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Abstract
In software evolution, some types of changes to the codebase (e.g.: a local variable renaming refactoring)
are less likely to introduce faults than others (e.g.: changes involving control flow statements). Effectively
estimating the fault-proneness of codebase changes can provide a number of advantages in the software
process. For example, expensive and time-consuming regression testing, code review, or fault localization
activities could be driven by fault-proneness, prioritizing the most critical changes to detect issues more
rapidly. A number of works in the literature have focused on predicting the fault-proneness of software
systems. Less work, however, has focused on the fault-proneness of evolutionary changes to a codebase,
and existing approaches typically require project-specific historical data to be used effectively.

This paper presents a set of AI-based metrics designed to estimate the fault-proneness of source code
changes. The proposed metrics are based on Tree Kernel functions and Transformer models, that have
been largely and effectively used in the Natural Language Processing domain. Moreover, the proposed
metrics can be used on any software project, and do not require fine-tuning with project-specific historical
data. The effectiveness of the proposed metrics is assessed by applying them to a dataset of real-world
source code evolution scenarios, and by comparing them against fault-proneness scores provided by a
Software Engineering practitioner.

Results are promising and show that the proposed metrics are strongly correlated with human-defined
fault-proneness scores, and could thus be used as a good proxy of costly human evaluations. The results
also motivate further research on the application of these metrics to concrete scenarios such as regression
testing.
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1. Introduction

Software evolution is an integral part of the software development lifecycle, encompassing the
continuous process of maintaining software systems to meet changing requirements, fix bugs,
and improve design and performance [1, 2]. During the evolution process, not all code changes
are equal in terms of their impact on fault-proneness. Some changes, such as, for example,
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local variable renaming refactorings, are less likely to introduce faults, whereas more complex
alterations involving control flow statements are more likely to introduce faults, thereby posing
a higher potential risk to the overall stability and reliability of the system [3].
Effectively estimating the fault-proneness of codebase changes can significantly improve

software development practices. By identifying the changes that are most likely to introduce
faults, it is indeed possible to allocate limited resources more effectively, focusing testing and
inspection efforts on the parts of the software that are more critically affected by changes [4].
Similarly, fault localization efforts could be directed towards the most critical areas, resulting in
earlier localization (and thus fixing) of issues [5].
While a number of studies in the literature have explored the prediction of fault-proneness

in software systems [6, 7], fewer works have investigated the fault-proneness of evolutionary
changes to a codebase. Existing approaches often rely on project-specific historical data to
construct prediction models, limiting their applicability to specific contexts and hindering their
generalizability. Moreover, the time and effort required to collect and maintain project-specific
data pose practical challenges for developers and researchers seeking to adopt these approaches.
To address these limitations, this paper presents a set of AI-based metrics for estimating

the fault-proneness of source code changes. Inspired by the effectiveness of Tree Kernel [8]
functions and Transformer models [9] in Natural Language Processing tasks, the proposed
metrics leverage their capabilities to capture the structural and semantic characteristics of code
changes. This approach offers several advantages over traditional methods, including the ability
to work with any software project without the need for project-specific historical data, thus
providing a more practical and scalable solution.
To evaluate the effectiveness of the proposed metrics, we conduct an empirical study lever-

aging a dataset of real-world source code evolution scenarios. In this study, we compare
the fault-proneness scores generated by the metrics against expert evaluations provided by a
Software Engineering practitioner. Results are promising and show that there exists a strong
correlation between the proposed AI-based metrics and human-defined fault-proneness scores,
suggesting that the proposedmetrics could serve as a reliable proxy for costly human evaluations.
Moreover, we make the employed dataset, consisting of more than 100 real-world software evo-
lution scenarios, manually annotated by a Software Engineering practitioner, publicly available,
to foster further research on fault-proneness estimation.
The remainder of this paper is organized as follows. In Section 2, we discuss related works

on software fault-proneness estimation. Then, in Section 3, we describe in detail the proposed
AI-based metrics. In Section 4, we describe the empirical procedure we defined to assess the
effectiveness of the proposed metrics, while, in Section 5, we present the results and discuss the
implications of our findings. Lastly, in Section 6, we draw some final conclusions and provide
some recommendations for future research and applications of our findings.

2. Related works

Predicting the fault-proneness of software is a prominent topic in software engineering, due
to its impacts on the whole software development process, as witnessed by a large number of
studies in the literature [10, 11, 12].



Several Machine Learning approaches to predict the fault-proneness of software artefacts
have been proposed in the literature. Code metrics are often used as input for ML models, as
they can produce better performances and also be more intuitive compared to features derived
from PCA analysis [6]. Other studies, such as [11, 13], focused on the impact of different sets of
code metrics on the training of ML models for defect prediction. These studies showed that
better performances can be achieved leveraging only on code change metrics, and the accuracy
can be even higher when training the models with reduced sets of change-related features (i.e.,
metrics on the number of code units added, removed and edited in an evolutionary incremental
step).

More recently, [10] proposed Error-Type, a set of metrics which included also patterns recur-
ring in three common Java runtime errors, which were extracted by the application of formal
modelling methods. In the study, it was empirically shown that the analysis of source code
patterns could lead to models with a higher degree of accuracy in predicting software defects.
The study in [7] investigates the relationship between classical object-oriented software

metrics and different centrality measures applied on structures which model the underlying
software, i.e., Static Dependency Graphs. These kinds of models underline the connection
between various code units (e.g., method calls) and centrality measures to try to estimate the
most critical and fault-proneness modules in the software. The empirical evaluation performed
in this study showed that this combination of metrics and centrality measures can be effectively
used to predict both the number and the severity of faults.
In recent years, deep learning approaches to fault-detection and defect prediction have

been broadly investigated. Several models use deep networks to extract features from the
underlying source code and then classify the code units according to their probability to be
faulty. [14] employed a deep belief network algorithm to extract useful features from code
change information, and use such features as input of a logistic regression classifier. Lately, [15]
leveraged on convolutional neural network to extract salient features both from code changes and
from GIT commit messages, and a fully-connected shallow network to evaluate the probability
of defects in the software update. Other approaches [16] applied convolutional neural networks
to a structured representation of the source code (i.e. Abstract Syntax Tree) to identify program
functionalities and to detect code patterns which can introduce faults. More recently, embeddings
have also been employed in software defect prediction. Cc2Vec [17] produces vector embeddings
of software patches using both patch log messages and a hierarchical representation of source
code, paying also attention to the kind of modification, i.e., weighting differently added and
removed code units. In their study, the authors use these embeddings to predict defective
patches in the source code evolution. Transformer architecture, which retains the state-of-
the-art performances in Natural Language Processing, has also been applied to source code
analysis. One of the most used transformer-based models is CodeBERT [9], which leverages both
natural language data (such as comments, documentation, or other descriptions of programs)
and source code to produce embeddings that were originally used for the task of generating
code documentation and natural language code search.

Dynamic approaches to fault detection need to be performed after the execution of test cases.
They usually leverage on program spectra [18, 5, 19], i.e. a characterization of the behaviour of
a program, which summarizes the trace of the program in exercising different constructs, such
as branches or statements [20]. The information obtained by comparing the traces in successful



and faulty scenarios can be used to predict and localize faults. These approaches are useful to
help developers locate faults a-posteriori, i.e. after the execution of test cases. They however
incur in an increased effort to be applied due to the instrumentation and the execution of test
cases to record their trace.

Fault-proneness estimation has been used also in the field of Regression Testing, in particular
in Regression Test Prioritization and Selection. These approaches, which are particularly
important in scenarios in which test execution requires a significant amount of time and
resources, such as End-to-End Testing [21] or co-simulation-based testing [22], aim at easing
the testing efforts by re-arranging the test execution order or selecting a subset of test cases
to execute, respectively [23, 24]. Different studies embedded the evaluation of fault-prone
changes to which a software was subjected to estimate the importance of re-execution of test
cases exercising these changes. In particular, [4, 25] leverage on software metrics to assign a
fault-proneness score to modules or source files and use the assessed scores in the evaluation of
the criticality of a test to be executed. Static source code analyzers to build statistical models
that can predict source code defects have also been proposed in [26]. These models are then
employed along with code coverage or other test case information to weigh the likelihood of a test
case to expose a fault. Other information, such as the bug history obtained from previous test
execution [27], has often been applied to estimate the fault-proneness of source code areas and
to rank the test cases accordingly. Other approaches also exploited meta-heuristic frameworks
relying on source code change metrics to prioritize test cases [28].

Static source code analysis has also been applied in several branches of software engineering,
such as code clone detection and vulnerability identification [29, 30]. Techniques in the field
adopt different levels of source code analysis, such as textual [31, 32] or structural comparison,
typically through Abstract Syntax Trees or Dependency Graph representation of the source code
[33, 34]. The study in [35] successfully applies Tree Kernel function to evaluate the structural
similarity of ASTs related to pairs of Java methods in order to detect similar patterns and to
classify how much they are likely to be code clones.

To the best of our knowledge, very few studies focused on the estimation of fault-proneness
of code changes with respect to human-evaluated scores. A human analysis of code changes
during an evolutionary step of software maintenance is costly both in time and in resources,
as it includes several complex tasks such as code comprehension. With the spread of different
techniques to source code analysis and defect prediction, in this study, we aim to assess the
correlation between different features and metrics employed in the literature and human-
generated feedback. We took into account several kinds of features: those related to code
change metrics, which have been proven to be the best metrics for fault-proneness evaluation;
source code features, both leveraging on textual representation and on more-refined tree-
based representations (i.e., Tree Kernels); and features produced by embedding vectors, in
particular those obtained through the application of CodeBERT, which obtained the state-of-the-
art performances in software comprehension related tasks.

3. Proposed Metrics

In this section, we describe the novel AI-based fault-proneness metrics we defined.



Figure 1: An Abstract Syntax Tree representation for a Java method which evaluates the minimum
between two integers.

3.1. Tree Kernels

Tree Kernels are a family of functions which evaluates the similarity between tree-based
structures. They have been extensively used in the Natural Language Processing domain and
they have been successfully applied in several software engineering tasks, such as code clone
detection and security testing [35, 36]. Tree Kernels are typically used in software engineering
to assess the structural similarity between the Abstract Syntax Tree (AST ) representation of the
source code. This representation highlights the hierarchy of the source code through a tree
model. Each tree node is labeled with the semantic of the programming language construct
(e.g., statement, expression, for loops, ...), while relationships between nodes give information
on the structure of the code (e.g., an expression which is part of a statement, or a statement
belonging to a for loop). The leaves of the tree are related to the tokens in the source code, such
as names of variables or literal values. An example of an AST is shown in Figure 1.
Generally, Tree Kernels evaluate the similarity between two trees by counting the number

of fragments the trees have in common. The similarity is produced as a real, non-negative
number in the [0, +∞[ range. The type of considered fragments defines the particular Tree
Kernel function. Among all Tree Kernels, Sub-tree Kernel, Subset-Tree Kernel and Partial-Tree
Kernel are the most used in literature [8]. Given two nodes of two different trees, the Sub-tree
Kernel (STK ) considers as fragments the whole sub-trees rooted in these nodes, up to the leaves.
If these sub-trees are equivalent (i.e., have the same label and the same structure), the fragments
contribute to the overall similarity. Subset-Tree Kernel (SSTK ) analyzes the subsets of common
nodes, i.e., the sub-trees at any possible depth from the root nodes. While the former TKs
consider the whole sequence of children when evaluating two nodes, the Partial-Tree Kernel
relaxes this constraint by taking into account also partial sequences of child nodes in both trees.
To shift from the similarity score evaluated by TKs to a measure of dissimilarity, we used

two methods: the first employs the normalized Tree Kernel similarity [37], while the second
leverages Kernel Distance [38].
A Normalized Tree Kernel is evaluated by dividing the TK similarity of the two trees by the

square root of the product between the TK similarity of each tree with itself. This ensures a
similarity score in the range [0, 1], where 0 means that the trees are completely different, while
a score of 1 is assessed when the two trees are identical. To evaluate the dissimilarity, we just
evaluate the complement to 1 of the similarity measure. More formally, given a Tree Kernel



Code snippet for previous version

Code snippet for current version

AST parsing
(GumTree)

AST for 
previous version

AST for 
current version

Tree Kernel 
Dissimilarity

Fault-proneness
score

Figure 2: Computation pipeline for the Tree Kernel metrics. The dissimilarity evaluation process is the
same for each type of Tree Kernel, and with both normalized dissimilarity and Kernel distance.

function 𝐾 and two ASTs 𝑇1, 𝑇2, the normalized Tree Kernel dissimilarity is computed as:

𝑑𝑛𝑜𝑟𝑚(𝑇1, 𝑇2) = 1 −
𝐾(𝑇1, 𝑇2)

√𝐾(𝑇1, 𝑇1) ⋅ 𝐾(𝑇2, 𝑇2)
(1)

Kernel Distance is a distance measure evaluated leveraging the similarity score produced by
the kernel and provides a dissimilarity score in the range [0, +∞[. It can be evaluated as:

𝑑𝑑𝑖𝑠𝑡(𝑇1, 𝑇2) = 𝐾(𝑇1, 𝑇1) + 𝐾(𝑇2, 𝑇2) − 2 ⋅ 𝐾(𝑇1, 𝑇2) (2)

where 𝑇1 and 𝑇2 are two trees and 𝐾 one of the Tree Kernel function discussed above.
We employed these two measures of dissimilarity to also investigate the effects of method

sizes in our evaluation. In fact, Equation (1) can be seen as the relative dissimilarity between the
two trees, measuring the relative amount of structural changes two methods have. On the other
hand, the Kernel distance measures the absolute amount of structural changes. To this end,
consider two methods, one with 100 statements and the other with 10 statements. Suppose that
50 statements are changed in the first method due to an evolutionary step and that 5 statements
are changed in the second one. The evaluation of the normalized Tree Kernel score between
the two versions of both methods could lead to close dissimilarity values. The kernel distance,
instead, will assign a higher dissimilarity score to the larger method, as the structural changes
it underwent are more prominent.

To evaluate a dissimilarity score between twomethods or functions, we produce eachmethod’s
AST by processing its source code through GumTreeDiff [39], a library widely used in the
literature to produce Abstract Syntax Tree models. We then evaluate the similarity score using
a specific Tree Kernel function (STK, SSTK, PTK) and calculate the dissimilarity using one of
Equations (1) or (2). For the implementation of Tree Kernel functions we relied on KeLP1, a
consolidated Machine Learning framework which has been used in several studies in the field
of NLP [40, 41]. In the remainder of the paper, STK, SSTK and PTK refer to a particular Tree
Kernel function which uses the distance as dissimilarity metric, while the suffix Normalized

1http://www.kelp-ml.org/, accessed on 19/05/2023.

http://www.kelp-ml.org/


relates to the specific Tree Kernel with the normalized dissimilarity function. Figure 2 presents
the steps to evaluate dissimilarity using tree kernels.

3.2. Transformer-based metrics

Transformer models are a class of deep learning models, introduced by Vaswani et al. in [42],
that have revolutionized the field of natural language processing (NLP), rapidly becoming
state-of-the-art models for various NLP tasks such as machine translation or sentiment analysis.
The architectural innovation of self-attention mechanisms allows this kind of models to capture
long-range dependencies between tokens in the input sequence, effectively learning vector
representations that capture the semantic and syntactic structure of the input. Transformer
models often employ pre-training on large-scale unlabelled corpora, using unsupervised learning
objectives such as masked language modelling or next-sentence prediction, and can then be
fine-tuned for specific tasks.

In this paper, to measure the fault-proneness of a code change, we leverage CodeBERT [9], a
specialized language model, based on the Transformer architecture, designed to process and
analyze source code as well as natural language. CodeBERT has been proven to be effective
in a number of Software Engineering tasks, including the generation of commit messages for
given code changes [43], code clone detection [44], or the automatic generation of fixes for
bugs [45]. In particular, we leveraged a pre-trained instance of CodeBERT, which was trained
on CodeSearchNet data [46] using an unsupervised Masked Language Modelling task. We
use the pre-trained CodeBERT model to extract a vector representation (embedding) for both
the previous version of a method and the current one. CodeBERT can indeed be used to map
snippets of code to 768-sized vectors. Then, we estimate the fault-proneness of a method
evolution by measuring the cosine distance between the two embeddings, under the assumption
that changes that are more fault-prone have a greater impact on the syntactic and semantic
structure of code, which are captured by CodeBERT in the embedding representation, thus
resulting in embeddings that are farther away in the vector space. The cosine distance between
the two CodeBERT embeddings is a value in the range [0,1], with 1 representing the highest
possible diversity between the two embeddings, and thus the most fault-prone change. In the
remainder of this paper, we will refer to the cosine distance between two subsequent versions
of a source code snippet as CodeBERT-distance. An overview of the computation process of the
CodeBERT-distance is depicted in Figure 3.

4. Empirical Evaluation

4.1. Goals

To assess the effectiveness of the proposed metrics in capturing the fault-proneness of a method
evolution as perceived by a software engineering practitioner, we consider the following research
question.

RQ1: To what extent do the considered metrics correlate with fault-proneness scores that are
manually defined by a Software Engineering practitioner?
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Figure 3: Overview of the computation of the CodeBERT-distance metric

Moreover, we also investigate the reliability of the fault-proneness perception of a software
engineering practitioner by considering the following additional research question.

RQ2: How subjective are manually defined fault-proneness ratings produced by a Software Engi-
neering practitioner?

4.2. Employed Data

To assess the effectiveness of the proposed metrics for estimating the fault-proneness of source
code changes, we considered a set of real-world software evolution steps collected from open-
source projects. More in detail, we based our analysis on software projects included in a
recently-presented dataset [47], consisting of 114 pairs of subsequent software versions from
open-source Java projects. By analysing these 114 version pairs, we extracted more than 1k
real-world method-level evolution scenarios from 19 different projects. Each of these scenarios
consists in two subsequent versions of the same method, in which the more recent version
has been impacted by evolutionary changes. Since our study aims at comparing the proposed
fault-proneness metrics with a manually-defined score produced by a Software Engineering
practitioner, and manually annotating each method evolution is a time-consuming process, we
randomly sampled a subset of 108 method evolution scenarios. More in detail, we performed a
stratified sampling based on the belonging to a specific project, and randomly selected at most
7 method evolution scenarios from each project. For projects for which we collected less than
7 method evolution scenarios, all the available scenarios were selected. In Table 1, we report
additional statistics on the dataset of method-level evolution scenarios we built.

In particular, for each of the 19 projects, we report the number of considered method evolu-
tion scenarios, the average, minimum and maximum number of Lines of Code (LOCs) of the
considered methods (considering both versions), and the average, minimum and maximum
number of changed LOCs in each method evolution scenario. The number of changed LOCs
is defined as the sum of removed and added LOCs between the two versions of the method.
These figures highlight that the sampled evolutionary scenarios cover a broad set of situations,
including methods that vary in size, as well as in the extent of the source code evolution.



Table 1
Overview of the considered dataset

Project # Method
Evolutions

# LOCs per method # Changed LOCs
per method

Avg. Min. Max. Avg. Min. Max.

Mapper 7 32 10 81 5 2 12
LittleProxy 7 29 4 70 18 1 69
shiro-redis 3 21 5 34 12 2 33
fastjson 7 153 3 542 37 7 101
sofa-rpc 5 34 13 97 11 2 41
incubator-dubbo 7 30 4 58 11 1 32
rocketmq 7 84 7 383 11 2 57
AxonFramework 7 21 4 57 11 2 33
demoiselle 7 14 4 31 7 2 21
dynjs 7 25 4 44 6 1 16
elastic-job-lite 7 10 5 17 2 2 4
hsweb-framework 5 16 4 46 6 1 13
JsonUnit 1 41 38 43 5 5 5
pf4j 5 30 5 54 4 3 6
pippo-java 1 61 59 63 8 8 8
rapidoid 7 10 3 38 6 2 27
consul-client 4 21 17 28 3 2 4
sismics-reader 7 79 40 126 10 4 24
titan 7 40 5 95 14 7 24

Aggregate 108 40 3 542 11 1 101

4.3. Baseline

As a baseline against which to compare the proposed AI-based techniques, we considered the
percentage of changed LOCs in a method evolution step, a well-known metric used to estimate
the fault-proneness of changes in regression testing scenarios [48]. More formally, given two
subsequent versions 𝑉𝑎 and 𝑉𝑏 of a method, the percentage of changed LOCs in the method
evolution is defined as

# 𝑎𝑑𝑑𝑒𝑑 𝐿𝑂𝐶𝑠 + # 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝐿𝑂𝐶𝑠
# 𝐿𝑂𝐶𝑠 𝑉𝑎 + # 𝐿𝑂𝐶𝑠 𝑉𝑏

,

where # 𝑎𝑑𝑑𝑒𝑑 𝐿𝑂𝐶𝑠 (resp., # 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝐿𝑂𝐶𝑠) is the number of lines of code that are added (resp.,
removed) in the evolution from 𝑉𝑎 to 𝑉𝑏, and # 𝐿𝑂𝐶𝑠 𝑉𝑎 (resp., # 𝐿𝑂𝐶𝑠 𝑉𝑏) is the number of lines
of code in 𝑉𝑎 (resp., 𝑉𝑏).

4.4. Procedure

After preparing the dataset, each of the considered metrics was computed for each method
evolution scenario. The LOC-based baseline metrics were computed leveraging the well-known
git diff tool. The Tree Kernel-based metrics were computed by leveraging the GumTreeDiff tool
to extract an AST representation of each method version, and by leveraging the implementation



of the considered Tree Kernels available in the KeLP framework [49], which has been used in
several previous studies in Natural Language Processing and Software Engineering [50]. As for
the CodeBERT-distance metric, we implemented it in Python using the transformers library and
a pre-trained version of the CodeBERT model, which was made publicly available by Microsoft2.
Since some of the methods in the considered dataset contain more tokens than the maximum
input length supported by the pre-trained CodeBERT model (which amounts to 512 tokens), we
had to deal with those cases specifically. In particular, when the input sequence was longer than
the maximum processable length, we split it every 500 tokens and computed an embedding
for each slice of the original sequence. Then, we concatenate all the embeddings and zero-pad
them when necessary to compute the cosine distance.

The dataset was also manually annotated by a Software Engineering practitioner, to whomwe
asked to assign, according to their own sensibility and experience, a fault-proneness score in the
range 1-10 to each of the method evolutions, where 1 is the least and 10 is the most fault-prone.
Note that the recruited practitioner is not among the authors of this paper. To this end, the
practitioner was provided with a human-readable diff, similar to those shown for commits on
the GitHub platform, for each of the method evolution scenarios. These human-readable diffs
were obtained using the diff2html tool. When carrying out this task, the practitioner was given
no other metric to consider.
Independently, one of the authors of this paper also annotated the dataset and assigned

his own fault-proneness scores using the same scale as the practitioner. This annotation was
performed before any of the considered metrics was computed, and before the practitioner’s
scores were available to the authors.

5. Results and Discussion

5.1. RQ1: Correlation between metrics and fault-proneness scores

The first research question aims at investigating the effectiveness of the considered metrics
in approximating the fault-proneness perception of a Software Engineering practitioner. To
this end, we first carried out an analysis of the collected data and computed metrics. Figure 4
features histograms showing the value distributions for each of the considered metrics and for
the manually defined fault-proneness scores, using 10 equally-sized bins.
The distribution analysis highlights that, in the considered dataset, the fault-proneness of

the method evolutions is not uniformly distributed, but is skewed towards minor, less fault-
prone changes. This is witnessed by the distribution of the absolute and relative number of
changed LOCs, as well as by the manually-defined annotations. This is also in line with the
evolutionary patterns observed in real-world software projects, as reported by a number of
empirical studies such as [51, 52]. To verify these visual observations on the non-normality of the
distributions, we also performed Shapiro-Wilk tests [53], which confirmed that all the metrics
and the fault-proneness scores featured non-normal distributions with very high confidence
(p-value ≪ 0.05).

2https://huggingface.co/microsoft/codebert-base

https://huggingface.co/microsoft/codebert-base
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Figure 4: Histograms representing the distributions of the computed metrics and manually defined
fault-proneness scores

Table 2
Spearman’s Rank Correlations between each of the considered metrics and the Practitioner’s fault-
proneness scores

Metric Spearman’s correlation coefficient p-value Grading

STK 0.61 6.24E-05 Strong
CodeBERT-distance 0.52 1.69E-08 Strong
PTK Normalized 0.49 1.90E-08 Moderate
Changed LOCs (%) 0.43 4.05E-06 Moderate
PTK 0.40 5.18E-06 Moderate
SSTK Normalized 0.39 9.46E-06 Moderate
STK Normalized 0.37 7.70E-13 Moderate
SSTK 0.31 4.43E-04 Moderate

Since the data distribution is not normal, we computed correlation coefficients using Spear-
man’s rank correlation coefficient [54]. In this correlation analysis, we considered the correlation
between any pair of the considered metrics, as well as their correlations with the practitioner’s
scores. The computed Spearman’s rank correlation scores are reported in the correlogram in
Figure 5. Moreover, detailed correlation coefficients w.r.t. the practitioner score, as well as the
p-values for the Spearman’s rank correlations and grading for the correlations according to [55],
are reported in Table 2. These results show that the STK and CodeBERT-distance metrics are
the ones that correlate the most with the Practioner’s fault-proneness scores, with correlation
coefficients of 0.61 and 0.52, respectively, indicating a strong correlation, according to the inter-
pretation table presented in [55]. All the other metrics are also positively correlated with the
Practitioner’s scores, even though to a minor extent, with correlation coefficients ranging from
0.49 to 0.31, indicating correlations of moderate entity [55]. Moreover, in all cases, p-values are
very small (≪ 0.05, see Table 2), indicating that the results of the correlation analysis have a
high statistical significance.
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Figure 5: Correlogram representing the correlation between each pair of metrics and manually defined
fault-proneness scores.

5.2. RQ2: Reliability of manually defined fault-proneness scores

The second research question aims at investigating the reliability of the manual fault-proneness
ratings and, in a way, the degree to which different people subjectively perceive fault-proneness.
As a first result in investigating this question, we observed that some subjective differences
exist in the perception of fault-proneness. These differences can be observed in Figure 4,
by comparing the rating distributions for both the practitioner’s and the researcher’s scores.
Indeed, practitioner’s scores exhibit a prevalence of “2” ratings, while researcher’s scores show
a prevalence of “1” and “3” ratings. In Table 3, we present a more detailed analysis of the entity
and distribution of disagreements. The table shows that perfect agreement happens only in 22%
of the cases, but, in 94% of the cases, the differences in fault-proneness ratings do not exceed 2
points on the rating scale. In no case, the disagreements exceeded 5 points on the rating scale. To
better quantify the Inter-rater agreement level between the annotation produced by the Software
Engineering practitioner and those produced by one of the authors, we used the Weighted
Cohen’s Kappa statistic with Quadratic Weights [56]. This approach takes into account both the
level of agreement between raters and the potential for agreement due to chance. By assigning
higher weights to disagreements farther apart on the rating scale, quadratic weights capture the
importance of larger discrepancies, providing a more nuanced evaluation of agreement. The
computed Weighted Kappa statistic is 0.84, indicating a near-perfect agreement level [57]. This



Table 3
Extents of disagreements between Practitioner and Researcher scores

Entity of disagreement Percentage of occurrence Cumulative Percent. of occurrence

0 (perfect agreement) 22 22
1 56 79
2 16 94
3 2 96
4 1 97
5 3 100
greater than 5 0 100

suggests that the human-assigned fault-proneness ratings are generally reliable.

6. Conclusions

Within software evolution, effectively estimating the fault-proneness of codebase changes
can greatly enhance software development practices. Indeed, the availability of reliable fault-
proneness estimations allows developers and organizations to optimize resource allocation,
concentrating testing and inspection efforts on the parts of the software that are most signifi-
cantly impacted by these alterations, and can also streamline debugging and fault localization
activities.

Several studies in the literature have focused on predicting the fault proneness of entire soft-
ware systems and/or components [6]. Fewer works, however, have studied the fault-proneness
of changes made to a codebase over time. Most current approaches typically rely on historical
data specific to a particular project in order to create prediction models, which restricts their
use to specific situations and limits their overall applicability. Furthermore, the collection and
upkeep of project-specific data present practical difficulties for developers and researchers
aiming to adopt these methods.

To address these issues, in this paper, we propose a set of novel metrics designed to quantify
the fault-proneness of codebase changes. The proposed metrics can be applied to any software
evolution scenario, do not require training on historical data, and are based on Tree Kernels
and Transformer models, which proved to be effective in Natural Language Processing and in
Software Engineering tasks.
To assess the effectiveness of the proposed metrics, we conducted an empirical evaluation

involving a dataset of 108 real-world source code evolution scenarios, each manually annotated
by a Software Engineering practitioner who assigned it a fault-proneness rating according to its
own sensibility and experience. Results show that some of the proposed metrics are strongly
correlated with the human-defined fault-proneness scores, and suggest that these approaches
could be used as effective automated proxies of costly human assessments.
In future works, we plan to further refine the proposed techniques, by investigating the

feasibility of implementing novel Tree Kernel functions, specifically tailored towards the fault-
proneness estimation task. Similarly, we plan to investigate the possibility of carrying out



fine-tuning on the transformer models, possibly leveraging the dataset we constructed within
the present study, to further improve performances. Future research should also investigate
the extent to which the proposed metrics correlate also with the actual introduction of faults,
leveraging publicly available datasets of fault-inducing commits. Lastly, the promising results
obtained in this study motivate future investigations on the effectiveness of the proposed metrics
(or combinations thereof) in software engineering tasks such as regression testing optimization
or fault localization.

Data Availability Statement

The considered dataset, including the computed metrics and manually defined fault-proneness
scores, is publicly available in the replication package at https://doi.org/10.5281/zenodo.7998416.
The replication package also includes all the code necessary to compute the proposed metrics,
and data analytics scripts we used to analyze the raw data and produce plots and results discussed
in this paper.
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