
Quantum Graph-State Synthesis with SAT
Sebastiaan Brand1,*, Tim Coopmans1 and Alfons Laarman1

1Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Abstract
In quantum computing and quantum information processing, graph states are a specific type of quantum
states which are commonly used in quantum networking and quantum error correction. A recurring
problem is finding a transformation from a given source graph state to a desired target graph state using
only local operations. Recently it has been shown that deciding transformability is already NP-hard. In
this paper, we present a CNF encoding for both local and non-local graph state operations, corresponding
to one- and two-qubit Clifford gates and single-qubit Pauli measurements. We use this encoding in a
bounded-model-checking set-up to synthesize the desired transformation. For a completeness threshold,
we provide an upper bound on the length of the transformation if it exists. We evaluate the approach in
two settings: the first is the synthesis of the ubiquitous GHZ state from a random graph state where
we can vary the number of qubits, while the second is based on a proposed 14 node quantum network.
We find that the approach is able to synthesize transformations for graphs up to 17 qubits in under 30
minutes.
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1. Introduction

The creation, manipulation and transmission of quantum information brings into reach applica-
tions which are unfeasible or even impossible using classical computers, such as provably-secure
communication [1, 2], more accurate clock synchronization [3], and chemistry applications [4].
Various questions regarding simulation, modeling and design of quantum computers and net-
works can be phrased using graph states, a subset of all possible states of a register of quantum
bits (qubits) which can be described using graphs [5]. Additionally, graph states are crucial to a
universal model of quantum computation called measurement-based quantum computing [6].
Furthermore, when augmented with a finite set of quantum operations called Clifford gates
and single-qubit Pauli measurements, the graph-state formalism gives rise to efficient classical
simulation of a large class of quantum circuits [7] and forms the basis for many quantum error
correction schemes [8], a prerequisite for scaling up quantum computing with imperfect devices,
as well as many quantum-networking applications [9, 5]. These applications have a focus on
local quantum operations, i.e. on a single or few spatially-close qubits, for reasons regarding
experimental implementation with imperfect devices.
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Given this wide applicability, graph-state transformations have been extensively studied from
the theory standpoint for various sets of allowed local quantum operations [10, 11, 12, 13, 5, 14].
In this work, we specifically consider the following problem: given a source graph state, syn-
thesize a desired target graph state using single-qubit Clifford gates and single-qubit Pauli
measurement. This problem was shown before [15] to be equivalent to transforming the
associated graphs under two graph operations: an edge-toggling operation called local comple-
mentation (LC), corresponding to single-qubit Cliffords, and vertex deletion (VD), corresponding
to measurements. The decision problem (can a source graph be transformed to a target graph
under LC+VD?) has been shown to be NP-complete [16], even when restricting the target
graph to a practically-relevant scenario [17]. Although there exists an algorithm [15] (based on
techniques from [18, 19]) which is fixed-parameter tractable (FPT) in the rank-width 𝑟 of the
graph, the authors of the algorithm themselves remark it is not useful in practice due to a giant
FPT-prefactor equalling ten times repeated exponentiation with base 2 (i.e. 22

...2𝑟

) [16].
We tackle the problem of graph-state synthesis under LC+VD with bounded model checking

(BMC) [20, 21]. To this end we present a Boolean encoding for graph states and the operations on
them, and provide a completeness threshold for this problem. We also give an encoding for two-
qubit graph operations, which together with single-qubit operations enable all possible Clifford
operations [14]. This approach can be applied to arbitrary graphs, in contrast to special cases
for which poly-time algorithms have been found [16, 22] or unsatisfiability can be determined
analytically [23, 24]. We evaluate this approach in two settings of particular interest [16, 24]:
first, we synthesize the ubiquitous Greenberger–Horne–Zeilinger (GHZ) state [25] from random
graphs with varying number of qubits. Next, we target a 14 node quantum network proposal [26].
Within 30 minutes BMC finds transformations for graphs up to 17 nodes (qubits). In comparison,
for transformations under single-qubit Clifford operations without measurements (a setting
where deciding reachability is in P [27, 28] and counting reachable graphs is #P-complete [29]),
various properties of equivalence classes have been explored up to 12 qubits [30, 31, 32].

Aside from graph problems which have been tackled with SAT-based methods [33, 34, 35, 36,
37, 38, 39, 40], SAT has also been used on problems in quantum computing. For example, synthe-
sizing optimal Clifford circuits without measurements (closely related to graph-state synthesis
under LC + flipping arbitrary edges, but without VD) has been tackled with BMC [41]. Without
the optimality constraint (i.e. shortest circuit) this problem is in P [42], while the complexity
with the optimality constraint is unknown. SAT-based techniques have also been applied to
quantum circuit equivalence checking for a limited selection of circuits [43]. BMC specifically
has been applied to Clifford circuit (without measurements) equivalence checking [44] (a prob-
lem that is also in P [45]), and SMT and planning based approaches have been used to map
logical quantum circuits to physical quantum-chips [46, 47]. Unlike much previous work we
include measurements, which for our problem raises the complexity from P to NP-complete.

2. Preliminaries and problem definition

2.1. Quantum computing

We very briefly introduce quantum bits (qubits) and how to act on them with quantum gates
and measurements (see [48] for a complete introduction). The state |𝜓⟩ of a single qubit



is a complex 2-vector of unit norm, equalling the computational-basis states |0⟩ =
(︀
1 0
)︀⊺

or |1⟩ =
(︀
0 1
)︀⊺ or any linear combination of those, i.e. in general a single-qubit state is

|𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ =
(︀
𝛼0 𝛼1

)︀⊺ for complex numbers 𝛼0, 𝛼1 satisfying |𝛼0|2 + |𝛼1|2 = 1
(here, ⊺ denotes vector transposition). A general 𝑛-qubit quantum state is represented as a

complex vector of length 2𝑛 with norm 1, e.g.
(︁

1√
2

𝑖√
2

)︁⊺
and

(︁
2√
13

0 0 ‧ 3√
13

)︁⊺
are quantum

states. The joint state of two separate quantum registers in states |𝜑⟩ , |𝜓⟩ is |𝜑⟩ ⊗ |𝜓⟩, where ⊗
denotes the tensor product: given 𝑟𝑉 ×𝑐𝑉 matrix 𝑉 and 𝑟𝑊 ×𝑐𝑊 matrix𝑊 , the 𝑟𝑉 𝑟𝑊 ×𝑐𝑉 𝑐𝑊
matrix 𝑉 ⊗𝑊 is

𝑉 ⊗𝑊 =

⎛⎜⎝ 𝑉00𝑊 𝑉01𝑊 . . . 𝑉0𝑐𝑉 𝑊
...

...
. . .

𝑉𝑟𝑉 0𝑊 𝑉𝑟𝑉 1𝑊 . . . 𝑉𝑟𝑉 𝑐𝑉 𝑊

⎞⎟⎠ .

Given a bipartition 𝐴 ∪ 𝐵 = {1, 2, . . . , 𝑛}, an 𝑛-qubit state |𝜓⟩ is called separable over 𝐴,𝐵
if we can write |𝜓⟩ = |𝜙⟩𝐴 ⊗ |𝜑⟩𝐵 . It is entangled otherwise, a feature that has no classical
analogue and is a prerequisite to many applications with a quantum advantage. For example(︁

1√
2

0 1√
2

0
)︁⊺

=
(︁

1√
2

1√
2

)︁⊺
⊗
(︀
1 0
)︀⊺ is not entangled, but

(︁
1√
2

0 0 1√
2

)︁⊺
is.

𝐼 =

(︂
1 0
0 1

)︂
𝑇 =

(︂
1 0

0 𝑒𝑖𝜋/4

)︂
𝐻 =

1√
2

(︂
1 1
1 ‧1

)︂

CZ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ‧1

⎞⎟⎟⎠

A quantum gate (always reversible) on 𝑛 qubits is given by a
2𝑛×2𝑛 unitary matrix and the output state can be found by matrix-
vector multiplication, for example 𝐻 (see right) which maps input(︂
1
0

)︂
to output 1√

2

(︂
1 1
1 ‧1

)︂
·
(︂
1
0

)︂
=

(︃
1√
2
1√
2

)︃
. An example universal

gate set is shown on the right. The tensor product is used to apply
gates in parallel to separate registers, e.g. 𝐼⊗𝐻⊗𝐼 is a 3-qubit gate
performing a𝐻 on the second qubit and 𝐼 on the first and third. The
result of a two-qubit gate (e.g. controlled-𝑍 (CZ ), which maps e.g.(︁

1√
2

0 0 1√
2

)︁⊺
to
(︁

1√
2

0 0 ‧ 1√
2

)︁⊺
) between two non-adjacent qubits can be computed by

swapping qubits: e.g. for qubits 𝑞0, 𝑞1, 𝑞2, CZ (𝑞0, 𝑞2) = SWAP(𝑞1, 𝑞2)CZ (𝑞0, 𝑞1)SWAP(𝑞1, 𝑞2),
where SWAP(𝑞1, 𝑞2) replaces |𝑎⟩⊗|𝑏⟩⊗|𝑐⟩ → |𝑎⟩⊗|𝑐⟩⊗|𝑏⟩ for 𝑎, 𝑏, 𝑐 ∈ {0, 1}. The gates𝐻,𝑇 2

together generate (under matrix multiplication and tensoring with 𝐼) the group of single-qubit
Clifford gates, and 𝐻,𝑇 2,CZ together generate all Clifford gates.

A computational-basis measurement is a non-reversible operation which projects a single
qubit state 𝛼0 |0⟩ + 𝛼1 |1⟩ to one of |0⟩ , |1⟩ with probability |𝛼0|2 or |𝛼1|2. For example,
measuring a qubit |𝜓⟩ =

√︀
1/3 |0⟩+

√︀
2/3 |1⟩ yields the state |0⟩ with probability 1/3 and the

state |1⟩ with probability 2/3. Any 𝑛-qubit state |𝜓⟩ can be written as |𝜓⟩ = 𝛼 |0⟩ ⊗ |𝜓0⟩ +
𝛽 |1⟩ ⊗ |𝜓1⟩ where |𝛼|2 (|𝛽|2) is the probability of finding the first qubit in the |0⟩ (|1⟩) state
after measuring it (for expressing measurement on the other qubits, swap qubits first). A Pauli
measurement equals a computational-basis measurement preceded by a single-qubit Clifford
gate. Sequences of quantum operations are typically visualized in a quantum circuit (see Fig. 1).

2.2. Graph states and graph-state reachability

Graph states are a subset of all quantum states. An 𝑛-qubit graph state |𝐺⟩ is represented by
an undirected simple graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛 vertices and no self-loops (where 𝑉 is



|0⟩ 𝐻

|0⟩ 𝐻 𝐻

|𝜓1⟩ |𝜓2⟩|𝜓3⟩ |𝜓4⟩ |𝜓1⟩ = |0⟩ ⊗ |0⟩ = |00⟩
|𝜓2⟩ = (𝐻 ⊗𝐻) |𝜓1⟩ = 1

2 (|00⟩+ |01⟩+ |10⟩+ |10⟩)
|𝜓3⟩ = CZ |𝜓2⟩ = 1

2 (|00⟩+ |01⟩+ |10⟩ − |11⟩)
|𝜓4⟩ = (𝐼 ⊗𝐻) |𝜓3⟩ = 1√

2
(|00⟩+ |11⟩)

Figure 1: An example 2-qubit quantum circuit. Operations are applied from left to right. The
controlled-𝑍 (CZ ) gate is visualized as . As is common, we write |01⟩ as shorthand for |0⟩ ⊗ |1⟩,
|01⟩ = |0⟩ ⊗ |1⟩, etc. Measuring both qubits at the end gives |00⟩ or |11⟩ with equal probability.

𝑞0 |0⟩ 𝐻

𝑞1 |0⟩ 𝐻

𝑞2 |0⟩ 𝐻

𝑞3 |0⟩ 𝐻

|𝐺1⟩ |𝐺2⟩

(a) Circuit generating |𝐺2⟩.

0

2 3

1

(b) Graph 𝐺1.

0

2 3

1

(c) Graph 𝐺2.

0

2 3

1

(d) 𝐺3 = LC 0(𝐺2).

0

2 3

1

(e) 𝐺4 = VD2(𝐺3).

Figure 2: The circuit in 2a generates the state |𝐺2⟩, corresponding to the graph in 2c. Examples of local
complementation and vertex deletion are shown in 2d and 2e.

the vertex set and 𝐸 ⊆ 𝑉 × 𝑉 the edge set), constructed as starting from the state 𝐻⊗𝑛 |0⟩⊗𝑛,
followed by a CZ gate on each pair of qubits (𝑢, 𝑣) ∈ 𝐸. An example is given in Fig. 2. From
here on we say ‘graph’ to mean ‘undirected simple graph without self-loops’. Intuitively, the
graph 𝐺 captures information about the entanglement between the qubits, where two qubits
are entangled if they are (directly or indirectly) connected in the graph.

The two graph transformations corresponding to single-qubit quantum operations are:

• Local complementation LC 𝑘 on vertex 𝑘 ∈ 𝑉 transforms 𝐺 = (𝑉,𝐸) into 𝐿𝐶𝑘(𝐺) =
(𝑉,𝐸′) where 𝐸′ is obtained from 𝐸 by flipping the edges in the neighborhood of 𝑘, i.e.
for all 𝑢, 𝑣 ∈ 𝒩𝑘 , if (𝑢, 𝑣) ∈ 𝐸 then (𝑢, 𝑣) ̸∈ 𝐸′ and if (𝑢, 𝑣) ̸∈ 𝐸 then (𝑢, 𝑣) ∈ 𝐸′. Here,
the neighborhood 𝒩𝑘 is the set of all vertices adjacent to 𝑘, i.e. 𝒩𝑘 = {𝑣 | (𝑘, 𝑣) ∈ 𝐸}.
For any graphs 𝐺 and 𝐺′, |𝐺′⟩ is reachable from |𝐺⟩ using only single-qubit Clifford
operations if and only if 𝐺′ is reachable from 𝐺 using local complementations. More
specifically, the graph state |LC 𝑘(𝐺)⟩ equals the resulting quantum state when applying
a certain sequence of single-qubit Clifford operations to |𝐺⟩ (see [10] for details).

• Vertex deletion VD𝑘 of vertex 𝑘 ∈ 𝑉 transforms 𝐺 = (𝑉,𝐸) to VD𝑘(𝐺) = (𝑉,𝐸′)
with 𝐸′ = 𝐸 ∖ {(𝑣, 𝑘) | 𝑣 ∈ 𝑉 }, i.e. 𝑘 becomes isolated (all edges adjacent to 𝑘 are
removed). Vertex deletion of vertex 𝑘 implements measurement on qubit 𝑘: for each
graph 𝐺, the graph state |VD𝑘(𝐺)⟩ is single-qubit Clifford equivalent to |𝐺⟩ at which a
computational-basis measurement has been performed on qubit 𝑘 [12].

And although not the primary focus of this work, we can also consider two-qubit operations:

• Given a subset of pairs of nodes 𝐷 ⊆ 𝑉 × 𝑉 (for convenience 𝑢 < 𝑣 for (𝑢, 𝑣) ∈ 𝐷),
𝐺 can be transformed into 𝐺′ by edge flips among 𝐷 and local complementations on



vertices in 𝑉 if and only if |𝐺⟩ can be transformed into |𝐺′⟩ using two-qubit Clifford
operations on the qubit pairs in 𝐷 and single-qubit Clifford on qubits in 𝑉 [14-Th.1].

Rather than generating a graph state from scratch using CZ gates (as in Figs. 2a to 2c) a
problem of interest for e.g. quantum networking is to obtain a particular graph from an existing
graph using only single-qubit operations (LC+VD, and 𝐷 = ∅). Below is a practical example.

Example 2.1. Alice is part of a 6-node quantum network and wants to run a
quantum secret sharing scheme [9] between herself and three other parties, each
having one qubit. For this she needs a 4-qubit Greenberger–Horne–Zeilinger
(GHZ) state [25], given by𝐺GHZ on the right. However, generating |𝐺GHZ⟩ using
CZ -gates (Figs. 2a to 2c)) requires generating entanglement [49, 50-Fig.2.4],
which is a time-consuming probabilistic process [51]. At some point in time the
network is a state |𝐺𝑠⟩. Because single-qubit operations (LC+VD on the graph)
are much easier to perform than entanglement generation, Alice wants to know
whether a given 𝐺𝑠 can be transformed into 𝐺GHZ using only LC+VD.

B A

C

D

𝐺𝑠

B A

C

D

𝐺GHZ

This motivates the problem we will study in this work, posed before in [16] for single-qubit
operations (LC+VD and 𝐷 = ∅) and in [14] for multi-qubit operations (LC+VD and 𝐷 ̸= ∅).

Definition 2.1 (Graph-state synthesis). Given source and target graphs 𝐺𝑠 = (𝑉,𝐸𝑠) and
𝐺𝑡 = (𝑉,𝐸𝑡), find (if it exists) a sequence of local complementations and vertex deletions on
any 𝑣 ∈ 𝑉 (and also edge flips on (𝑢, 𝑣) ∈ 𝐷 for some given 𝐷 ⊆ 𝑉 × 𝑉 in case multi-qubit
Clifford operations are allowed on 𝐷) which transforms 𝐺𝑠 into 𝐺𝑡.

We remark that if 𝐷 = 𝑉 × 𝑉 , any graph can be trivially synthesized because an edge may
be added or removed between any pair of nodes (Figs. 2a to 2c). We also remark that we are not
necessarily interested in the shortest sequence of graph transformations, as any sequence of
LC+VD translates into at most one single-qubit Clifford and one measurement per qubit.

3. SAT encoding

As seen in the previous section, quantum operations on graph states can be expressed through
graph transformations. In this section, we give Boolean encodings for these operations, as well
as an encoding for the transition relation as a whole. The encoding of a single transformation
step from graph 𝐺 to 𝐺′ uses variables �⃗� for 𝐺 and �⃗�′ for 𝐺′. We encode a graph as follows.

Definition 3.1 (Graph encoding). An undirected graph 𝐺 of 𝑛 vertices is encoded as a con-
junction over 𝑛(𝑛 − 1)/2 literals 𝑥𝑢𝑣 (¬𝑥𝑢𝑣), for (𝑢, 𝑣) ∈ U = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 | 𝑢 < 𝑣},
indicating there is (not) an edge between nodes 𝑢 and 𝑣.

3.1. Encoding of graph transformations

The Boolean encoding for deleting a vertex 𝑘, denoted VD𝑘, is given in Eq. (1). All edges (𝑢, 𝑣)
connected to 𝑘 are set to false (¬𝑥′𝑢𝑣) while all others remain unchanged (𝑥′𝑢𝑣 ↔ 𝑥𝑢𝑣).

VD𝑘 =
⋀︁

(𝑢,𝑣)∈U

{︃
¬𝑥′𝑢𝑣 if 𝑢 = 𝑘 or 𝑣 = 𝑘

𝑥′𝑢𝑣 ↔ 𝑥𝑢𝑣 otherwise.
(1)



The encoding for performing a local complementation on vertex 𝑘, denoted LC𝑘, is given in
Eq. (2) and can be read as follows: if vertices 𝑢, 𝑣 are in the neighborhood of 𝑘 (𝑥𝑢𝑘 ∧ 𝑥𝑣𝑘) then
the value of the edge (𝑢, 𝑣) is flipped (𝑥′𝑢𝑣 ↔ ¬(1⊕ ¬𝑥𝑢𝑣).

LC𝑘 =
⋀︁

(𝑢,𝑣)∈U

{︃
𝑥′𝑢𝑣 ↔ ¬((𝑥𝑢𝑘 ∧ 𝑥𝑣𝑘)⊕ ¬𝑥𝑢𝑣) if 𝑢 ̸= 𝑘 and 𝑣 ̸= 𝑘

𝑥′𝑢𝑣 ↔ 𝑥𝑢𝑣 otherwise.
(2)

To encode edge flips on a selection of edges 𝐷 (Def. 2.1), we take 𝐷 to be an indexed set
𝐷 = {(𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . } with 𝑢𝑖 < 𝑣𝑖. Given this indexed set, the constraint in Eq. (3)
encodes an edge flip of (𝑢𝑖, 𝑣𝑖).

EF𝑖 =
⋀︁

(𝑢,𝑣)∈U

{︃
𝑥′𝑢𝑣 ⊕ 𝑥𝑢𝑣 if 𝑢 = 𝑢𝑖 and 𝑣 = 𝑣𝑖

𝑥′𝑢𝑣 ↔ 𝑥𝑢𝑣 otherwise
(3)

In order to combine the transition relations LC𝑘 , VD𝑘 , and EF𝑖 into a single CNF formula we
use a construction similar to the BMC encoding of different concurrent threads in [52]: we add
⌈log2(max(|𝑉 |, |𝐷|) + 1)⌉ variables �⃗� for the binary encoding of 𝑘 ∈ 𝑉 or 𝑖 ∈ {1, . . . , |𝐷|},
and two variables �⃗� to indicate whether a given operation is a local complementation (�⃗� = 0),
a vertex deletion (�⃗� = 1), or an edge flip (�⃗� = 2). For example the constraint �⃗� = 3 ∧ �⃗� = 1
represents vertex deletion of node 3. Using these additional variables, we encode all local
complementations, vertex deletions, and edge flips as in Eqs. (4) to (6).

𝑅LC(�⃗�, �⃗�
′) =

⋀︁
𝑘∈𝑉

[︁
(�⃗� = 𝑘 ∧ �⃗� = 0) → LC𝑘(�⃗�, �⃗�

′)
]︁

(4)

𝑅VD(�⃗�, �⃗�
′) =

⋀︁
𝑘∈𝑉

[︁
(�⃗� = 𝑘 ∧ �⃗� = 1) → VD𝑘(�⃗�, �⃗�

′)
]︁

(5)

𝑅EF(�⃗�, �⃗�
′) =

⋀︁
𝑖∈{1,...,|𝐷|}

[︁
(�⃗� = 𝑖 ∧ �⃗� = 2) → EF𝑖(�⃗�, �⃗�

′)
]︁

(6)

Additionally we add an identity transition 𝑅Id(�⃗�, �⃗�
′) = (�⃗� = 3) → Id(�⃗�, �⃗�′) to ensure that

if a transformation of length 𝑑 exists, a transformation of length 𝑑′ ≥ 𝑑 also exists (to avoid
searching over all 𝑑), and we appropriately constrain the unused values of �⃗� and �⃗� by adding
𝐶 = (�⃗� < |𝑉 | ∨ 𝑧 = 2) ∧ (�⃗� < |𝐷| ∨ 𝑧 ̸= 2). Finally, we obtain the the global transition
relation in Eq. (7). When converted to CNF this formula has 𝑚 + 𝑛(𝑛 − 1) variables and ≤
3.5𝑛3+2𝑚𝑛2+0.5𝑛2+0.5|𝐷|𝑛2 clauses, where 𝑛 = |𝑉 | and𝑚 = ⌈log2(max(|𝑉 |, |𝐷|)+1)⌉.

𝑅global(�⃗�, �⃗�
′) = 𝑅LC ∧𝑅VD ∧𝑅EF ∧𝑅Id ∧ 𝐶 (7)

We use the transition relation specified in Eq. (7) in a bounded-model-checking set-up, i.e.
we create Eq. (8) below, where 𝑆(�⃗�1) encodes a source graph 𝐺𝑠, 𝑇 (�⃗�𝑑) a target graph 𝐺𝑡, and
𝑑 is the search depth.

𝑆(�⃗�1) ∧
𝑑−1⋀︁
𝑖=1

𝑅global(�⃗�𝑖, �⃗�𝑖+1) ∧ 𝑇 (�⃗�𝑑) (8)

The formula is satisfiable if and only if a sequence of operations of at most 𝑑 steps exists which
transforms 𝐺𝑠 into 𝐺𝑡. In Section 3.2, we prove an upper bound on the required depth 𝑑.



3.2. Completeness threshold

To provide a completeness threshold for graph-state synthesis under LC+VD, we use the
following observations to bound the search depth.

1. If 𝐺𝑠 can be transformed to 𝐺′
𝑠 under LC, a transformation exists of at most 𝑀 local

complementations, where 𝑀 = 3(|𝑉 | − 𝑠)/2 with 𝑠 = |𝑉 |(mod 2) [27-§4].
2. If𝐺𝑠 can be transformed into𝐺𝑡 under LC+VD, then vertex deletion needs to be performed

on exactly the Δ vertices which are isolated in 𝐺𝑡.1

3. For 𝑘 ∈ 𝑉 , 𝐿𝐶𝑘 after VD𝑘 leaves the graph unchanged, i.e. LC 𝑘(VD𝑘(𝐺)) = VD𝑘(𝐺).
4. For 𝑗, 𝑘 ∈ 𝑉 and 𝑗 ̸= 𝑘, 𝐿𝐶𝑗 and VD𝑘 commute, i.e. LC 𝑗(VD𝑘(𝐺)) = VD𝑘(𝐿𝐶𝑗(𝐺)).

|𝑉 | 𝑆𝑄𝐶
} |𝑉 | −Δ

|𝐺𝑠⟩ |𝐺′
𝑠⟩ |𝐺𝑡⟩

Figure 3: Graph-state transformation circuit
under LC+VD.

From points 3 and 4, it follows that all vertex dele-
tions (measurements) can be postponed until after
the local complementations (single-qubit Clifford
gates). We then get that if 𝐺𝑠 can be transformed
into 𝐺𝑡 under LC+VD, it can be transformed by a
circuit of the form given in Fig. 3, taking at most
𝑀 local complementations and Δ vertex deletions.

4. Empirical evaluation

We evaluate our approach in two settings: synthesizing a GHZ state from random graphs for an
increasing number of qubits, and synthesis of graphs based on a proposal of a 14 node quantum
network in the Netherlands [26]. For all experiments, we perform binary search over 𝑑 up to
the completeness threshold specified in Section 3.2. In our current setup, the solver is restarted
for every different 𝑑. Experiments2 were run on Ubuntu 18 with an AMD Ryzen 7 5800x CPU.
Two different SAT solvers, Glucose 4 [53] and Kissat [54], have been used.

We first evaluate our approach in a setting where the target states are 4-qubit GHZ states (see
Example 2.1), matching the target states in the empirical evaluation in [16]. GHZ states are used
in a large number of applications such as quantum secret sharing [9] (see also Example 2.1),
anonymous transfer [55] and conference key agreement [56]. The polynomial time algorithm
presented in [16] can only be applied when the source graph has special properties (specifically
it needs to have rank-width 1). To evaluate our method we replace the restricted random graphs
used in [16] with more general Erdős-Rényi random graphs, which have also been used in other
work concerning graph-state synthesis [57, 58]. Results are shown in Fig. 4. With a timeout
of 30 minutes Kissat can synthesize transformations for graphs up to 17 qubits. Determining
unreachability, which we do using the completeness threshold, can be done up to 8 qubits by
Glucose within this timeout.

Next, we evaluate our approach on the specific quantum network architecture proposed in
[26-Fig.3] (visualized in Fig. 5a). As source states, we consider graphs with nodes from this
network, and random edges as follows: (𝑢, 𝑣) ∈ 𝐸 with probability 𝑝𝑑, where 𝑑 is the distance
1Without loss of generality, we assume 𝐺𝑠 has no isolated vertices. If 𝐺𝑠 has isolated vertices which are not isolated
in 𝐺𝑡, then 𝐺𝑡 is trivially unreachable under LC+VD.

2Reproducible experiments are available online at https://github.com/sebastiaanbrand/graph-state-synthesis.

https://github.com/sebastiaanbrand/graph-state-synthesis
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Figure 4: The total SAT solver time for BMC with binary search over the depth up the completeness
threshold (see Section 3.2). For each number of qubits we run on three Erdős-Rényi random graphs
with 𝑝 = 0.8, with a 4-qubit GHZ state as target, with only LC+VD on the left, and LC+VD+EF on a
random set 𝐷 with |𝐷| = 1

2 |𝑉 | on the right. 4b shows the difference between the solvers for the data
points from both the left and right plot in 4a. Open symbols indicate timeouts. Solid spheres indicate
unreachability at the depth of the completeness threshold. The largest solved instance is for 17 qubits
at 𝑑 = 16, which has a formula with ∼2400 variables and ∼300,000 clauses (see above Eq. (7) for 𝑑 = 1).

(a) Network from [26-Fig.3].
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Figure 5: The 14-node quantum network proposed in [26-Fig.3], and the SAT solver time to synthesize a
transformation into a GHZ state for different amounts of entanglement (𝑝) in the network. Open circles
indicate timeouts. Solid spheres indicate unreachability as at the depth of the completeness threshold.

(number of hops + 1) between the nodes, motivated by the fact that generating entanglement
over larger distances is harder [51]. The target state is a GHZ state between the main network
nodes (squares in Figure 5a). Fig. 5b shows the results for varying 𝑝. A higher 𝑝 corresponds to
a larger amount of entanglement in the network. We observe that for fixed number of nodes,
the time it takes to synthesize a transformation increases with the density of the source graph.
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