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Abstract

In the context of parallel SAT solving, efficient information sharing plays a pivotal role in improving
the performance. Traditionally, this information comprises the clauses learned by the underlying
sequential solvers of the parallel strategy. This paper investigates the integration of existing sharing
strategies and proven heuristics into parkissat-rs, a parallel solver using the kissat sequential
engine. The investigation focuses on evaluating the trade-offs between dedicating a core to solving the
formula and optimizing the sharing mechanism. We evaluate different configurations of parkissat-rs,
using additional threads for sharing, a dynamic threshold for clauses filtering, a dedicated thread for
strengthening shared clauses, and a mechanism to prevent the sharing of duplicate learned clauses. We
also performed a scaling study on a subset of the parameters. These extensive experiments conducted on
the SAT 2022 main track benchmark demonstrate the effectiveness of the derived solvers, especially on
UNSAT instances.
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1. Introduction

Modern Conflict Driven Clause Learning (CDCL) SAT solvers have proven successful in solving
various real-world problems, including those arising from hardware and software verification.
As many-core machines become ubiquitous, these solvers have been adapted to operate in
parallel. In this parallel context, efficient information sharing plays a crucial role in improving
performance. Typically, this is achieved by exchanging sets of newly derived lemmas among
the participants of the parallel solving strategy, i.e., the underlying sequential solvers.

The goal of this paper is to identify a combination of proven techniques that can enhance
the quality of the sharing mechanism, leading to significant improvements in parallel SAT
solving performance. These techniques have been demonstrated in the p-mcomsps solver [1],
which exhibited excellent performance on UNSAT instances in previous SAT competitions. On
the 2022 SAT competition’, the solver parkissat-rs, an instance of the Painless framework
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Solvers CDCL TIME SAT Solvers CDCL TIME UNSAT

VBS - 16H13 167 VBS - 53H33 165

P-2G 30 18H17 167 P-1G 31 54H42 165

P-1G 31 21H23 164 P-2G 30 54H46 164
Table 1

Performance evaluation of the -XG options.

[2] utilizing kissat as sequential engine [3], achieved outstanding results on both SAT and
UNSAT instances. However, the sharing mechanism configuration used in parkissat-rs
differs significantly from that of p-mcomsps. Therefore, we aim to investigate if the sharing
policies of p-mcomsps can be incorporated into parkissat-rs [4] to further enhance its
performance.

Over the years, p-mcomsps’s sharing mechanism has undergone incremental improvements
with multiple options. Some options involve simple decision heuristics, while others require
dedicated execution units (threads). Since we intend to use a solver with different sequential
algorithms and diversification mechanism, we need to evaluate the trade-offs between dedicating
a core to solving the formula versus optimizing sharing.

We evaluate various configurations of parkissat-rs with the following options: (i) employ-
ing additional threads to handle sharing, thereby increasing the bandwidth of learned clauses;
(ii) utilizing a dynamic threshold for the Literal Block Distance measure; (iii) introducing a
dedicated thread for strengthening the exchanged clauses; (iv) implementing a mechanism to
prevent the sharing of duplicate learned clauses.

We show that option (i) alone is sufficient to significantly improve performance on SAT
instances. However, for better results on UNSAT instances, option (ii) must be activated and it
combines well with options (iii) and (iv), albeit without spectacular improvements.

Furthermore, we present some insights into the results through a scaling experiment per-
formed on machines with 32, 48, and 64 cores. We demonstrate that the solving times of SAT
instances decrease as the number of cores increases, while the solving times of the UNSAT
instance do not decrease beyond 48 cores.

The structure of the article is as follows: Section 2 describes the architecture and specificities
of the parallel solver parkissat-rs. Section 3 outlines the framework and methodology
employed in the study. The options integrated into the sharing policy are discussed in Section 4.
Section 5 discusses some scaling results and Section 6 presents the concluding remarks of the

paper.

2. Parkissat-rs

In this section, we present parkissat-rs (see Figure 1), a state-of-the-art parallel (portfolio)
solver that utilizes shared memory-based communication among the underlying sequential
solvers. As the winner of the parallel SAT competition in 2022 by a significant margin, this
customized portfolio of kissat solvers has proven to be highly effective. The diversification
mechanism of parkissat-rs randomizes the branching order of variables for each solver
in the portfolio, supplemented with the options provided by kissat, the underlying solver.
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Figure 1: Architecture of parkissat-rs, three main components define: the Parallelization (here a
portfolio) and its SequentialWorker which represent the execution of an algorithm, the Sequential
Engines which are adapters for plugging the implementation of an algorithm (here kissat) into the
framework and finally Sharing which defines a sharing policy.

Sharer

Additionally, several preprocessing and in-processing methods have been developed to guide
the solver at the beginning or during the resolution process.

Furthermore, parkissat-rs implements a policy for sharing learned clauses. Initially, each
solver places all the clauses it has learned with a Literal Block Distance (LBD) value less than or
equal to 2 into an export buffer. Then, a dedicated sharing thread called Sharer retrieves the
clauses from all export buffers and distributes them to the import buffers of all solvers. The
sharing process is performed asynchronously, thereby avoiding contention on locks since each
buffer is only accessed by two threads: the thread responsible for sharing the clauses and the
Sharer thread. The sharing thread performs this operation every 0.5 seconds, and to control
the bandwidth of shared data, it only shares 1500 literals per sharing round.

In Section 4, we will incrementally introduce various mechanisms to enhance the sharing
policy of the aforementioned architecture. We will analyze the impact of these mechanisms on
the performance of the platform.

3. Experimental Setup and Evaluation Methodology

Here, we present the methodology employed to evaluate the potential combinations of options,
as well as provide a detailed overview of the experimental platform.

Hardware The experiments were conducted on a cluster consisting of Intel Xeon Silver 4216
processors, equipped with 32 cores and 384 GB of RAM. The solvers were executed with a
timeout of 5000 seconds and a memory limit of 256 GB.

The benchmark We executed our solver on the main track of the SAT 2022 competition, which
comprises a minimum of 171 SAT instances and 187 UNSAT instances, as per the competition
results. Consequently, we divided the results into two separate tables: one for SAT instances
and another for UNSAT instances. However, we excluded the 42 instances with UNKNOWN
results, both as reported by the competition and observed in our experiments, from the tables.
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Figure 2: Final architecture after adding all the options (P-2G-horde-str-dup) .

Performance evaluation Our objective is to compare the performance of each solver with
the Virtual Best Solver (VBS), which is composed of the best results achieved by any solver for
each instance. We assess the solvers based on their execution time and the number of instances
solved. In each table, we present the performance of a solver alongside the number of cores
dedicated to the CDCL algorithm.

Since we aim to utilize all available physical cores on our test machines and certain options
require a dedicated thread, some configurations involve sacrificing a physical core used for
CDCL (as in the original version, parkissat-rs) in favor of the specific option.

The tables include the following data:

« The "CDCL" column indicates the number of CDCL cores utilized in the portfolio.
« The "Total Runtime" represents the cumulative runtime of the solver.?
« The "Instances Solved" denotes the number of instances successfully solved.

Improvements of the sharing policy

In this section, we introduce various enhancements to the sharing mechanism of parkissat-rs
and examine their performances. Each improvement is individually studied, as well as in
combination with others, as they can have both quantitative and qualitative effects on clause
sharing. Additionally, these mechanisms come with associated resource costs, making it crucial
to investigate their potential side effects on each other.

To streamline the presentation of the results, we have opted to incrementally incorporate
each studied mechanism. Towards the end of the section, we will present all the possible
combinations. The resulting solver is named P- [options] for clarity and reference.

’A non-solved instance is given a runtime of 5000.



4.1. XG: Increasing sharing throughput using multiple production groups

The first option we introduce to the sharing policy is the concept of multiple production groups.
A production group comprises a set of solvers as producers, all solvers in the portfolio as
consumers, and a dedicated Sharer thread running on a specific physical core.

The original implementation of parkissat-rs utilizes one production group (referred to
as P-1G in the tables). To enhance the throughput of shared clauses, we incorporate a second
production group: half of the solvers in the portfolio act as producers for one group, while the
other half act as producers for the other group. This updated configuration is referred to as
P-2G.

While the proposed mechanism is fully customizable and allows for additional groups, pre-
liminary tests on our test machine have shown performance degradation when using more
than 2 groups. The increase in the number of physical cores dedicated to different threads
becomes too significant. Figure 2 shows the final architecture after incorporating all the options
(P-2G-horde-str-dup).

Table 1 compares P-1G and P-2G. We observe that using two sharing groups yields improved
performance on SAT instances, with three additional instances solved. However, there is no
performance improvement for UNSAT instances. Although P-2G loses one instance, the runtime
is nearly equivalent, indicating that P-1G is not significantly faster.

The second Sharer enables faster sharing of clauses, leading to a more rapid utilization of
the shared clauses. However, since the strategy only shares clauses with an LBD value less than
or equal to two, the impact of these shared clauses is limited.

4.2. Horde: A Heuristic to Select Clauses to Share

The -horde option enables the Sharer to dynamically adjust the LBD threshold for individual
producers based on an estimation of whether they are sending too few or too many clauses.
This mechanism allows for better control over the sharing of clauses. It is worth noting that
this sharing strategy is an improvement of the one developed in [5].

Table 2 presents the performance results of using the -horde option with P-1G and P-26G.
Although this option appears to slightly degrade the performance for SAT instances, specifically
with P-1G-horde losing two instances compared to P-1G, a closer examination of the runtime
indicates that P-1G-horde overall achieved faster execution.

On the other hand, the -horde option delivers significant performance gains for UNSAT
instances, with both solvers benefiting from up to five additional solved instances.

The key insight from this experiment is that clauses with an LBD greater than two prove to
be highly valuable for solving UNSAT instances. Notably, the -horde option performs on par
with the VBS in solving UNSAT instances.

4.3. STR: Asynchronous clause strengthening

The -str option activates the reducer component, which implements an asynchronous clause
strengthening algorithm. The purpose of this option is to enhance the unit propagation (UP)
procedure by reducing the size of received learned clauses. The reducer operates within a
production group and attempts to minimize the size of the clauses received from the solvers



Solvers CDCL TIME SAT Solvers CDCL TIME UNSAT

VBS - 13H26 169 VBS - 44H44 169

P-2G 30 18H17 167 P-1G-horde 31 45H42 169

P-2G-horde 30 18H58 167 P-2G-horde 30 46H03 169

P-1G 31 21H23 164 P-1G 31 54H42 165

P-1G-horde 31 21H28 162 P-2G 30 54H46 164
Table 2

Performance evaluation of the -horde option.

Solvers CDCL TIME SAT Solvers CDCL TIME UNSAT
VBS - 12H12 169 VBS - 42H39 169
P-2G 30 18H17 167 P-2G-horde-str 28 45H13 169
P-2G-horde 30 18H58 167 P-1G-horde-str 30 45H14 169
P-1G-horde-str 30 19H51 165 P-1G-horde 31 45H42 169
P-2G-str 28 20H19 164 P-2G-horde 30 46H03 169
P-1G 31 21H23 164 P-2G-str 28 48H43 169
P-2G-horde-str 28 21H28 164 P-1G-str 30 53H07 164
P-1G-str 30 22H03 163 P-1G 31 54H42 165
P-1G-horde 31 22H38 162 P-2G 30 54H46 164
Table 3

Performance evaluation of the -str option.

within the group. Successfully reduced clauses are then sent back to the solvers. Since the
reducer is computationally intensive, a dedicated core is allocated for its execution.

The theoretical basis of this strengthening technique is presented in [6], and here we provide
the technical details. The reducer relies on a standard CDCL algorithm. It takes a clause as
input and outputs the same clause, potentially reduced by some or all of its literals. If the
reducer derives the empty clause during the process, it indicates that the formula is unsatisfiable
(UNSAT). The algorithm operates as follows:

1. Iteratively assign the false value to each variable in the clause until a conflict is reached
or all literals have been successfully assigned.

2. At each iteration, select a literal whose complement is not involved in the current assign-
ment. This ensures that the input clause is stripped of literals that are redundant based
on the rest of the clause.

3. Perform UP after selecting each literal. If no conflicts are found, add the literal to the
output clause and add its negation to the current assignment set.

4. When a conflict is reached, execute a sequence of backjumps, UP, and conflict analyses
until the conflict is resolved or the current assignment set is empty.

5. During this phase, the algorithm can learn new clauses. When it reaches an area without
conflicts while the assignment set is not empty;, it returns a new clause.

A previous evaluation demonstrated that a similar architecture reduced the size of one third of
received clauses by a quarter [7].

Table 3 presents the performance results of the -str option. We can observe that the
integration of this option yields consistent improvements for UNSAT instances across all the
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Figure 3: Percentage of duplicate clauses coming from the CDCL core and the reducer core

previously defined configurations, either in terms of running time or the number of solved
instances. Notably, the P-2G-str configuration outperforms the P-2G configuration in terms
of the number of solved instances.

However, for SAT instances, the impact of the - str option is generally negative, as three out of
four configurations experience performance degradation. The P- 1G-horde-str configuration
appears to be an anomaly, which could be attributed to the inherent randomness affecting the
solver’s behavior.

In summary, assigning a core that was originally dedicated to executing CDCL to the execution
of the reducer component proves to be highly beneficial for solving UNSAT instances but has an
adverse effect on SAT instances. These findings align with the results of experiments conducted
in [6], the original context in which the strengthening algorithm was developed.

4.4. DUP: Preventing the Sharing of Duplicates

In a parallel context, it is common to encounter many identical clauses that are learned by
different CDCL solvers. Sharing these duplicates among solvers can be detrimental to the
parallel solver’s performance.

To address this issue, it is beneficial to develop a mechanism that detects and rejects the
sharing of duplicated clauses. However, such a mechanism comes with a cost that can potentially
impact the sharer’s performance. Therefore, it is crucial to ensure that the number of duplicate
clauses is significant enough to justify the trade-off.

The study depicted in Figure 3 examines the percentage of duplicates originating from CDCL
solvers (Global duplicates) and from the reducer (after the strengthening phase). Each dot in
the plot represents the percentage for a specific instance®.

*The benchmark used here is from the 2021 SAT competition



Solvers CDCL TIME  SAT Solvers CDDL TIME  UNSAT
VBS - 09H53 170 VBS - 42H06 169
P-2G 30 18H17 167 P-1G-horde-dup 31 45H05 169
P-2G-horde 30 18H58 167 P-2G-horde-str 28 45H13 169
P-2G-horde-str-dup 28 19H38 164 P-1G-horde-str 30 45H14 169
P-1G-horde-str 30 19H51 165 P-2G-horde-dup 30 45H31 169
P-2G-str 28 20H19 164 P-1G-horde 31 45H42 169
P-1G 31 21H23 164 P-2G-horde-str-dup 28 45H47 169
P-1G-horde 31 21H28 162 P-1G-horde-str-dup 30 45H56 168
P-1G-str-dup 30 21H37 164 P-2G-horde 30 46H03 169
P-1G-horde-dup 31 21H52 163 P-2G-str 28 48H43 169
P-1G-str 30 22H03 163 P-1G-str 30 53H07 164
P-1G-dup 30 22H31 164 P-1G-dup 31 53H35 165
P-2G-horde-dup 30 22H31 163 P-1G-str-dup 30 53H36 164
P-2G-horde-str 28 22H38 164 P-2G-dup 30 54H29 165
P-2G-dup 30 23H48 162 P-1G 31 54H42 165
P-1G-horde-str-dup 30 23H53 161 P-2G 30 54H46 164
Table 4

Performance evaluation of -dup option

The study reveals that CDCL solvers generate between 0% and 10% duplicates. On the
other hand, the reducer produces a substantial number of duplicates across a larger number
of benchmark instances. This analysis motivates the introduction of a duplicate removal
mechanism.

Implementing such a mechanism requires tracking the already shared clauses. However,
storing all clauses perfectly would be memory-intensive. Therefore, we chose to implement a
space-efficient probabilistic approach using Bloom filters [8]. The sharer is enhanced with a
Bloom filter to prevent the sharing of duplicates within its production group. It is worth noting
that similar filters have been utilized in [5, 9]. In our configuration, this mechanism is activated
by using the -dup option.

The results obtained using the -dup option are shown in Table 4. It can be observed that
the outcomes are somewhat mitigated. Our intuition suggests that although a Bloom filter
offers efficiency, the process of verifying duplicate clauses in each round of sharing can still
impede sharing. This trade-off does not appear to be worthwhile, especially in the context of
this specific benchmark with the chosen solver.

5. Scaling study

Thus far, our research has focused on analyzing the impact of different mechanisms on a
configuration consisting of 32 physical cores, which reflects the characteristics of machines
used in SAT competitions over the past few years. However, the issue of scalability of these
algorithms has emerged as a significant concern.

To address this concern, we conducted a new study using two additional architectures:
one with 48 cores and another with 64 cores. Within this study, we concentrated on
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Figure 4: Scaling experiment

the best-performing combinations identified in the 32-core study: namely, 2G, 2G-horde,
2G-horde-str, and 1G-horde-dup. To assess their performance, we employed a benchmark
comprising 40 instances that were solved by at least one configuration utilizing the 32-core
architecture, with each instance having a maximum allowed solving time. The results of this
study are presented in Figure 4.

Overall, our findings indicate that the relative performance of the different combinations,
with the exception of one case, remains consistent as the number of cores increases, regardless
of whether the problem is SAT or UNSAT. However, we observed an intriguing phenomenon:
beyond 48 cores, scalability notably diminishes for UNSAT problems, irrespective of the algo-
rithm employed. This can be attributed to the limitations of the sharing mechanisms, as the
additional threads do not effectively reduce the search space explored by other threads. Con-
versely, SAT problems exhibit different behavior, as increasing the number of threads enhances
the probability of swiftly finding a solution.

Furthermore, alongside these general results that support prior research, it is worth highlight-
ing the remarkable performance of 2G-horde-str. While it maintains its superiority for solving
UNSAT problems, it emerges as the most efficient algorithm for SAT problems in the 64-core
configuration. This achievement can be attributed to the substantial impact of strengthened
clauses, which enable the early pruning of irrelevant branches in the decision tree, thereby
accelerating convergence towards a solution.

6. Conclusion

In this paper, we have combined established techniques with new algorithms to enhance the
sharing mechanism in the parallel solver, parkissat-rs.

Specifically, compared to the original implementation, we introduced production groups, the
horde sharing strategy, strengthening, and duplicate removal mechanisms. The complete solver
with all the options is depicted in Figure 2.

We conducted experiments and compared the performance of each implemented add-on on



the benchmarks of the 2022 SAT competition. This allowed us to draw conclusions regarding
the individual and combined effects of each technique. For SAT instances, the most effective
implementation is P-2G. This implies that the original implementation is already efficient
and requires minimal changes. The division of solvers within production groups significantly
accelerates sharing.

For UNSAT instances, all implementations utilizing the horde sharing strategy are highly effi-
cient. This mechanism complements strengthening and duplicate removal when used separately,
but combining all three does not yield improved results.

These conclusions hold for multi-core machines with up to 100 cores. Further exploration of
these strategies in many-core machines with more than 100 cores would be fascinating. In such
scenarios, the cost of CPU-intensive mechanisms could be offset by utilizing a larger number of
solvers, achieving better resource utilization.

Furthermore, a possible heuristic avenue, not explored in this paper, is the diversification
mechanism used by parallel SAT solvers to avoid redundant work between worker threads. We
are interested in directly modifying the internal structure of the sequential engine by shuffling
the literal order of its clause database. This modification will impact the unit propagation of the
solver and may yield different results.
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