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Abstract	
Personalized	platforms	are	providing	services	that	strive	to	recommend	personalized	contents	to	their	
users	by	understanding	individual	user	behavior	in	various	context.	In	local	domain,	various	contents	
(e.g.	menus,	themes,	advertisements,	etc.)	are	also	recommended	in	this	way.	However,	it	is	challenging	
to	recommend	the	most	relevant	content	by	using	one	recommender	system,	as	user	contexts	(e.g.	area,	
time,	etc.),	user	features	(e.g.	age,	gender,	preference,	etc.),	and	contents	are	very	various	and	complex.	
In	this	paper,	we	propose	an	empirical	hyper-personalization	problem	reflecting	user	behavior	in	local	
domain,	 that	 is	considered	as	contextual	bandit	problem	with	well-configured	recommender	system	
ensemble.	We	empirically	 introduce	how	to	deal	with	 insufficient	user	feedbacks	 in	service	by	using	
feedbacks	of	other	interfaces	(e.g.	search	and	feed	platform	app/web,	map	platform	app/web),	how	to	
define	user	contexts	and	user	 features	 in	 local	domain,	and	how	to	ensemble	contextual	bandits	 for	
optimization,	called	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	(Local	Ensemble	Contextual	Bandit).	Furthermore,	we	show	how	well	the	
model	performs	and	how	it	works	for	hyper-personalization	in	service.	
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1. Introduction	
Currently,	various	personalized	platforms,	such	as	news	[1]	and	music	streaming	[2,	3]	platforms,	
aim	to	recommend	relevant	and	personalized	contents	to	their	users.	These	services	are	provided	
based	 on	 understanding	 user	 behavior	 in	 various	 contexts.	 It	 is	 crucial	 to	 provide	 satisfying	
contents	in	specific	context.	Because	it	can	improve	their	user’s	engagements	and	experiences	on	
platform	 and	 can	 generate	 revenue	 for	 service	 providers	 or	 clients.	 Since	 the	 local	 domain	
consists	of	various	components,	such	as	POI	(Point-of-Interest),	menus,	themes,	users,	and	UGC	
(User-Generated	Contents)	as	illustrated	in	Figure	1(a),	recommender	systems	in	local	domain	
also	 provide	 contents	 of	 these	 components	 in	 the	 same	 way.	 Furthermore,	 as	 most	 local	
components	are	connected	around	POI,	these	effective	recommender	systems	can	have	a	great	
economically	impact	on	the	local	community	[4]	(e.g.	increasing	visit	rate	of	POI,	etc.)	by	helping	
users	discover	new	contents	preferred	to	them	and	providing	users	with	their	favorite	contents	
in	various	context	[5].	NAVER	also	has	such	services	like	A	Appendix.	
However,	recommending	the	most	relevant	content	to	user	in	local	domain	is	challenging	for	

two	reasons.	First,	depending	on	the	characteristics	of	component	to	be	recommended,	various	
and	complex	user	contexts	(e.g.	area,	time,	etc.),	user	features	(e.g.	age,	gender,	preference,	etc.)	
and	numerous	contents	of	components	should	be	considered.	For	example,	it	is	about	which	data	
is	needed	to	solve	the	problem	of	which	menu	a	user	might	like	in	a	particular	area	at	that	time.	
Second,	since	there	are	various	models	to	properly	utilize	various	data	for	each	objective,	we	need	
a	model	that	dominates	in	all	performance	indicators.	Because	it	has	long	been	found	that	a	well-
configured	ensemble	model	can	achieve	better	effectiveness	than	models	separately	[6].	
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(a)	Local	Knowledge	Graph	

 

 
(b)	Transformation	based	on	Local	Connectivity 

Figure	1: (a)	Illustration	of	local	knowledge	graph.	In	this	graph,	we	denote	𝑢,	𝑝,	𝑎,	𝑚,	𝑡,	and	𝑢𝑔𝑐	as	user,	POI,	
area,	menu,	theme,	UGC,	respectively.	For	example,	user	𝑢!	frequently	visits	area	𝑎! ,	follows	user	𝑢!"#,	and	visits	
on	POI	𝑝!"$.	POI	𝑝!"#	has	same	category	as	POI	𝑝!"$,	is	bookmarked	by	user	𝑢!"#,	has	UGC	𝑢𝑔𝑐!	generated	by	
𝑢!"$,	belongs	to	area	𝑎!"#	and	has	menu	𝑚!"#,	thema	𝑡!"#.	In	this	way,	local	components	are	connected	in	this	
graph.	(b)	Transformation	of	user-POI	click	feedback	into	user-component	(e.g.	menu,	theme)	click	feedback. 

To	address	these	two	challenges,	in	this	paper,	we	propose	a	model	for	hyper-personalization	
as	contextual	bandit	problem	with	recommender	system	ensemble.	We	empirically	show	how	to	
deal	with	insufficient	user	feedback	in	service	by	using	various	interfaces	(e.g.	search,	feed,	and	
map	platform	app/web,	etc.),	how	to	define	user	contexts	and	user	features	in	local	domain,	how	
to	ensemble	contextual	bandits	for	optimization,	called	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵		(Local	Ensemble	Contextual	
Bandit),	and	how	well	it	performs	and	how	it	works	for	hyper-personalization	in	NAVER	service	
cases.	
	

2. Related	Works	

2.1. Contextual	Bandits	

In	recent	years,	studies	of	multi-armed	bandit	have	researched	and	developed.	So,	 it	has	been	
applied	to	various	service	platforms	in	many	domains.	Multi-armed	bandit	has	basically	problem	
where	it	is	to	make	the	optimal	recommendations	by	managing	trade-off	between	exploitation	
and	exploration	based	on	user	behavior.	There	are	classic	bandit	algorithms	like	𝜖-	𝑔𝑟𝑒𝑒𝑑𝑦	[7],		
𝑈𝐶𝐵 	[8],	 and	𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛	𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 	[9,	 28],	 etc.	 Based	 on	 extending	 the	 basic	 bandit	 problem,	
there	are	many	approaches	for	the	optimal	recommendations;	contextual	bandit	approach	[1,	10,	
11],	non-stationary	bandit	approach	[12,	13,	14],	and	multi-play	bandit	approach	[2,	15,	16,	17],	
etc.	In	addition,	by	combining	different	approaches,	algorithms	[18,	19]	such	as	non-stationary	
contextual	bandit	with	multi-play	also	exist.	Because	there	are	various	service	environments.	

2.2. Ensemble	Recommendation	

Ensembles	have	been	found	that	it	is	to	make	better	performance	than	separate	recommendation	
algorithms.	In	many	cases,	this	method	combines	several	algorithms	[20,	21]	to	make	a	hybrid	
system	 by	 applying	 weighted	 sum,	 which	 is	 done	 only	 once,	 statically.	 However,	 despite	 of	
advantage	 of	 the	 combination	method,	 there	 are	 approaches	 [22,	 23,	 24,	 25]	 to	 dynamically	
control	ensembles.	These	approaches	can	be	used	appropriately	for	environments	of	each	service.	
	

3. Background	
In	 this	 section,	we	 introduce	how	 to	make	dataset	 that	 is	 added	 to	 insufficient	 user’s	 service	
feedback	and	show	various	contexts	in	local	domain.	
	 	



3.1. Transformation	of	Multi-Interface	Feedback	from	Local	Connectivity	

Multi-armed	bandit	is	a	ranker,	which	is	to	re-rank	arms	(i.e.	items,	components).	This	ranker	has	
objective	that	users	would	show	actions	based	on	expected	rewards.	In	other	words,	multi-armed	
bandit	 is	 related	 to	 service	 optimization,	 and	 requires	 user’s	 service	 feedbacks	 for	 actions.	
However,	 if	 the	dataset	 is	 not	 enough	 large,	 bias	 or	 uncertainty	will	 increase.	 Therefore,	 it	 is	
necessary	to	transform	feedback	in	other	interface	to	service	feedback	for	enough	large	dataset.	
Since	there	are	many	channels	related	to	POI	recommendations	in	NAVER	(e.g.	search	and	feed	

platform	app/web,	map	platform	app/web),	we	use	feedback	related	to	POI	recommendations	
and	transform	it	into	a	form	of	service	feedback.	As	illustrated	in	Figure	1(b),	this	transformation	
is	 done	 based	 on	 connectivity	 between	 components	 within	 local	 domain.	 For	 example,	 we	
transform	user-POI	 feedback	 (e.g.	 click,	display	data)	 into	user-menu	 feedback	or	user-theme	
feedback.	
However,	 as	 it	 uses	 feedback	 from	 other	 interfaces,	 if	 we	 use	 it	 by	 itself,	 problems	 with	

reliability	and	bias	should	occur.	We	address	these	problems	as	follows.	First,	we	give	reliability	
for	the	connection	between	POI	and	component	through	UGC	(e.g.	review,	etc.)	related	to	POI.	
This	means	 that	 the	UGC	 left	by	users	must	 contain	 identifying	data	about	 the	 corresponding	
component.	Second,	since	we	set	CTR	(Click-Through	Rate)	as	reward,	we	adjust	the	display	rank	
of	other	 interface’s	 feedbacks,	and	then	change	them	into	service	 feedback	to	control	effect	of	
reward,	for	bias	problem.	Third,	the	effect	of	click	is	adjusted	by	using	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖	𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	
[34].	Because	it	is	click	feedback	of	other	interfaces.	

3.2. Contextual	Information	in	Local	Domain	

Contextual	bandit	is	a	model	that	utilizes	contexts,	that	are	observable	information	about	user.	
These	contexts	consist	of	user	context,	which	is	user’s	environment	(e.g.	area,	time,	etc.),	and	user	
feature,	which	is	observable	user	information	(e.g.	age,	gender,	preference,	etc.).	This	subsection	
introduces	what	kinds	of	these	contexts	exist	in	local	domain.	

3.2.1. Spatio-Temporal	Data	

In	local	domain,	there	are	user	contexts,	that	are	environment’s	conditions	such	as	area	(region)	
and	time	that	user	can	be	in.	For	example,	a	user	visiting	Texas	would	search	menus	such	like	
barbecue	which	is	a	signature	menu	of	Texas,	and	a	user	would	search	salad	for	lunch	or	beer	for	
dinner.	 Like	 this,	 users	 show	 different	 behaviors	 depending	 on	 the	 context,	 which	 is	 spatio-
temporal	data.	

3.2.2. User	Profile	Data	

As	like	other	domains,	there	are	also	user	features	such	as	age	and	gender	that	users	have,	in	local	
domain.	For	example,	users	of	20s	would	usually	search	for	popular	local	themes,	and	users	of	
40s	would	search	for	local	themes	to	enjoy	with	their	families.	And	men	search	for	local	themes	
related	to	pub,	beer,	and	women	search	for	local	themes	related	to	brunch	cafe.	In	other	words,	
user	behavior	changes	depending	on	contexts	like	user	profile	data.	

3.2.3. Understanding	User	Behavior	Data	

Through	user	behaviors	in	services	related	to	local	domain,	user	features	can	be	extracted.	These	
features	aim	to	summarize	user	behavior	(e.g.	preference,	user	familiar	area,	etc.).	And	depending	
on	 type	of	user	behavior	data	 (e.g.	 implicit	 feedback,	explicit	 feedback),	 these	 features	can	be	
classified	into	two	types	as	follows.	
First,	by	using	implicit	feedback,	like	click,	we	can	extract	features	related	to	user	preference	

(imf-preference).	 From	 the	 philosophy	 of	 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒	𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 	[26]	 between	 user	 and	



components	 to	 be	 recommended,	 we	 use	 the	 user	 feature	 as	 expected	 display-to-click	
probabilities	for	components	per	user	[2],	based	on	logistic	matrix	factorization	[37].	
Second,	 through	 explicit	 feedback,	 such	 as	 visit	 (check-in),	 save	 (bookmark)	 and	 like,	 we	

extract	features	about	the	user	preference	(exf-preference)	and	user	familiar	area.	In	case	of	user	
exf-preference	feature,	we	obtain	the	user	feature	from	RFM	(recency,	frequency	and	monetary	
value)	model	[27]	and	representation	learning	(encoder)	model.	Encoder	projects	output	labels	
of	RFM	model	into	a	specific	𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝑆𝑝𝑎𝑐𝑒	by	an	element-wise	average	of	labels’	embedding.	
And	in	case	of	user	familiar	area	feature,	we	extract	this	feature	from	user’s	base	data	(e.g.	home,	
school,	and	company),	visit	statistics,	and	user	regional	intent	classification	model	[38,	39,	40,	41]	
which	classifies	daily	life	category.	For	example,	when	searching	for	a	certain	area,	this	feature	
can	be	used	as	a	user	context,	depending	on	whether	or	not	the	user	is	familiar	with	this	area.	
	

4. Methodology	
In	 this	 section,	 after	 introducing	 usage	 of	 contextual	 information	 and	 policies	 of	 𝑡𝑜𝑝 - 𝑘	
recommendations	on	contextual	bandits,	we	show	our	ensemble	model,	called	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	(Local	
Ensemble	Contextual	Bandit)	for	hyper-personalization.	

4.1. Leveraging	Contextual	Information	

Since	in	3.2	section	we	show	that	user	behavior	is	different	depending	on	contexts,	we	introduce	
how	bandits	use	these	contexts.	

4.1.1. Semi-Personalization	

Semi-personalization	is	recommendation	in	segment	(group)	units	according	to	combinations	of	
contexts.	It	is	based	on	assumption	that	each	user	belongs	to	various	segments	according	to	their	
behavior.	In	other	words,	a	user	is	simply	partitioned	to	segments	by	the	contexts	of	feedback.	
For	example,	for	a	same	user,	user	searching	for	dinner	in	Singapore	and	user	searching	for	lunch	
in	 Singapore	 belong	 to	 different	 segment.	 And	we	 propose	 that	 users	 in	 same	 segment	 have	
identical	expected	probabilities	for	each	component	to	be	recommended	as	follows:	

	 	 	 	
	 ∀𝑠	 ∈ {𝑆#, … , 𝑆%}	(𝑃	𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ≪ 𝑁	𝑢𝑠𝑒𝑟𝑠), ∀𝑢	 ∈ 6𝑠#, … 𝑠&7, ∀𝑖	 ∈ {1,… , 𝐾	𝑎𝑟𝑚}	

	

𝑝'! = 𝑝(!!	(	𝑖𝑓	𝑢	𝑏𝑒𝑙𝑜𝑛𝑔𝑠	𝑡𝑜	𝑠)	𝑏𝑦	𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠	) 

 

(1) 

	   
Then,	we	run	contextual	bandit	algorithms	by	one	of	segments	to	recommend	𝑡𝑜𝑝-𝑘	components.	

4.1.2. Full-Personalization	

Unlike	 semi-personalization,	 full-personalization	 is	 recommendation	 in	 user	 (persona)	 units	
according	 to	 combinations	of	 contexts.	Based	on	 assumption	 that	 each	user	 can	have	various	
personas	according	to	their	behavior,	each	user	is	partitioned	to	personas	from	the	contexts	of	
feedback.	For	example,	even	for	a	same	user	who	is	male	and	20s,	user	searching	for	local	themes	
in	Seoul	and	user	searching	for	local	themes	in	Busan	belong	to	different	persona.	This	means	
that	 we	 directly	 use	 context	 feature.	 This	 context	 feature	 represents	 summarizing	 user	 and	
consists	of	user	feature	(e.g.	age,	gender,	preference,	etc.)	and	user	context	(e.g.	area,	time,	etc.).	
We	define	that	different	personas	of	a	same	user	have	not	 identical	expected	probabilities	 for	
each	component	to	be	recommended	as	follows:	

	 	 	 	
	 	𝑥' ∈ 	ℝ*, ∀𝑖	 ∈ {1,… , 𝐾	𝑎𝑟𝑚},	𝑝'"! = 	𝑓(𝑥'"

+ 𝜃!)	(	𝑖𝑓	𝑢	𝑖𝑠	𝑖𝑛	𝑢𝑠𝑒𝑟	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑐	)	 (2) 
	 	  



where,	 𝑓(∙) 	is	 the	 function	 for	 probability,	 𝑥!, 	means	 context	 feature	 that	 user	 feature	 is	
concatenated	by	user	context	𝑐,	 and	𝜃", … , 𝜃# 	 ∈ ℝ$ 	means	weight	 feature	 to	 learn	 for	𝐾	arms.	
Specially,	using	only	user	feature	(personalization)	or	using	both	user	feature	and	user	context	
(hyper-personalization)	depends	on	policy	of	contextual	bandit.	Then,	we	run	contextual	bandit	
algorithms	by	context	feature,	and	it	recommends	𝑡𝑜𝑝-𝑘	items.	

4.2. Contextual	Bandits	for	Top-K	Recommendation	

In	 this	 section,	 the	 methods	 of	 leveraging	 contextual	 information	 are	 separated	 into	 three	
personalization	 stages	 by	 followed	 policies;	 𝑠𝑒𝑚𝑖 - 𝑡𝑠 	for	 semi-personalization,	 𝑓𝑢𝑙𝑙 - 𝑐𝑓 	for	
personalization,	and	𝑓𝑢𝑙𝑙-𝑙𝑖𝑛𝑢𝑐𝑏	for	hyper-personalization.	

4.2.1. Semi-Personalization	

In	the	case	of	semi-personalization,	contextual	bandit	recommends	𝑡𝑜𝑝-𝑘	components	based	on	
𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛	𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 	strategy	 ( 𝑠𝑒𝑚𝑖 - 𝑡𝑠 )	 [9,	 14,	 15,	 28,	 29]	 as	 sequential	 decision-making	
algorithm,	 with	 using	 contextual	 information	 by	 the	 method	 described	 in	 section	 4.1.1.	 This	
algorithm	is	a	policy	that	selects	the	optimal	action	through	sampling	of	𝐵𝑒𝑡𝑎	𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	[28],	
assuming	 that	 alpha	 and	 beta,	 which	 are	 estimates	 of	 reward	 for	 each	 action,	 follow	 the	
distribution.	

4.2.2. Personalization	

In	personalization	stage,	contextual	bandit	uses	Collaborative	Filtering	strategy	(𝑓𝑢𝑙𝑙-𝑐𝑓)	[26,	30]	
as	policy	based	on	method	of	leveraging	contextual	information	as	described	in	section	4.1.2	with	
using	 only	 user	 feature,	 not	 using	 user	 context.	 This	 policy	 combines	 the	 characteristics	 of	
stochastic	bandit	algorithm	[31,	32],	which	makes	recommendations	tailored	to	the	continuously	
changing	user	preferences,	 and	 the	 characteristics	of	Collaborative	Filtering	algorithm	 [26].	 In	
other	 words,	 it	 is	 a	 decision-making	 algorithm	 that	 can	 contain	 dynamic	 changes	 of	 user’s	
preference	with	estimating	similar	preferences,	using	concept	that	similar	users	prefer	similar	
items.	

4.2.3. Hyper-Personalization	

In	the	case	of	hyper-personalization,	contextual	bandit	recommends	𝑡𝑜𝑝-𝑘	components	based	on	
LinUCB	strategy	 (𝑓𝑢𝑙𝑙-𝑙𝑖𝑛𝑢𝑐𝑏)	 [1,	32]	as	policy,	 as	using	 contextual	 information	based	on	 the	
method	described	in	section	4.1.2	with	using	both	user	feature	and	user	context.	This	decision-
making	algorithm	 is	policy	 that	selects	 the	optimal	action	by	estimating	 the	coefficient	vector	
through	ridge	regression	method	from	expected	reward,	which	is	expressed	as	linear	function	
and	means	average	reward	value	of	each	arm	observed	so	far.	In	other	words,	regardless	of	the	
group	or	other	users	with	similar	preferences,	this	policy	could	reflect	dynamic	user	behavior	
change	according	to	various	contexts.	

4.3. Ensemble	Contextual	Bandits	for	Optimization	

Each	 contextual	 bandit	 according	 to	 sequential	 decision-making	 algorithms/policies	 has	 the	
following	benefits	and	costs:	
	
1. 𝑠𝑒𝑚𝑖-𝑡𝑠 	has	 randomness	 to	 sample	 from	𝐵𝑒𝑡𝑎	𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 	[28],	 so	 it	 has	 benefits	 in	
terms	of	diversity	and	serendipity.	And	it	provides	a	solution	to	𝐶𝑜𝑙𝑑	𝑆𝑡𝑎𝑟𝑡	by	recommending	
components	 per	 segment	 (group)	 unit.	 However,	 there	 is	 cost	 that	 the	 degree	 of	
personalization	is	weak	compared	to	other	algorithms/policies.	



2. 𝑓𝑢𝑙𝑙-𝑐𝑓	has	benefit	of	recommending	components	per	personalization	unit	that	reflects	
philosophy	of	Collaborative	Filtering	[26]	and	the	characteristic	of	the	bandit	algorithm	[31,	
32].	But	there	are	costs.	Although	there	is	similar	clustering	concept	that	recommends	similar	
items	 to	 users	 with	 similar	 preferences,	 it	 has	 relatively	 low	 diversity	 and	 serendipity	
compared	to	𝑠𝑒𝑚𝑖-𝑡𝑠.	And	since	it	is	not	a	hyper-personalization	unit,	it	has	a	relatively	low	
precision	and	recall	compared	to	𝑓𝑢𝑙𝑙-𝑙𝑖𝑛𝑢𝑐𝑏.	
3. 𝑓𝑢𝑙𝑙 - 𝑙𝑖𝑛𝑢𝑐𝑏 	has	 benefits	 in	 terms	 of	 precision	 and	 recall	 in	 that	 it	 recommends	
components	 per	 hyper-personalization	 unit.	 It	 makes	 combinations	 between	 various	 user	
features	 and	 user	 contexts.	 In	 other	words,	 it	 is	 possible	 to	 personalize	 for	 every	 context.	
However,	 compared	 to	 other	 algorithms/policies,	 there	 is	 cost	 that	 diversity	 is	 low	 as	
uncertainty	is	low.	And	it	is	also	not	possible	to	recommend	for	users	in	𝐶𝑜𝑙𝑑	𝑆𝑡𝑎𝑟𝑡.	

	
As	above,	each	contextual	bandit	has	various	benefits	and	costs.	In	other	words,	combination	of	
algorithms/policies	 could	 improve	 the	 performance	 separately	 obtained	 by	 individual	
algorithm/policy	[6].	So,	we	use	ensemble	method,	which	multiplies	term	weight	to	policy	of	each	
bandit	 for	 balancing.	 This	 model	 is	 called	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵 	(Local	 Ensemble	 Contextual	 Bandit)	 as	
followed:	

	 	 	 	
	 𝜋-./)0123(𝐴	|	𝑥) 	≈ 	𝛼 ∗ 𝑓(𝜋(45!67((𝐴	|	𝑥)) + 𝛽 ∗ 𝑓(𝜋8'006/8(𝐴	|	𝑥)) + 𝛾 ∗ 𝑓(𝜋8'0060!9'/:(𝐴	|	𝑥))	 (3) 
	   

where	𝜋	is	policy	that	is	a	probability	distribution	over	actions	conditioned	on	context	𝑥,	A	is	arm,	
𝑓(∙)	means	function	of	normalizing	and	𝛼, 𝛽, 𝛾	is	term	weight	(𝛼 + 𝛽 + 𝛾 = 1).	
	

5. Case	Study:	In	Various	Recommendations	in	Local	Domain	
We	 explain	 about	 how	 the	 contextual	 bandits	 explained	 in	 the	 section	 4	 will	 be	 applied	 to	
menu/theme	recommendation	in	NAVER	service.	We	firstly	show	the	common	techniques,	and	
then	introduce	the	details	in	the	subsection.	
Since	 service	 feedback	 is	 not	 sufficient,	 in	 each	 recommendation,	 we	 transform	 feedback	

related	to	POI	recommendations	in	NAVER	(e.g.	search,	feed	and	map	platform	app/web)	into	a	
form	of	service	feedback	(e.g.	user-menu	feedback,	user-theme	feedback).	
In	each	recommendation,	CTR	is	used	as	reward	for	contextual	bandits.	We	apply	3	techniques	

to	the	reward	as	followed.	First,	unlike	general	CTR	reward,	we	make	reward	discounted	[14]	to	
preserve	trend	of	dynamic	user	behavior.	This	means	that	higher	weight	 is	given	to	the	 latest	
feedback	and	lower	weight	is	given	to	past	feedback.	Second,	since	supplemented	feedback	is	not	
actual	service	feedback,	we	apply	a	logic	to	determine	if	click	feedback	is	made	according	to	the	
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖	𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 	[34]	 to	 reduce	 bias.	 Third,	 for	 quantity	 of	 click	 feedback,	 diversity,	
serendipity	and	bias,	we	use	sliding	window	method	[33]	for	enough	number	of	feedbacks.	This	
method	is	applied	by	smoothed	CTR,	that	average	of	click/display	count	for	a	specific	key	(e.g.	per	
segment,	per	user)	is	added	to	the	click/display	count,	respectively.	

5.1. Case	1:	Menu	Recommendation	

We	show	the	features	used	as	context	feature	and	explain	how	this	context	feature	is	applied	to	
the	contextual	bandits	in	menu	recommendation	as	followed:	
	

• (Scenario)	Contextual	bandit	 is	 applied	as	a	 ranker	 considering	 contexts	based	on	 the	
user/query	in	platform,	as	illustrated	in	B	Appendix.	
• (Context	Feature)	Area,	time,	and	user	familiar	area	are	used	as	user	context,	and	imf-
preference	 and	 exf-preference	 are	 used	 as	 user	 feature.	 And	 we	 check	 whether	 the	
corresponding	contexts	are	valid	in	C.1	Appendix.	



• (Contextual	Bandit)	𝑠𝑒𝑚𝑖-𝑡𝑠	uses	 area,	 time	 and	user	 familiar	 area	 (user	 context)	 and	
don’t	use	user	feature,	as	segment	recommendation.	𝑓𝑢𝑙𝑙-𝑐𝑓	uses	only	imf-preference	(user	
feature),	 as	 a	 personalization	with	Collaborative	Filtering	[26].	𝑓𝑢𝑙𝑙-𝑙𝑖𝑛𝑢𝑐𝑏 	uses	 area,	 time,	
user	familiar	area	(user	context)	and	exf-preference	(user	feature),	as	hyper-personalization	
recommendation.	And	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	is	applied.	

5.2. Case	2:	Theme	Recommendation	

In	theme	recommendation,	we	introduce	the	features	used	as	context	feature	and	explain	how	
this	context	feature	is	applied	to	the	contextual	bandits	as	followed:	
	

• (Scenario)	 Contextual	 bandit	 is	 applied	 as	 ranker	 considering	 contexts	 based	 on	 the	
user/query	or	user/location	in	platform,	as	illustrated	in	B	Appendix.	
• (Context	Feature)	Area,	and	user	familiar	area	are	used	as	user	context,	and	age,	gender,	
imf-preference	 and	 exf-preference	 are	 used	 as	 user	 feature.	 And	 we	 prove	 whether	 the	
contexts	are	valid	in	C.2	Appendix.	
• (Contextual	Bandit)	𝑠𝑒𝑚𝑖-𝑡𝑠	uses	area,	user	familiar	area	(user	context),	age	and	gender	
(user	feature),	as	segment	recommendation.	𝑓𝑢𝑙𝑙-𝑐𝑓	uses	only	imf-preference	(user	feature),	
as	a	personalization	with	Collaborative	Filtering	[26].	𝑓𝑢𝑙𝑙-𝑙𝑖𝑛𝑢𝑐𝑏	uses	area,	user	familiar	area	
(user	 context),	 age,	 gender	 and	 exf-preference	 (user	 feature),	 as	 hyper-personalization	
recommendation.	And	ensemble	model,	called	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵,	is	applied.	

	

6. Experiments	
In	the	following,	we	empirically	evaluate	and	discuss	the	performances	of	our	models.	

6.1. Experimental	Setting	

6.1.1. Menu/Theme	Recommendation	on	a	NAVER	Search/Feed	Platform	

Menu/theme	 recommendations	 are	 conducted	 by	 extracting	 context	 feature	 based	 on	 user’s	
information	(user	feature),	query	or	location	(user	context).	We	set	the	number	of	𝐾	arms	with	
considering	various	service	factors.	𝐾	=	3,215	menus	and	𝐾	=	1,549	themes	are	set	as	the	total	
number	 of	 arms,	 respectively.	 All	 models	 will	 recommend	 10	 arms	 in	 service.	 And,	 in	 each	
recommendation,	cover	images,	that	are	extracted	through	thumbnail	extraction	model	of	UCG	
(e.g.	review,	blog,	etc.),	constitute	recommendation’s	cards	in	the	form	of	carousel	for	each	menu	
or	theme,	as	in	B	Appendix.	

6.1.2. Environment	and	Dataset	for	Evaluation	

In	 experiment,	 we	measure	 various	 indicators	 of	 recommendation	 (e.g.	 precision,	 recall,	 and	
diversity)	by	using	user	feedback	in	service,	rather	than	measuring	which	method	shows	good	
performance	with	 virtual	 indicator,	 such	 as	 expected	 cumulative	 reward/regret.	We	 conduct	
experiments	in	2	steps	according	to	service	strategy.	
The	 first	experiment	 (Initial	Evaluation,	 see	Section	6.2.1)	 is	 run	by	updating	 through	user	

feedback	for	past	4	weeks,	and	precision	[35],	recall	[35],	and	diversity	[36]	are	measured	using	
user	feedback	from	the	day	after	the	past	4	weeks,	as	D	Appendix;	Precision	is	ratio	of	components	
clicked	by	user	among	𝐾	recommended	components,	recall	is	ratio	of	how	many	𝐾	recommended	
components	are	included	among	all	the	components	clicked	by	user,	and	diversity	is	ratio	of	the	
number	of	unique	components	recommended	to	the	total	number	of	components.	Through	this	
experiment,	we	check	whether	our	models	are	trained	well	for	each	its	objective	(benefit).	



	
In	the	second	experiment	(Online	Evaluation,	see	Section	6.2.2),	updating/simulation	is	run	

through	daily	user	 feedback,	and	 indicators	 like	the	 first	experiment	are	measured	using	user	
feedback	of	the	next	two	days	through	buckets,	which	are	fraction	of	traffic.	Buckets	are	divided	
into	two	types;	Learning	buckets	consist	of	fraction	of	traffic	where	algorithms/policies	are	run	
to	estimate	CTR	of	service,	and	deployment	buckets	consist	of	fraction	of	traffic	where	bandits	
are	 run	 by	 previous	 bandit	 parameters.	 This	 experiment	 is	 intended	 to	 determine	 the	
effectiveness	of	online	learning	for	quickly	reflecting	user	feedback	and	to	compare	initial	and	
online	 learning	 for	 indicator’s	 variation	 that	 evaluates	 whether	 model	 is	 converged	 by	 user	
behavior	as	D	Appendix.	
Additionally,	we	test	each	experiment	in	Python	environment	with	feedbacks	of	completely	

anonymized	users	in	service.	In	the	case	of	menu	recommendation,	about	3,100,000	anonymous	
users	are	tested,	and	in	the	case	of	theme	recommendation,	about	2,900,000	anonymous	users	
are	tested.	
Since	we	conducted	various	experiments	about	 two	cases	with	 large-scale	data,	 it	could	be	

applicable	to	other	domains.	
	 	

Table 1: Performance of precision on menu case. The best score is bold, second score is underlined. 

(a) Initial Evaluation: Precision 
 

 

(b) Online Evaluation: Precision 
 

Policy Name Prec@1 Prec@5 Prec@10  Policy 
Name 

Prec@1 Prec@5 Prec@10 

𝒓𝒂𝒏𝒅𝒐𝒎 0.00031 0.00031 0.00031  deploy learn deploy learn deploy learn 

𝒃𝒂𝒔𝒆𝒖𝒕𝒎 0.00466 0.00209 0.00108  𝒓𝒂𝒏𝒅𝒐𝒎 0.00032 0.00032 0.00030 0.00030 0.00031 0.00031 
𝒃𝒂𝒔𝒆𝒓𝒔𝒎 0.00076 0.00055 0.00036  𝒃𝒂𝒔𝒆𝒖𝒕𝒎 0.00471 0.00471 0.00116 0.00116 0.00004 0.00004 
𝒔𝒆𝒎𝒊-𝒕𝒔 0.00481 0.00333 0.00269  𝒃𝒂𝒔𝒆𝒓𝒔𝒎 0.00067 0.00067 0.00051 0.00051 0.00033 0.00033 
𝒇𝒖𝒍𝒍-𝒄𝒇 0.00543 0.00497 0.00420  𝒔𝒆𝒎𝒊-𝒕𝒔 0.00761 0.01108 0.00620 0.00909 0.00409 0.00798 

𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.01432 0.01064 0.00916  𝒇𝒖𝒍𝒍-𝒄𝒇 0.00574 0.00877 0.00448 0.00772 0.00294 0.00755 
𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.00719 0.00609 0.00548  𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.01435 0.01440 0.01067 0.01072 0.00916 0.00922 

     𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.00795 0.01139 0.00769 0.00996 0.00395 0.00833 

Table 2: Performance of recall on menu case. The best score is bold, second score is underlined. 

(a) Initial Evaluation: Recall 
 

 

(b) Online Evaluation: Recall 
 

Policy Name Recall@1 Recall@5 Recall@10  Policy 
Name 

Recall@1 Recall@5 Recall@10 

𝒓𝒂𝒏𝒅𝒐𝒎 0.00031 0.00156 0.00311  deploy learn deploy learn deploy learn 

𝒃𝒂𝒔𝒆𝒖𝒕𝒎 0.00542 0.01185 0.01226  𝒓𝒂𝒏𝒅𝒐𝒎 0.00032 0.00032 0.00156 0.00156 0.00311 0.00311 
𝒃𝒂𝒔𝒆𝒓𝒔𝒎 0.00079 0.00271 0.00348  𝒃𝒂𝒔𝒆𝒖𝒕𝒎 0.00551 0.00551 0.01205 0.01205 0.01247 0.01247 
𝒔𝒆𝒎𝒊-𝒕𝒔 0.00497 0.01692 0.02711  𝒃𝒂𝒔𝒆𝒓𝒔𝒎 0.00070 0.00070 0.00244 0.00244 0.00318 0.00318 
𝒇𝒖𝒍𝒍-𝒄𝒇 0.00642 0.02702 0.03381  𝒔𝒆𝒎𝒊-𝒕𝒔 0.00826 0.01214 0.03287 0.04389 0.05308 0.07796 

𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.01653 0.05830 0.09865  𝒇𝒖𝒍𝒍-𝒄𝒇 0.00806 0.00954 0.03907 0.04167 0.04237 0.05041 
𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.00795 0.03035 0.04456  𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.01676 0.01681 0.05871 0.05885 0.09918 0.09952 

     𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.00874 0.01261 0.04343 0.04423 0.05348 0.06094 

Table 3: Performance of diversity on menu case. The best score is bold. 

Policy Name Div@1 Div@5 Div@10 

𝒓𝒂𝒏𝒅𝒐𝒎 1.00000 1.00000 1.00000 
𝒃𝒂𝒔𝒆𝒖𝒕𝒎 0.79565 0.87745 0.88709 
𝒃𝒂𝒔𝒆𝒓𝒔𝒎 0.04261 0.10887 0.12131 
𝒔𝒆𝒎𝒊-𝒕𝒔 1.00000 1.00000 1.00000 
𝒇𝒖𝒍𝒍-𝒄𝒇 0.98612 1.00000 1.00000 

𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.09611 0.28771 0.42519 
𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 1.00000 1.00000 1.00000 

 



	

6.2. Experimental	Results	

In	this	section,	we	show	the	results	of	experiments	described	in	the	previous	section.	
Additionally,	 in	 menu	 recommendation,	 𝑏𝑎𝑠𝑒!%& 	which	 is	 extracted	 based	 on	 menu	

preference	of	each	user	 (exf-preference)	described	 in	section	3.2.3,	and	𝑏𝑎𝑠𝑒'(& 	which	means	
special	menus	for	each	area	are	also	measured	in	experiments	in	the	same	way.	Because	these	
𝑏𝑎𝑠𝑒	ranking	collections	are	recommended	in	initial	stage	of	service.	And	these	collections	are	
used	 as	 candidate	 for	 contextual	 bandit	 in	 service.	 Similarly,	 in	 theme	 recommendation,	
𝑏𝑎𝑠𝑒)*)!+,' 	which	 is	popular	 themes	among	users	 in	subscribe	data	 is	additionally	measured.	
Since	 𝑏𝑎𝑠𝑒!%& 	is	 mainly	 extracted	 based	 on	 reviews	 left	 by	 users,	 this	 collection	 has	 user	
preferences	 for	 long-term	 and	 short-term.	 Therefore,	 the	 results	 are	 not	 good	 as	 the	 bandit	
models,	 as	 it	 does	 not	 reflect	 various	 user	 feedback,	 such	 as	 implicit	 feedback	 and	 does	 not	
directly	 reflect	 user	 behavior.	 And	𝑏𝑎𝑠𝑒'(& 	does	 not	 reflect	 user	 preferences,	 it	 shows	 lower	
results	than	the	bandit	models.	Likewise,	𝑏𝑎𝑠𝑒)*)!+,' 	shows	the	same	results.	
And	 compared	 to	 case	 of	 using	 only	 feedback	 of	 service,	 case	 of	 using	 service	 and	 other	

feedback	 is	 increased	by	 about	 15%	 in	 all	 indicators.	And	 the	 results	 in	 the	 above	 tables	 are	
measured	when	the	policy	 is	updated	with	all	 feedback,	which	means	that	transformation	has	
occurred.	
Since	we	mention	other	 factors	 in	above,	 in	 this	 subsection	we	only	compare	performance	

between	bandit	models.	

Table 4: Performance of precision on theme case. The best score is bold, second score is underlined. 

(a) Initial Evaluation: Precision 
 

 

(b) Online Evaluation: Precision 
 

Policy Name Prec@1 Prec@5 Prec@10  Policy 
Name 

Prec@1 Prec@5 Prec@10 

𝒓𝒂𝒏𝒅𝒐𝒎 0.00065 0.00065 0.00065  deploy learn deploy learn deploy learn 

𝒃𝒂𝒔𝒆𝒑𝒐𝒑𝒖𝒍𝒂𝒓 0.00436 0.00559 0.00371  𝒓𝒂𝒏𝒅𝒐𝒎 0.00066 0.00066 0.00065 0.00065 0.00066 0.00066 
𝒔𝒆𝒎𝒊-𝒕𝒔 0.01241 0.00885 0.00647  𝒃𝒂𝒔𝒆𝒑𝒐𝒑𝒖𝒍𝒂𝒓 0.00429 0.00429 0.00548 0.00548 0.00364 0.00364 
𝒇𝒖𝒍𝒍-𝒄𝒇 0.04083 0.03165 0.02707  𝒔𝒆𝒎𝒊-𝒕𝒔 0.01282 0.04782 0.00911 0.03686 0.00662 0.02663 

𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.05746 0.04522 0.03482  𝒇𝒖𝒍𝒍-𝒄𝒇 0.04455 0.04698 0.04123 0.04252 0.02806 0.03108 
𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.04220 0.03989 0.02714  𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.05811 0.05816 0.04566 0.04605 0.03503 0.03530 

     𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.04573 0.05497 0.04137 0.04258 0.02841 0.03253 

Table 5: Performance of recall on theme case. The best score is bold, second score is underlined. 

(a) Initial Evaluation: Recall 
 

 

(b) Online Evaluation: Recall 

Policy Name Recall@1 Recall@5 Recall@10  Policy 
Name 

Recall@1 Recall@5 Recall@10 

𝒓𝒂𝒏𝒅𝒐𝒎 0.00073 0.00340 0.00663  deploy learn deploy learn deploy learn 

𝒃𝒂𝒔𝒆𝒑𝒐𝒑𝒖𝒍𝒂𝒓 0.00421 0.02358 0.03172  𝒓𝒂𝒏𝒅𝒐𝒎 0.00075 0.00075 0.00340 0.00340 0.00663 0.00663 
𝒔𝒆𝒎𝒊-𝒕𝒔 0.01428 0.04807 0.06596  𝒃𝒂𝒔𝒆𝒑𝒐𝒑𝒖𝒍𝒂𝒓 0.00417 0.00417 0.02300 0.02300 0.03091 0.03091 
𝒇𝒖𝒍𝒍-𝒄𝒇 0.05738 0.23438 0.31416  𝒔𝒆𝒎𝒊-𝒕𝒔 0.01478 0.05742 0.04967 0.22320 0.06778 0.29842 

𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.07344 0.28188 0.39721  𝒇𝒖𝒍𝒍-𝒄𝒇 0.05906 0.06186 0.22832 0.24326 0.35373 0.37074 
𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.05951 0.27248 0.37222  𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.07408 0.07421 0.28403 0.28693 0.39915 0.40354 

     𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 0.06403 0.06956 0.27472 0.27743 0.39466 0.39708 

Table 6: Performance of diversity on theme case. The best score is bold. 

Policy Name Div@1 Div@5 Div@10 

𝒓𝒂𝒏𝒅𝒐𝒎 1.00000 1.00000 1.00000 
𝒃𝒂𝒔𝒆𝒑𝒐𝒑𝒖𝒍𝒂𝒓 0.01098 0.04067 0.07037 
𝒔𝒆𝒎𝒊-𝒕𝒔 1.00000 1.00000 1.00000 
𝒇𝒖𝒍𝒍-𝒄𝒇 0.97557 1.00000 1.00000 

𝒇𝒖𝒍𝒍-𝒍𝒊𝒏𝒖𝒄𝒃 0.17366 0.30923 0.44287 
𝑳𝒐𝒄𝒂𝒍𝑬𝑪𝑩 1.00000 1.00000 1.00000 

 



6.2.1. Initial	Evaluation	

First,	we	 introduce	 the	 results	 of	 the	precision	 experiment.	According	 to	Table	1(a),	 in	menu	
recommendation,	 performance	 of	 precision	 shows	 better	 depending	 on	 the	 degree	 of	
personalization.	 Therefore,	 𝑓𝑢𝑙𝑙 - 𝑙𝑖𝑛𝑢𝑐𝑏 	implemented	 with	 hyper-personalization	 shows	 the	
highest	 performance,	 and	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵 	shows	 relatively	 lower	 performance	 than	𝑓𝑢𝑙𝑙 - 𝑙𝑖𝑛𝑢𝑐𝑏 .	
Because	 𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵 	balances	 the	 benefits	 of	 the	 three	 contextual	 bandits.	 Similarly,	 theme	
recommendation	shows	the	same	results	as	Table	4(a).	
Second,	Table	2(a)	and	Table	5(a)	present	that	performance	of	recall	has	the	same	order	as	

performance	 of	 precision.	 This	 can	 also	 be	 interpreted	 as	 equally	 attributed	 to	 the	 degree	 of	
personalization.	And	compared	to	performance	of	precision,	these	results	mean	that	our	models	
are	well-trained	according	to	user	behavior,	as	our	models	are	robust.	In	other	words,	precision	
and	recall	have	often	inverse	relationship	according	to	confusion	matrix,	but	if	model	is	robust,	
precision	 and	 recall	 has	 specially	 some	 direct	 relationship.	 This	 is	 because	 the	 overall	 user	
behavior	sequence	has	been	well	reflected	as	intended,	using	4	weeks	of	user	feedback.	
Third,	performance	of	diversity	is	measured	as	Table	3	and	Table	6.	These	results	are	made	by	

characteristic	 of	 each	 model.	 𝑠𝑒𝑔 - 𝑡𝑠 ,	 which	 has	 some	 randomness	 to	 recommend	 through	
sampling	of	beta	distribution,	and	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵,	which	ensembles	the	characteristics	of	 the	three	
models,	 show	the	best	performance.	 In	 the	case	of	other	models,	 since	 these	models	use	user	
feedback	of	service	and	user	feedback	of	other	interfaces	at	the	same	time,	it	can	be	interpreted	
as	there	is	some	data	bias	in	personalization.	So	other	models	show	relatively	low	performance	
than	𝑠𝑒𝑔-𝑡𝑠,	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵.	
Through	this	experiment,	we	check	our	models	are	trained	well	for	each	objective.	

6.2.2. Online	Evaluation	

Comparing	deployment	buckets	and	learning	buckets,	we	can	see	that	performance	of	learning	
buckets	is	better	than	performance	of	deployment	buckets	in	all	indicators	of	evaluation,	as	Table	
1(b)	and	Table	4(b)	and	recall	in	Table	2(b)	and	Table	5(b).	This	proves	effectiveness	of	online	
learning,	so	we	accept	strategy	of	quickly	simulations/updating	algorithms/policies	of	contextual	
bandits.	
To	evaluate	whether	model	 is	well	 converged	according	 to	user	behavior,	 that	 is,	whether	

there	 is	 little	 uncertainty,	 we	 compare	 the	 difference	 between	 offline	 evaluation’s	 value	 and	
online	evaluation’s	value.	Since	𝑠𝑒𝑔-𝑡𝑠	has	randomness	and	is	segment-based	recommendation,	
it	shows	big	difference	of	indicator	depending	on	user	behavior	compared	to	other	models.	And	
in	 contrast,	 policy	 of	𝑓𝑢𝑙𝑙 - 𝑙𝑖𝑛𝑢𝑐𝑏 	does	 not	 change	 significantly	 according	 to	 the	 new	 user's	
behavior	but	shows	good	performance.	Therefore,	 it	proves	 that	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	made	by	ensemble	
with	above	two	models	and	𝑓𝑢𝑙𝑙-𝑐𝑓	appropriately	utilize	uncertainty	of	models.	

6.2.3. Entire	Evaluation	

Contextual	bandit	should	consider	precision	and	recall,	which	are	related	to	reliability.	And	it	also	
should	consider	diversity	and	model’s	uncertainty,	which	are	related	to	discover	behavior	of	user.	
In	this	respect,	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵,	which	balances	benefits	of	other	models,	shows	good	performance	in	
all	 indicators.	 So,	 it	 can	 be	 seen	 that	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵 	is	 modeled	 as	 we	 intended.	 In	 other	 words,	
𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	better	matches	 the	 trade-off	between	exploration	and	exploitation	 than	each	single	
contextual	 bandit.	 Also,	 since	 each	 model	 used	 in	 ensemble	 has	 hyper-personalization,	
personalization,	 and	 semi-personalization	unit,	 this	 fact	 shows	 that	hyper-recommendation	 is	
possible	in	local	domain.	
	 	



 
 

 	
 

(a)	Feature	Store	Side	
 

 
(b)	API	Server	Side	

 
Figure	2:	(a)	Updating	strategy	for	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	on	feature	store	side.	(b)	Procedure	of	hyper-personalization	by	
𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵	on	API. 

7. Contextual	Bandit	System	
In	 this	 section,	 we	 introduce	 how	 contextual	 bandit	 works	 on	 the	 recommender	 system,	 as	
illustrated	in	Figure	2.	
First,	we	explain	how	to	update	parameters	of	𝐿𝑜𝑐𝑎𝑙𝐸𝐶𝐵.	We	transform	service	feedback	and	

other	 interface’s	 feedback	 into	 data	 format,	 which	 used	 in	 contextual	 bandit	 for	 updating.	
According	 to	 the	development	environment,	 service	 feedback	 is	used	as	hourly	updating,	 and	
other	 interface’s	 feedback	 is	 used	 as	 daily	 updating.	 This	 method	 quickly	 optimizes	
recommendations	per	individual	user	through	service	feedback	and	creates	a	basic	user	behavior	
sequence	using	other	feedback.	After	that,	API	server	updates	and	serves	as	the	latest	model.	
Second,	 we	 show	 how	 recommender	 system	 works	 for	 hyper-personalization,	 including	

contextual	bandit	system	as	ranker.	Backend	system	of	platform	transmits	data	about	user	and	
result	of	query	analysis	through	parser	(or	location	through	context-aware	interface).	And	in	API	
server,	 context	 fetch	 (user	 context),	 feature	 fetch	 (user	 feature),	 candidate	 retrieval	
(personalization	level),	and	ranker	(re-rank	for	hyper-personalization	level)	stage	are	followed	
in	order.	
	

8. Conclusion	and	Future	Works	
This	study	aims	to	introduce	contextual	bandits	dealing	with	various	and	complex	contexts	in	the	
local	 domain	 and	 show	 ensemble	 method	 for	 optimized	 recommendation	 with	 combining	
effective	 contextual	 bandits	 for	 preserving	 each	 benefit.	 And	 we	 explain	 how	 hyper-
personalization	 is	 possible	 in	 this	 method.	 Since	 we	 share	 empirical	 hyper-personalization	
problem	with	contextual	bandit,	it	may	be	applicable	to	other	domains.	
However,	 there	 are	 limitations	 of	 this	work.	 First,	 it	 is	 context	 representations	 that	 is	 not	

expressive.	 Because	 current	 context	 features	 are	 extracted	 and	 concatenated	 through	 related	
labels.	So,	we	will	make	context	representations	expressed	by	rich	natural	language	through	using	
a	LLM	(Large	Language	Model)	[42,	43,	44,	45,	46,	47].	Second,	it	is	computational	cost	(resource)	
problem.	As	there	are	three	models,	there	are	many	resources	used	to	learn	and	to	sustain	models.	
It	is	necessary	to	develop	a	state-of-the-art	model.	
Furthermore,	 in	 the	 future,	by	analyzing	other	user's	behavior	 in	platform,	we	make	more	

detailed	contexts	features	(e.g.	weather,	vehicles,	and	advanced	summarizing	feature	of	user,	etc.).	
Through	 the	 expanded	 context,	 we	 will	 make	 more	 advanced	 hyper-personalization	
recommendation.	
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A.	Examples	of	Local	Search	&	Recommendation	in	NAVER	Service	

In	the	appendix	A	section,	we	provide	examples	of	NAVER	services	for	understanding	structure	
and	functionalities	of	NAVER.	

	

	

	

	

	

	
 

(a)	Search	Platform 
 

 
(b)	Feed	Platform 

 
(c)	Map	Platform 

In	(a)	search	platform,	it	basically	works	like	this:	location	and	context	are	set	according	to	search	query	or	
user	context,	and	then	POI	is	recommended.	And	then,	as	user	scrolls	down,	other	collections	tied	to	specific	
topic	(e.g.	menu,	theme,	etc.)	are	provided	to	users.	In	(b)	feed	platform,	it	provides	collections	related	to	topics	
that	users	would	be	interested	in	and	allows	users	to	discover	local	information.	And	in	(c)	map	platform,	it	
allows	users	to	directly	find	local	information	on	the	map	based	on	location. 

	

B.	Examples	of	Recommendation	in	Service	Platforms	

In	the	appendix	B	section,	we	show	examples	of	forms	where	recommendations	for	each	case	are	
made	in	service	platforms.	

	

	

	

	

	

	
 

(a)	Horizontal	Carousel	Type	1	
 

 
(b)	Horizontal	Carousel	Type	2 

 
(c)	Vertical	Carousel 

These	are	(a),	(b)	simplified	illustration	of	swipeable	horizontal	carousel	recommendation	and	(c)	vertical	
carousel	recommendation	by	scrolling.	These	forms	will	be	applied	to	the	NAVER	search/feed	platform.	And	
these	are	recommendation	in	the	form	of	UGC	of	related	POI	appeared	according	to	the	re-ranked	components	
(e.g.	menus,	themes,	etc.)	for	each	user,	based	on	user/query	or	user/location. 

	



C.	Validations	of	Contexts	

In	the	appendix	C	section,	we	show	whether	the	contexts	used	in	each	recommendation	are	valid.	
In	the	graphs	of	figure	below,	similarity	means	Jaccard	Similarity	calculated	by	𝑇𝑜𝑝@𝑘,	which	is	
ranked	by	the	number	of	clicks	on	between	components	(e.g.	menu,	theme)	and	𝑘𝑒𝑦,	such	as	area,	
time,	(user)	familiar	(area),	age,	gender.	

C.1		Validations	of	Contexts	in	Menu	Recommendation	

   
(a) Menu-Area Similarity (b) Menu-Time Similarity (c) Menu-Familiar Similarity 

 These	are	(a)	menu-area,	(b)	menu-time,	and	(c)	menu-(user	area)	familiar	similarity	based	on	Jaccard	
Similarity,	using	user	feedback	for	a	week.  

We	confirm	that	these	are	valid	contexts	because	similarity	is	not	constant	in	the	menu-context	
similarity	up	to	𝑇𝑜𝑝@100.	That	is,	area,	time,	and	familiar	(user	context)	are	valid	contexts	for	
menu	recommendation.	In	the	case	of	preferences,	 it	 is	difficult	to	express	graphically,	but	we	
make	 the	 features	 (user	 feature,	 e.g.	 imf-preference	 for	menu,	exf-preference	 for	menu)	 to	be	
different	for	each	context.	
	

C.2		Validations	of	Contexts	in	Theme	Recommendation	

  
(a) Theme-Area Similarity (b) Theme-Age Similarity 

  
(c) Theme-Gender Similarity 

 
(d) Theme-Familiar Similarity 

 
These	are	(a)	theme-area,	(b)	theme-age,	(c)	theme-gender,	and	(d)	theme-(user	area)	familiar	similarity	based	
on	Jaccard	Similarity,	using	user	feedback	for	a	week. 

Like	 the	 menu	 recommendation,	 theme	 recommendation	 also	 selects	 contexts	 with	 similar	
results,	which	means	similarity	is	not	constant	in	the	theme-context	similarity	up	to	𝑇𝑜𝑝@100.	
And	preferences	(user	feature,	e.g.	imf-preference	for	theme,	exf-preference	for	theme)	are	also	
made	in	the	same	way.	
	



D.	Formulas	for	Evaluation	Metrics	

D.1		Precision	and	Recall	

	 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘(𝑢) = 	
|𝑐𝑙𝑖𝑐𝑘(𝑢) ∩	𝑟𝑒𝑐;(𝑢)|

𝑘 	  

	   
	 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘(𝑢) = 	

|𝑐𝑙𝑖𝑐𝑘(𝑢) ∩	𝑟𝑒𝑐;(𝑢)|
|𝑐𝑙𝑖𝑐𝑘(𝑢)| 	  

	   
where	𝑢	is	user,	𝑐𝑙𝑖𝑐𝑘	is	list	of	click	item	and	𝑟𝑒𝑐- 	is	recommendation	list.	

D.2		Diversity	

	 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦@𝑘 =	
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	∑ 𝑟𝑒𝑐;(𝑢)'∈=

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐾	𝑎𝑟𝑚 	  

	   
where	𝑢	is	user	and	𝑟𝑒𝑐- 	is	recommendation	list.	

D.3		Variation	

	 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛@𝑘 = 	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑣𝑎𝑙𝑢𝑒.90!94@;	𝑎𝑛𝑑	𝑣𝑎𝑙𝑢𝑒.880!94@;		  
	   

where	𝑣𝑎𝑙𝑢𝑒	is	indicator’s	value	of	𝑇𝑜𝑝@𝐾.	


