdmin, Moodle, andDrupal,

containing 223 vulnerabilities. The latter VPM uses the Bag of Words approach, which the authors

applied in previous work along with Hovsepyan [16]. Walden et al. compared the performance

obtained from the two models evaluated with 3-fold cross-validation, and obtained encouraging

results. Kaya et al. [17] operated on the same dataset to evaluate the impact of choosing different

settings when building a model. They compared the performance obtained considering seven

classifiers and four data balancing techniques to deal with the imbalance of the dataset. They

employed Walden et al. models, using software metrics, text tokens, and a combination of the

two as predictors, and observed that data balancing methods are effective for highly unbalanced

datasets, and the Random Forest classifier is most performing on small datasets.

Song et al. [18] investigated the effect of biased learning and its interactions with data bias,

classifier type, and input metrics. They concluded that unbalanced learning should only be

considered for moderate or highly unbalanced data sets, and the indiscriminate application of

imbalanced learning can be detrimental. Wu et al. [19] analyzed the impact of the class imbalance

problem of security bug report prediction and confirmed its negative impact on prediction

performance; they performed a comparative study on six balancing methods combined with

five popular classification algorithms. Zhang et al. [20] experimented with the utilization

of the two predictors, i.e., source code metrics and textual features, jointly, proposing an

original approach called VULPREDICTOR. An additional multi-level solution was proposed

by Catal et al. [21], who deployed a vulnerability prediction web service on the Microsoft

Azure cloud computing platform. The service takes software metrics as predictors and, after

performing steps of data cleaning and preparation, it feeds data to a stratified neural network

for vulnerability prediction. Recent successes in natural language processing (NLP) techniques

have encouraged research into learning representation for source code, which relies on similar

NLP methods for identifying vulnerable code [22]. Since vulnerabilities are a specific case of

software defects, i.e., defects threatening the security of programs, defect prediction approaches

proposed in the literature over the years have been also applied to the task of predicting

software vulnerabilities [23], and encouraging results have been achieved [24, 25, 26, 27, 28, 29].

Additional solutions to the vulnerability prediction problem consisted of original approaches,

e.g., TROVON, proposed by Garg et al. [30]. They developed a prediction method using the

machine translation encoder/decoder framework that automatically learns the code latent

features linked to the vulnerabilities. They performed release-based experiments on the Linux

Kernel, Wireshark, and OpenSSL datasets with realistic training data settings.

Scandariato et al. [31] investigated whether and to what extent mobile applications developed

for the Android platform are affected by vulnerabilities, and how it would be possible to

predict which classes are compromised, by analyzing the application on the Android store

and developing a vulnerability prediction model, which exhibited high accuracy (over 0.8).



They focused their work on 20 Android applications and employed the Bag of Words method

based on text tokens. They also investigated release-based validation approaches in subsequent

research [32], using past data to train the model, and using future data to test it against. Also

Jimenez et al. [33], in a previous study on the Linux kernel dataset, applied a release-based
validation method, and found out that the performance drop when taking into account the time

relationships existing among data.

More recently, Jimenez et al. [7] highlighted a problem arising from the application of cross-

validation to evaluate vulnerability prediction models. They argued that researchers work

under the so-called perfect labelling assumption, i.e., they assume, unconsciously or indirectly,

that vulnerability data is always available. This is due to the fact that once a vulnerability is

known to affect a file, that file in the dataset is labelled as vulnerable from the time at which the

vulnerability was introduced in the source code onwards. In a real context, this is not feasible:

vulnerabilities are discovered or reported only after a certain period of time, that is subsequent

to the moment they have been introduced. Hence, when evaluating a prediction model, one

should use real-world labelling and consider training the model at a certain time t, using only

the data available at t, i.e., vulnerabilities that have already been discovered before t. Jimenez et
al. compared the performance output by vulnerability prediction models under the perfect

labelling assumption with the performance obtained when considering real-world labelling and

a release-based validation approach. They discovered that, when evaluated in a scenario that

is more similar to the real operating context, vulnerability prediction models do not perform

as well as one would wish. They showed significantly lower predictive effectiveness (mean

Matthews Correlation Coefficient values of 0.08, 0.22 and 0.10 were achieved for Linux, OpenSSL

and Wiresark, respectively) when models are trained only on vulnerability labels that could

realistically be available to the practitioners at the time of model building.

Following the path traced by Jimenez et al. [7], Sellitto et al. [34] recently analyzed the impact

of using a release-based validation approach on vulnerability prediction models. They confirmed

that taking into account the time relationship existing among data has a considerable impact

on the performance of VPMs leading to generally lower performance, highlighting that further

research would be needed to make vulnerability prediction models more effective.

Since vulnerabilities are a subset of software defects, the considerations risen by Jimenez et
al. [7] have been embraced also in the context of defect prediction. Bangash et al. [35] evaluated

five cross-project defect prediction approaches, and showed that data belonging to different

time periods generates varying results. They applied a time-aware evaluation approach, in

which models are trained only on the past data, and evaluations are executed only on the

subsequent data. In previous research, Huang et al. [36] and Yang et al. [25] used an approach

called time-wise cross-validation for defect prediction, considering the release order, but ignoring

different time periods, leveraging future data that would not be available at the time of training

the model. Tan et al. [37] argued that ignoring time leads to highly unrealistic performance

estimates in defect prediction scenarios, providing support to the findings observed in the

vulnerability prediction contexts.

Research Gap and Our Work. Existing literature has shown that vulnerability prediction

models exhibit encouraging performance when evaluated under the perfect labelling assumption.

However, little is known about their true applicability in real-world software development



scenarios [7]. We take a step to fill this gap by investigating one of the most well-known VPMs

in the literature, i.e., the model based on source code metrics proposed by Walden et al. [8].

We follow the recommendations of Jimenez et al. [7] to evaluate how the performance of the

model changes when evaluated in more realistic settings. We extend our previous work on the

matter [34] by experimenting with a release-based validation applying realistic labelling. We

contribute to the state-of-the-art by broadening the set of VPMs that have been exercised taking

into account the realistic availability of vulnerability data, augmenting the body of knowledge

on their true applicability in practice.

3. Study Design

Our goal is to investigate how vulnerability prediction models’ performance change when

evaluated in realistic settings, with the purpose of understanding the deviation of their expected

performance from their actual usefulness in real scenarios. The perspective is of both practitioners

and researchers; the former are interested in realising how the experimental settings influence

the observed results when evaluating an approach for vulnerability prediction, and the latter

are concerned about the true applicability of such approaches in their production. The context
of our study is given by the file-level vulnerability prediction models and dataset by Walden et
al. [8]. The VPM that we use is based on source code metrics; the dataset we leverage contains

a total of 126 vulnerabilities affecting multiple versions of two open-source web applications

written in PHP, i.e., PHPMyAdmin, and Moodle.

First, we are interested in assessing the performance of VPMs in the perfect scenario, i.e., at

zero degree of realism. In this way, we lay down the baseline needed for the comparison, as the

main goal of our empirical study is to look into the difference in the observed performance in

different evaluation settings. Thus, we ask:

ÛRQ1. What is the performance of vulnerability prediction models evaluated via cross-validation
under the perfect-labelling assumption?

To take a step toward realism, a release-based validation approach can be considered, in

which data from previous releases of software is used to train the model, and data from the

next release is used to test the model against to. Such a validation method takes into account

the low degree of realism provided by cross-validation, and overcomes it by considering the

relationship between past and present data. This approach is more similar to what developers

would do in real scenarios, i.e., they would leverage information coming from the history of the

project to understand the possible threats to the current version being developed. We want to

assess whether and how such validation strategy leads to significantly different performance

than the perfect scenario; therefore, we ask:

Û RQ2. What is the performance of vulnerability prediction models evaluated via release-based
validation under the perfect-labelling assumption?

As suggested by Jimenez et al. [7], a fully-realistic evaluation approach must take into account

the availability of vulnerability data release by release, tailoring the labelling of the training and



test set accordingly. As vulnerabilities are discovered over time, instances must be labelled as

vulnerable or neutral based on the time the evaluation is set; e.g., an evaluation round considering

the first, second, and third release of a software as training set and the fourth release as the test

set, must not label as vulnerable those instances whose vulnerabilities have been discovered

after the fourth release. Such a validation strategy resembles a realistic scenario, in which no

information on the vulnerabilities that will be discovered in the future would be available yet.

We want to assess the performance of VPMs in the fully realistic setting, thus, we ask:

Û RQ3. What is the performance of vulnerability prediction models evaluated via release-based
validation with real-world labelling?

By answering our three research questions, we aim at understanding whether the performance

of VPMs that have been demonstrated in the literature are confined to in-vitro settings, or they

can be effectively leveraged in real software development scenarios. In adherence to open science

principles, we make all the data, scripts, and results of our study available in Appendix A.

3.1. Context

The context of our empirical study is given by the PHP vulnerability dataset proposed by

Walden et al. [38], which contains vulnerability data mined from three popular open-source

PHP applications, i.e., PHPMyAdmin, Moodle and Drupal. The dataset was published along

with two file-level vulnerability prediction models [8], one based on source code metrics, and

one based on text tokens. For our research purposes, we leverage a selection of such dataset

and models, namely, we do not consider the model based on text tokens and the Drupal project

in our experiments, as we are not able to access time-related information that is necessary to

answer to our research questions.

We perform our work on the model based on source code metrics, using the dataset consisting

of 95 releases of PHPMyAdmin and 71 releases of Moodle, reported to be affected by 75 and

51 vulnerabilities, respectively, described in detail in Table 1. The dataset provides a tracking

matrix that keeps a record of which files were affected by each vulnerability, at the time of each

considered release. Some vulnerabilities migrated among versions, as time passed from their

introduction in the code to their discovery and fix.

The model based on source code metrics [8] is built using twelve file-level features extracted

from each file belonging to each considered release of the two software projects; the set of

metrics is reported in Table 2. Each file of the software system under analysis is labelled as

vulnerable if it contains at least one vulnerability, or as neutral if it is known to contain no

vulnerabilities at the moment. It is worth pointing out that files are never labelled as non-
vulnerable, since we cannot be sure that they do not contain any vulnerabilities at all. Indeed,

they could contain vulnerabilities that have not been discovered yet.

3.2. Experimental Settings

To answer our research questions, we perform experiments in three different settings.

First, to answer RQ1, we operate at zero degree of realism, arranging a purely in-vitro
experimental setting. We evaluate the vulnerability prediction model via cross-validation under



Vulnerability Type Description
Number of Samples

PHPMyAdmin Moodle

Code Injection Allow attackers to modify server-side vari-
ables or HTTP headers, or execute code on
the server.

10 7

CSRF Induce the authorized user to perform un-
intended actions the attacker wants.

1 3

XSS Allow malicious Javascript code to be exe-
cuted in the browser of the user.

45 9

Path Disclosure Allow malicious exploiters to obtain the
installation path of the application; this in-
formation can be useful to perform a sub-
sequent attack.

12 2

Authorization Issues General violations of the CIA triad, i.e., con-
fidentiality, integrity, or availability.

6 28

Other No better-specified vulnerability. 1 2

75 51
Total 126

Table 1
Distribution of vulnerability types in the leveraged dataset [8].

the perfect-labelling assumption. Following the original work by Walden et al. [8], we perform

three-fold cross-validation, which consists in dividing the dataset into three equally-large

segments, i.e., folds, and running three rounds of evaluation. In each round, data belonging

to two folds are used to train the model, and data from the remaining fold are used to test

the model; this approach ensures that the VPM is tested against each sample in the dataset

once, and the overall performance is computed as the average results of the three rounds. The

perfect-labelling assumption consists in using the complete dataset provided with the labels

assigned to the samples at the time it was built. Time relationships existing among data are not

considered in this first experimental setting, in which we operate similarly to most previous

work in the field of vulnerability prediction [7].

To answer RQ2, we take a step toward realism, considering the time relationships existing

among data. Rather than cross-validation, we apply a release-based validation strategy, following

prior work by Shin et al. [14, 23]. In such a strategy, the validation is performed in rounds and

is based on software releases. In each round, data belonging to a single release 𝑅𝑖 is used as the

test set, and data from the three immediately prior releases 𝑅𝑖−3, 𝑅𝑖−2, and 𝑅𝑖−1 is leveraged

as the training set. Thus, we start by using 𝑅1, 𝑅2, and 𝑅3 for training and 𝑅4 for testing,

and we proceed as depicted in Figure 1, resulting in the execution of several experiments per

dataset, depending on the number of releases, i.e., 95 for PHPMyAdmin, and 71 for Moodle. In

this experimental setting, we still label data leveraging the available knowledge at the time the

dataset was collected. In this way, we impersonate researchers who are concerned about the

time relationships among data, still operating in an in-vitro setting.

Finally, to answer RQ3, we wear the shoes of practitioners to operate in a more realistic



Metric Description

Lines of Code The number of lines in a source file where PHP tokens occur. Lines
not containing PHP tokens, such as blank lines and comments, are
excluded from the count.

Lines of Code (non-
HTML)

Lines of code, except HTML content embedded in PHP files, i.e., con-
tent outside of PHP start and end tags, is not considered.

Number of Functions The number of function and method definitions in a file.
Cyclomatic Complexity The size of a control flow graph after linear chains of nodes are

collapsed into one.
Maximum Nesting
Complexity

The maximum depth to which loops and control structures in the
file are nested.

Halstead’s Volume Estimated as the file’s vocabulary size multiplied by the logarithm
of the file length. The vocabulary size is given by the sum of the
number of unique operators and unique operands. Operators are
method names and PHP language operators, operands are parame-
ter and variable names. The file length is given by the sum of the
total number of operators and operands.

Total External Calls The number of times a statement in the file invokes a function or
method defined in a different file.

Fan-in The number of other files that contain statements that invoke a
function or method defined in the file being measured.

Fan-out The number of other files that contain functions or methods invoked
by statements of the file being measured.

Internal Functions or
Methods Called

The number of functions or methods defined in the file that are
called at least once by a statement of the same file.

External Functions or
Methods Called

The number of functions or methods defined in other files which
are called at least once by a statement in the file being measured.

External Calls to Func-
tions or Methods

The number of files that contains statements calling a particular
function or method defined in the file being measured, summed
across all functions and methods of the file being measured.

Table 2
Source code metrics used as features of the vulnerability prediction model [8].

scenario. Developers willing to employ VPMs in software production can only rely on partial

knowledge, consisting uniquely of the information available at the time the model is trained.

In particular, the labelling of the samples both in the training and testing set is subject to the

time of discovery of vulnerabilities; files can only be labelled as vulnerable if a vulnerability

has already been discovered at the labelling time, that is, model training time. This rationale

leads to the definition of the real-world labelling approach [7], that we employ in the third

experimental setting, together with the release-based evaluation strategy. In each round of the

release-based validation, we build an ad-hoc dataset, making sure that only data available at

training time is leveraged. In particular, for each release 𝑅𝑖 picked as a test set, we get the

release date 𝐷𝑅𝑖 ; since the software was ready to be published at that time, we can assume that

a VPM could be run on that date on the version about to be released; therefore, we consider 𝐷𝑅𝑖

as the training time. We then label the data in both the training and test set according to the



Figure 1: The release-based validation approach [23, 14].

information available at time 𝐷𝑅𝑖 . Namely, we label samples as vulnerable if and only if they

are affected by a vulnerability whose publication time is prior to 𝐷𝑅𝑖 ; to get this information,

we leverage the CVE-search service. This third experimental setting further resembles the

real-world scenario VPMs would be employed, and provides us with a less biased evaluation of

their actual performance.

In all three experimental settings, we follow the original work by Walden et al. [8] using the

Random Forest machine learning algorithm. We perform within-project evaluation, i.e., training

and testing data are obtained from the same project dataset. Recognizing that the dataset

size can impact the performance of the VPM [39], we experiment with three data balancing

techniques, as formerly done by Jimenez et al. [7]. Namely, we first use the dataset as-is, without

any manipulation; then, we apply random undersampling, by which the samples in the majority

class, i.e., neutral files, are removed to match the minority class, i.e., vulnerable files. Finally, we

perform oversampling by employing the Synthetic Minority Over-sampling TEchnique (SMOTE)
proposed by Chawla et al. [40], which consists in augmenting the number of samples in the

minority class to match the size of the majority class, adding synthetic samples having similar

features as the actual instances in the minority class.

Table 3 reports a summary of the experiments we run to answer our research questions.

3.3. Performance Evaluation

To evaluate the performance of the VPM, we rely on the confusion matrix, which summarizes

the predictions made by the model. The number of True Positives (TP) is the count of source

code files predicted to be vulnerable that are actually vulnerable; True Negatives (TN) are those

files that were predicted to be neutral and are indeed neutral. False Positives (FP) indicate the

number of files that the model labelled as vulnerable, but are actually neutral; False Negatives

(FN) are those files predicted to be neutral, but that contain vulnerabilities. We take the following

measures as indicators of the model’s performance:

• Precision. Indicates the percentage of actual vulnerable files among the ones predicted to



Evaluation Method Dataset Balancing technique Number of ex-
periments

Cross-validation

PHPMyAdmin
none 1
undersampling 1
oversampling 1

Moodle
none 1
undersampling 1
oversampling 1

Release-based
with perfect
labelling

PHPMyAdmin
none 91
undersampling 91
oversampling 91

Moodle
none 67
undersampling 67
oversampling 67

Release-based
with real-world
labelling

PHPMyAdmin
none 91
undersampling 91
oversampling 91

Moodle
none 67
undersampling 67
oversampling 67

Total number of experiments 954

Table 3
Summary of the experiments executions.

be vulnerable and is given by the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP

An high precision means that the model is often right when it classifies a file as vulnerable.

The literature suggests [7, 10, 23, 39] that a value over 0.7 is reasonable.

• Recall. It is the percentage of files correctly labelled as vulnerable among all the actually

vulnerable ones and indicates the ability of the model to recognize the vulnerable class.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Accuracy. It is given by the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• Inspection rate. It is the percentage of files labelled as vulnerable by the model and that

therefore need to be inspected by developers to correct vulnerabilities. As defined by

Walden et al. [8]:

𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁



• F1-score. It is the harmonic mean of precision and recall:

𝐹1− 𝑠𝑐𝑜𝑟𝑒 = 2 · 𝑅𝑒𝑐𝑎𝑙𝑙 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

• Matthews Correlation Coefficient. It is defined as a balanced measure of a classifier’s overall

performance:

𝑀𝐶𝐶 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)

4. Analysis of the Results

In the following, we report the main findings of our work, providing answers to the research

questions driving our empirical study. In adherence to the principles of open science, we make

all the data, scripts, and results of our study available in Appendix A.

4.1. RQ1: Cross-validation

Our first research question pushed us to perform a replication of the original work by Walden et
al. [8] to assess the performance of vulnerability prediction models in an in-vitro setting, i.e., by

executing cross-validation without taking into account the time relationships existing among

data. Table 4 reports the performance of the considered VPM on the two datasets, manipulated

with the three balancing strategies.

As expected, the results are encouraging, and consistent with the ones reported in the original

work by Walden et al. [8]; namely, they experimented with the undersampled datasets. We

observe that despite the dataset based on Moodle includes fewer samples of vulnerable files, the

performance of the VPM on it are comparable with the ones obtained on PHPMyAdmin. In fact,

0.7% of instances in the Moodle dataset are labelled as vulnerable in the cross-validation setting,

against 5.9% in the PHPMyAdmin dataset. This observation ignites the interest in knowing the

minimum percentage of vulnerable files in a dataset needed to guarantee acceptable performance

of VPMs; we aim at investigating this aspect in future work.

4.2. RQ2: Release-based validation with perfect labelling

Our second research question was aimed at understanding the performance of VPMs in a

partially-realistic setting, i.e., when evaluated with a release-based approach. Figures 2 and 3

provides an overview of the performance of the model in such a setting, in which the perfect

labelling assumption still holds.

When considering the dataset as-is, the performance obtained with the release-based validation

method is quite good, even better than in the cross-validation scenario. We conjecture that this

is due to the high imbalance of the datasets and the different sizes of the considered training

and test sets. In fact, the highly unbalanced datasets contain a limited number of samples of

vulnerable files, and plenty of samples of neutral ones. Hence, it is “easy” for the model to

recognize neutral instances; this leads to a high number of True Negatives and a low number of



Dataset Balancing
technique

Precision Recall Accuracy Inspection
Rate

F1-
score

MCC

PhpMyAdmin
none 0.98 0.78 0.99 0.05 0.84 0.85
undersampling 0.97 0.82 0.89 0.42 0.89 0.81
oversampling 0.99 0.99 0.99 0.56 0.98 0.98

Moodle
none 0.99 0.62 0.99 0.01 0.78 0.79
undersampling 0.91 0.91 0.91 0.57 0.91 0.81
oversampling 0.99 0.99 0.99 0.55 0.99 0.99

Table 4
Performance in the cross-validation setting, in terms of precision, recall, accuracy, inspection rate,
f1-score and Matthew’s Correlation Coefficient.

False Negatives. The scarce presence of vulnerable samples in the datasets leads to low amounts

of positive predictions in general. This has an impact on the computation of the performance

indicators, e.g., leading to high precision, recall and accuracy; therefore, the resulting overall

performance seems quite promising. Nevertheless, we hypothesize that this is also due to the

size of the training and test sets used to perform cross-validation and release-based validation,

respectively. When applying cross-validation, the whole dataset is split into three folds, of

which two are used for training, and the other one for testing. Therefore, the training-test data

ratio is 2:1, and the size of the test set is similar to about 30 releases of PHPMyAdmin and about

25 releases of Moodle. In the release-based validation approach, three releases are used for

training and one is used for testing, thus the training-test data size ratio is 3:1, and the size

of the test set is much lower. Given such observations, we conjecture that there are “fewer

chances” for the model to make mistakes in the release-based validation setting, therefore the

performance resulting from this evaluation method is quite better. However, we understand

that the high imbalance of the dataset can affect all the performance measures in a substantial

way, possibly invalidating our arguments.

When considering the undersampled datasets, we observe a considerable change in the

performance; the release-based evaluation method leads to largely different performance, and

we suppose that the cause has to be researched in the size of the training set. As explained

before, in each round of the release-based validation, data belonging to three releases of the

software are used to train the model, and we stress that the presence of vulnerable samples is

rare. When applying undersampling, the number of neutral samples is reduced to match the

number of vulnerable ones. Hence, the model ends up with low amounts of data to train, and

cannot properly learn how to discriminate among the classes. This causes a severe decline in

the performance. As the literature suggests that a precision value around 0.7 is reasonable [7,

10, 23, 39], such a model could not be employed in a real-case scenario, as the observed values

for release-based validation vary between 0.2 and 0.4.

To generate the oversampled dataset, we followed Jimenez et al. [7] by using SMOTE to

augment the number of vulnerable samples, i.e., the minority class of the datasets. In general,

the performance in such a scenario is better, as the model has “more opportunity” to learn in

the training phase, since the dataset is larger and balanced. Still, the cross-validation setting



leads to better indicators, since the whole dataset is used; in the release-based validation only

the data relative to three releases of the application is included in the training set.

Figure 2: Performance in the release-based validation setting with perfect labelling, in terms
of Matthew’s Correlation Coefficient, precision, and recall.

Figure 3: Performance in the release-based validation setting with perfect labelling, in terms
of accuracy, inspection rate, and F-1 score.

4.3. RQ3: Release-based validation with real-world labelling

Our third research question drove us to explore the practical applicability of vulnerability

prediction models, evaluating them by employing a release-based approach and applying real-

world labelling, i.e., taking into account time relationships among data, we only leveraged the

knowledge existing at training time to label the samples in the training and test set. Figures 4

and 5 show the performance of the VPM measured in the third experimental setting. The results

reported in the box-and-whiskers plots are much more dispersed than what we observed in

the context of RQ2 and RQ3, hinting at the fact that data which is not accurately crafted and is

labelled with partial knowledge leads to oscillating performance.

In general, the performance are poorer than the ones observed in the other two evaluation

scenarios. In particular, in a non-negligible number of cases, the model provides inadequate

predictions. We conjecture that the degree of realism under which the evaluation is performed

leads to lower performance. In fact, as vulnerabilities are discovered over time, it is not usual

that security flaws are reported in the time span of a new software release, but much more

time passes from the distribution of a product to the disclosure of a defect threatening it.



Therefore, the number of samples that are labelled as vulnerable according to the real-world

labelling strategy is quite low with respect to the perfect labelling approach. This generates

poor performance, as the model is not able to learn from small sets of samples. Surprisingly

enough, the performance seem to get slightly better on undersampled datasets. We conjecture

that this phenomenon is due to the model having “fewer chances” to make mistakes, as the

number of instances to predict is lower. Still, negative MCC values are exhibited in the setting

leveraging undersampled datasets; therefore, the model completely misunderstands the samples

in many cases, predicting the opposite label.

Answering to RQ3, we report that VPMs perform poorly when evaluated in a scenario which

is similar to the actual context practitioners are supposed to employ them.

Figure 4: Performance in the release-based validation setting with real-world labelling, in
terms of Matthew’s Correlation Coefficient, precision, and recall.

Figure 5: Performance in the release-based validation setting with real-world labelling, in
terms of accuracy, inspection rate, and F-1 score.

5. Further Discussion and Take-Away Messages

To analyze the results of our empirical study, we observed the data coming from the executed

experiments, deeply reasoning on the motivations behind the outcomes of the measurements.

Such investigations led us to ignite further discussion points and distil a number of take-away

messages that we believe can be relevant for the communities of researchers and practitioners.

Our first matter of disquisition arises from our deep investigation of the motivations behind

the observed results, and from the work by Jimenez et al. [7] that called us to perform our



study. They examined the existing literature, and questioned the realistic usefulness of what

was available in the landscape. We believe that all researchers are called to work similarly,

not stopping at what the literature already provides, but always stimulating further reasoning,

debating what is on the table, formulating new questions, and deeply studying the observed

phenomena. This will make research continuously evolve, ultimately bearing fruit to the

community of practitioners, and confirming the relevance of what we do.

s Take-away Message 1. Researchers should always push the advancement, not only by

proposing novel work, but also by questioning, extending, and assessing the existing literature,

in order to highlight potential weaknesses, understand, and overcome them.

Our study highlighted that the performance observed in in-vitro settings do not always

resemble the true suitability of VPMs in realistic scenarios. We believe that practitioners should

carefully select the proper approach to employ in their own software development process,

according to their goals, context, and special needs. This raises the need for practitioners to

leverage a tailored VPM, selected based on its complete set of characteristics.

s Take-away Message 2. There is the need for practitioners to be aware of the applicability

and suitability of existing approaches in their own real software development processes.

6. Threats to Validity

In this section, we identify factors that may threaten the validity of our study, and present the

actions we have taken to mitigate the risk, following the guidelines by Wohlin et al. [41].

External Validity. Threats to external validity are related to whether the observed experimental

results can be generalized to other projects. For our experiments, we leveraged the dataset by

Walden et al. [8] consisting in two popular open-source software projects written in PHP. We

did not consider any other projects developed in other programming languages, such as C, C++,

Python, Java, or any other kinds of software, such as desktop or mobile applications. Hence,

we cannot claim that our results can be generalized to all software systems, as the projects

under study may not be representative of software systems in general. Similarly, we cannot

claim that our results can be generalized to a large set of vulnerability prediction models, since

we experimented with a single one. To overcome this, extensive data coming from several

projects written in different programming languages could be used for future experiments with

additional kinds of models.

Internal Validity. Threats to internal validity are mainly concerned with the uncontrolled

internal factors that might have influenced the experimental results. For the implementation

of our experiments, we used third-party Python libraries, i.e., scikit-learn, and R, to avoid

potential errors of a custom implementation of machine learning algorithms. We have made

available the complete scripts and results; this allows the community to replicate our work and

assess the validity of our findings.

Construct Validity. The construct validity relates to the suitability of the datasets and evalua-

tion measures. It might be the case that the datasets used do not report all the security flaws



affecting the samples; this is understandable, as vulnerabilities are discovered over time, and

software could be affected by threats that no one is yet aware of. For our experiments, we chose

the well-known dataset by Walden et al. [8], that has been widely used and validated in the

literature; therefore, we are confident that the data it provides is reliable. To create the ad-hoc

datasets leveraged in the realistic setting, we leveraged the trustworthy information provided

by the National Vulnerability Dataset and the Common Vulnerabilities and Exposures, which

report detailed data describing the disclosed security flaws. To evaluate the performance of the

VPM, we measured a set of largely used metrics that have been proposed and validated in the

literature as good indicators of models’ outcomes [5].

Conclusion Validity. Threats to conclusion validity impact the possibility to draw reliable

conclusions. Comparing the performance of the VPM among the three evaluation settings is a

non-trivial task, as the experiments are variegated. In our analyses, we conjectured a number

of conclusions that might be supported by further research on the matter.

7. Conclusion

In this paper, we reacted to the alert raised by Jimenez et al. [7], who warned the research

community working on vulnerability prediction models. They pointed out the importance of

accounting for proper realism when evaluating VPMs to be used in the practice.

We performed an empirical study involving a well-known VPM [8] evaluated on two datasets

manipulated with three data balancing techniques, executed at three different degrees of realism.

First, we used cross-validation to evaluate the performance of the model, operating at zero
realism. Afterwards, we exercised the model taking into account the time relationships existing

among data, i.e., applying a release-based evaluation approach [14, 23]. Finally, we operated

in the fully-time-aware scenario by building a number of ad-hoc datasets only leveraging the

vulnerability data that would be available at training time in practice. We found out that the

performance of VPMs drop drastically when evaluated in a more realistic scenario, hinting that

further research is needed to improve such models and make them useful for practitioners.

As a future part of our agenda, we want to extend our experiments by considering larger

datasets to assess the reported findings. Furthermore, we plan to understand if and to what

extent the training set size and the concentration of known vulnerabilities have an impact on

the applicability of VPMs in practice. In particular, we expect that leveraging data collected

throughout the whole history of a software project would be even more similar to what happens

in real development scenarios, and perhaps beneficial for the performance. Finally, we want to

investigate the employment of deep learning models to enhance the performance in the realistic

scenario.

Acknowledgments

This work has been partially supported by (1) the EMELIOT national research project, which has

been funded by the MUR under the PRIN 2020 program (Contract 2020W3A5FY), and (2) project

SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU.



References

[1] M. Dowd, J. McDonald, J. Schuh, The art of software security assessment: Identifying and

preventing software vulnerabilities, Pearson Education, 2006.

[2] B. Liu, L. Shi, Z. Cai, M. Li, Software vulnerability discovery techniques: A survey, in: 2012

Fourth International Conference on Multimedia Information Networking and Security,

2012, pp. 152–156. doi:10.1109/MINES.2012.202.

[3] M. Pistoia, S. Chandra, S. J. Fink, E. Yahav, A survey of static analysis methods for

identifying security vulnerabilities in software systems, IBM Systems Journal 46 (2007)

265–288. doi:10.1147/sj.462.0265.

[4] O. Zaazaa, H. El Bakkali, Dynamic vulnerability detection approaches and tools: State

of the art, in: 2020 Fourth International Conference On Intelligent Computing in Data

Sciences (ICDS), 2020, pp. 1–6. doi:10.1109/ICDS50568.2020.9268686.

[5] S. M. Ghaffarian, H. R. Shahriari, Software vulnerability analysis and discovery using

machine-learning and data-mining techniques: A survey, ACM Computing Surveys (CSUR)

50 (2017) 1–36.

[6] G. Lin, S. Wen, Q.-L. Han, J. Zhang, Y. Xiang, Software vulnerability detection using deep

neural networks: A survey, Proceedings of the IEEE 108 (2020) 1825–1848. doi:10.1109/
JPROC.2020.2993293.

[7] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, M. Harman, The im-

portance of accounting for real-world labelling when predicting software vulnerabilities,

in: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2019, Association for Computing Machinery, New York, NY, USA, 2019, p. 695–705. URL:

https://doi.org/10.1145/3338906.3338941. doi:10.1145/3338906.3338941.

[8] J. Walden, J. Stuckman, R. Scandariato, Predicting vulnerable components: Software

metrics vs text mining, in: 2014 IEEE 25th International Symposium on Software Reliability

Engineering, 2014, pp. 23–33. doi:10.1109/ISSRE.2014.32.

[9] V. R. V. R. Basili, G. Caldiera, H. D. Rombach, The goal question metric approach, Encyclo-

pedia of Software Engineering (1994).

[10] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller, Predicting vulnerable software compo-

nents, in: Proceedings of the 14th ACM conference on Computer and communications

security, 2007, pp. 529–540.

[11] A. Meneely, L. Williams, Secure open source collaboration: an empirical study of linus’

law, in: Proceedings of the 16th ACM conference on Computer and communications

security, 2009, pp. 453–462.

[12] A. Meneely, L. Williams, Strengthening the empirical analysis of the relationship between

linus’ law and software security, in: Proceedings of the 2010 ACM-IEEE international

symposium on empirical software engineering and measurement, 2010, pp. 1–10.

[13] E. Raymond, The cathedral and the bazaar, Knowledge, Technology & Policy 12 (1999)

23–49.

[14] Y. Shin, A. Meneely, L. Williams, J. A. Osborne, Evaluating complexity, code churn, and

developer activity metrics as indicators of software vulnerabilities, IEEE transactions on

software engineering 37 (2010) 772–787.

http://dx.doi.org/10.1109/MINES.2012.202
http://dx.doi.org/10.1147/sj.462.0265
http://dx.doi.org/10.1109/ICDS50568.2020.9268686
http://dx.doi.org/10.1109/JPROC.2020.2993293
http://dx.doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1145/3338906.3338941
http://dx.doi.org/10.1145/3338906.3338941
http://dx.doi.org/10.1109/ISSRE.2014.32


[15] T. Zimmermann, N. Nagappan, L. Williams, Searching for a needle in a haystack: Predicting

security vulnerabilities for windows vista, in: 2010 Third international conference on

software testing, verification and validation, IEEE, 2010, pp. 421–428.

[16] A. Hovsepyan, R. Scandariato, W. Joosen, J. Walden, Software vulnerability prediction

using text analysis techniques, in: Proceedings of the 4th international workshop on

Security measurements and metrics, 2012, pp. 7–10.

[17] A. Kaya, A. S. Keceli, C. Catal, B. Tekinerdogan, The impact of feature types, classifiers,

and data balancing techniques on software vulnerability prediction models, Journal of

Software: Evolution and Process 31 (2019) e2164.

[18] Q. Song, Y. Guo, M. Shepperd, A comprehensive investigation of the role of imbalanced

learning for software defect prediction, IEEE Transactions on Software Engineering 45

(2018) 1253–1269.

[19] X. Wu, W. Zheng, X. Xia, D. Lo, Data quality matters: A case study on data label correctness

for security bug report prediction, IEEE Transactions on Software Engineering 48 (2021)

2541–2556.

[20] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, S. Li, Combining software metrics and text features

for vulnerable file prediction, in: 2015 20th International Conference on Engineering of

Complex Computer Systems (ICECCS), IEEE, 2015, pp. 40–49.

[21] C. Catal, A. Akbulut, E. Ekenoglu, M. Alemdaroglu, Development of a software vulnerability

prediction web service based on artificial neural networks, in: Trends and Applications in

Knowledge Discovery and Data Mining, 2017, pp. 59 – 67. URL: https://link.springer.com/

chapter/10.1007/978-3-319-67274-8_6.

[22] P. Keller, A. K. Kaboré, L. Plein, J. Klein, Y. Le Traon, T. F. Bissyandé, What you see is what

it means! semantic representation learning of code based on visualization and transfer

learning, ACM Transactions on Software Engineering and Methodology (TOSEM) 31

(2021) 1–34.

[23] Y. Shin, L. Williams, Can traditional fault prediction models be used for vulnerability

prediction?, Empirical Software Engineering 18 (2013) 25–59.

[24] F. Zhang, Q. Zheng, Y. Zou, A. E. Hassan, Cross-project defect prediction using a

connectivity-based unsupervised classifier, in: Proceedings of the 38th International

Conference on Software Engineering, 2016, pp. 309–320.

[25] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, H. Leung, Effort-aware just-in-time

defect prediction: simple unsupervised models could be better than supervised models, in:

Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of

software engineering, 2016, pp. 157–168.

[26] J. Liu, Y. Zhou, Y. Yang, H. Lu, B. Xu, Code churn: A neglected metric in effort-aware

just-in-time defect prediction, in: 2017 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), IEEE, 2017, pp. 11–19.

[27] M. Yan, Y. Fang, D. Lo, X. Xia, X. Zhang, File-level defect prediction: Unsupervised vs.

supervised models, in: 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), IEEE, 2017, pp. 344–353.

[28] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, Z. Wang, Large-scale empirical studies on

effort-aware security vulnerability prediction methods, IEEE Transactions on Reliability

69 (2019) 70–87.

https://link.springer.com/chapter/10.1007/978-3-319-67274-8_6
https://link.springer.com/chapter/10.1007/978-3-319-67274-8_6


[29] N. Li, M. Shepperd, Y. Guo, A systematic review of unsupervised learning techniques for

software defect prediction, Information and Software Technology 122 (2020) 106287.

[30] A. Garg, R. G. Degiovanni, M. Jimenez, M. Cordy, M. Papadakis, Y. Le Traon, Learning to

predict vulnerabilities from vulnerability-fixes: A machine translation approach (2020).

[31] R. Scandariato, J. Walden, Predicting vulnerable classes in an android application, in:

Proceedings of the 4th international workshop on Security measurements and metrics,

2012, pp. 11–16.

[32] R. Scandariato, J. Walden, A. Hovsepyan, W. Joosen, Predicting vulnerable software

components via text mining, IEEE Transactions on Software Engineering 40 (2014) 993–

1006.

[33] M. Jimenez, M. Papadakis, Y. Le Traon, Vulnerability prediction models: A case study on

the linux kernel, in: 2016 IEEE 16th International Working Conference on Source Code

Analysis and Manipulation (SCAM), IEEE, 2016, pp. 1–10.

[34] G. Sellitto, F. Ferrucci, The impact of release-based training on software vulnerability

prediction models, in: 8th ACM Celebration of Women in Computing (womENcourage),

2021.

[35] A. A. Bangash, H. Sahar, A. Hindle, K. Ali, On the time-based conclusion stability of cross-

project defect prediction models, Empirical Software Engineering 25 (2020) 5047–5083.

[36] Q. Huang, X. Xia, D. Lo, Supervised vs unsupervised models: A holistic look at effort-

aware just-in-time defect prediction, in: 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), IEEE, 2017, pp. 159–170.

[37] M. Tan, L. Tan, S. Dara, C. Mayeux, Online defect prediction for imbalanced data, in: 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2, IEEE,

2015, pp. 99–108.

[38] J. Walden, J. Stuckman, R. Scandariato, Php security vulnerability dataset, in: 2014, 2014,

pp. 23–33. URL: https://seam.cs.umd.edu/webvuldata/.

[39] P. Morrison, K. Herzig, B. Murphy, L. Williams, Challenges with applying vulnerability

prediction models, in: Proceedings of the 2015 Symposium and Bootcamp on the Science

of Security, HotSoS ’15, Association for Computing Machinery, New York, NY, USA, 2015.

URL: https://doi.org/10.1145/2746194.2746198. doi:10.1145/2746194.2746198.

[40] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: Synthetic minority

over-sampling technique, Journal of Artificial Intelligence Research 16 (2002) 321–357.

URL: http://dx.doi.org/10.1613/jair.953. doi:10.1613/jair.953.

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation

in software engineering, Springer Science & Business Media, 2012.

A. Replication Package

With the aim of adhering to the best practices of open science and reproducible research,

we make available the complete data we leveraged in our work, along with the scripts we

implemented to perform our analyses, and the comprehensive set of generated graphs and plots

to visualize the results. The full replication package is available online: https://doi.org/10.6084/

m9.figshare.23574135

https://seam.cs.umd.edu/webvuldata/
https://doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
https://doi.org/10.6084/m9.figshare.23574135
https://doi.org/10.6084/m9.figshare.23574135

	1 Introduction
	2 Background and Related Work
	3 Study Design
	3.1 Context
	3.2 Experimental Settings
	3.3 Performance Evaluation

	4 Analysis of the Results
	4.1 RQ1: Cross-validation
	4.2 RQ2: Release-based validation with perfect labelling
	4.3 RQ3: Release-based validation with real-world labelling

	5 Further Discussion and Take-Away Messages
	6 Threats to Validity
	7 Conclusion
	A Replication Package

