
An Empirical Study of the Effect of Learnt Clause on
the Structural Measures of SAT problems
Yoichiro Iida1,*, Tomohiro Sonobe2 and Mary Inaba1

1Graduate School of Information Science and Technology, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, Japan
2National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda, Tokyo, Japan

Abstract
Owing to their high efficiency, state-of-the-art solvers are applied to solve a wide range of computational
problems for industrial purposes. The satisfiability problem (SAT) is a well-known NP-complete problem,
and SAT solvers are the applications for solving SAT. The high performance of SAT solvers is attributed
to the exploitation of the underlying structure of industrial SAT problems. Industrial problems derived
from real-world problems exhibit more biased and prominent structural properties compared to random
ones. However, research has shown that clause learning, an essential technique of modern SAT solvers,
decreases the degree of structure of industrial problems. This study intends to answer ‘why learnt
clauses are effective though they destroy the structure of problems —the hypothetical source of efficiency?’.
We hypothesize that this can be explained by the difference in the quality of clauses; the quality of
the learnt clause correlates to the change in structure, and high-quality (useful) clauses destroy the
structure less. To verify this, we investigated the time variance of two structural measures, treewidth and
modularity, throughout the search process to observe the impact of learning. Additionally, we analyzed
the relationship between the quality of a learnt clause, measured by the literal block distance (LBD), and
its effect on the structural changes, measured by the modularity. Our findings include the following:
(1) The value of these measures does not change monotonically rather it fluctuates over time. (2) The
effect of learnt clauses on the structural change is correlated with these qualities —low-quality clauses
characterized by large LBD values tend to decrease modularity more than high-quality clauses with
small LBD values, and vice versa. These findings determine the relationship between the quality of learnt
clauses and their impact on the structure of a SAT problem. The study suggests potential avenues for
developing methods for a more effective evaluation of learnt clauses based on structural measures.

Keywords
CDCL SAT Solver, Clause Learning, Structure of SAT

1. Introduction

The Boolean satisfiability problem (SAT) is a well-known NP-complete problem; thus, problems
containing numerous variables are considered computationally intractable. However, in practice,
conflict-driven clause learning (CDCL) SAT solvers, which are applications widely used for
solving SAT problems, occasionally solve problems with millions of variables in a reasonable
time (e.g., a few minutes or hours). This gap between theoretical understanding and practical

14th International Workshop on Pragmatics of SAT (PoS 2023)
*Corresponding author.
$ yoichiro-iida@g.ecc.u-tokyo.ac.jp (Y. Iida); tomohiro_sonobe@nii.ac.jp (T. Sonobe); mary@is.s.u-tokyo.ac.jp
(M. Inaba)
� 0009-0008-4937-1183 (Y. Iida); 0000-0002-0995-7234 (T. Sonobe)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yoichiro-iida@g.ecc.u-tokyo.ac.jp
mailto:tomohiro_sonobe@nii.ac.jp
mailto:mary@is.s.u-tokyo.ac.jp
https://orcid.org/0009-0008-4937-1183
https://orcid.org/0000-0002-0995-7234
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


results may originate from the structure of SAT problems. Unlike random SAT problems used
in theoretical research, industrial problems derived from real-world problems exhibit biased
and prominent structural properties. These structural properties are quantified by measures
such as backdoors [1], treewidth [2], and modularity [3]. For instance, random SAT problems
do not usually have impactful backdoors that can drastically simplify the problem upon correct
assignment, and industrial SAT problems, such as planning tasks, may have low treewidth
owing to their hierarchical structure. Distinct differences have been observed in these measures
through multiple pieces of research between random and industrial problems [4]. A correlation
was also observed between the values of the measures and the search time of the SAT solvers[3].

Although the original industrial problems exhibit properties distinct from those of random
problems, some studies [5, 6] have revealed that clause learning during search reduces the
difference between the values of the measures of industrial problems and those of random ones.
The authors of [7] even stated that clause learning “destroys the original structure.” Indeed,
this has been observed across numerous measures [4]; the initial structure of SAT problems
tends to approach a structure-less, random-like structure as a result of learning. This raises an
intriguing question. Learning is one of the pivotal techniques of CDCL and is well-known to
markedly improve search efficiency by retaining the learnt clauses. Furthermore, the structural
properties of SAT problems have been used to explain the efficiency of SAT solvers on industrial
problems. However, learning decreases the structural property. Why learnt clauses are effective
even though they destroy the structure of problems —the hypothetical source of efficiency?

To address this question, we focus on the clause quality and clause deletion procedure based
on the quality measures. Solvers obtain learnt clauses at every conflict during the search process,
which can result in the acquisition of millions of clauses. Retaining all these clauses is neither
practical nor efficient, considering the memory requirements and the impact on the search
efficiency of propagation. Consequently, modern SAT solvers delete learnt clauses based on the
quality of these clauses. Based on the learning procedure, our hypothetical story to answer the
above question is as follows:

• Through the deletion process, high-quality clauses are maintained in the solver, whereas
low-quality ones are deleted. Furthermore, high-quality clauses are more frequently used
(i.e., propagated or analyzed) than low-quality ones.

• Although the structure of the problem may explain the efficiency of the solver, learnt
clauses are known to decrease the structural properties.

• High-quality clauses decrease less or even increase the structural properties of SAT
problems; in contrast, low-quality clauses decrease them.

• This results in maintaining or even increasing the actual structural properties because of
the deletion and less usage of lower-quality clauses.

• This maintained structure contributes to finding solutions even in large-size problems.

To validate this hypothesis, this study aims to understand the relationship between the quality
and structural measures of learnt clauses through experimental analysis. We investigated the
changes of two measures, treewidth and modularity, throughout the search process. Additionally,
we analyzed the relationship between the quality of a learnt clause and its effect on the change
in the modularity value. The objective of the analysis is to understand: how much and when



the value of structural measures changes by the learnt clauses; and which quality of the learnt
clauses changes these values more. The findings of this study provide a deep understanding
of clause learning and deletion, as well as the relationship between the problem structure and
clause learning.

The remainder of this paper is organized as follows: Section 2 introduces SAT solvers and
structural measures. Section 3 presents the results of experimental observations. Section 4
summarizes the paper and suggests future research directions.

2. Preliminaries

2.1. SAT solver and clause learning

The SAT problem is a decision problem of the Boolean formula. A Boolean formula is an
expression that uses the logical operators AND, OR, and NOT to combine Boolean variables,
which can only hold True or False values. The SAT problem asks if a true/false assignment
exists to variables in a Boolean formula that makes the whole formula true, and it is a famous
NP-complete problem. SAT solvers are algorithmic applications designed to solve SAT problems,
using various techniques to find a satisfying assignment of variables (satisfiable, SAT) or
determine that no such assignment exists (unsatisfiable, UNSAT). CDCL is a major algorithm
adopted by many solvers. State-of-the-art CDCL solvers occasionally solve problems with
even more than one million variables and clauses. Owing to their efficiency, they are used
to solve real-world problems such as computer-aided proofing [8] and binary neural network
verification [9] encoded as SAT problems.

A key function of CDCL solvers is clause learning [10]. Learnt clauses, the output of learning,
is an inference derived from the original SAT instance represented as a clause. The technique
has significantly improved the performance of solvers owing to its power to prune the search
space. The procedure to obtain learnt clauses is as follows. The SAT solver performs its search
by making an assumption that assigns a Boolean (True or False) value to a variable (decision).
Subsequently, as the logical consequence of the decision, the solver assigns the Boolean values
of other deterministic variables (propagation). If all the literals in any clause are assigned to
be false as the result of propagation, the decision is considered to be incorrect (conflict). The
CDCL solver analyzes the root cause of the conflict, and a counter-example of the cause is
learned as a clause (learnt clause) to avoid the same incorrect assumptions and conflicts in
subsequent searches. To select the best counter-example, the first unique implication point [11]
is used. Finally, the solver cancels the incorrect decisions and resumes its search for another
decision (backtrack). The decision level represents the depth of (number of) the decision at the
current search, starting at level 0 and increasing with each decision made or decreasing during
backtracking.

The size and literal block distance (LBD) [12] are two popular measures for evaluating the
quality of learnt clauses. The size of the clause is defined as the number of literals contained in
the learnt clause. A literal is a variable or the negation of a variable. For a clause 𝑐 comprised of
literals {𝑙1, 𝑙2, . . . , 𝑙𝑛}, the clause size is calculated as: |𝐶| = 𝑛. The smaller the clause size is,
the more useful the clause is evaluated to be. LBD is a more effective measure, defined as the
count of distinct decision levels to which the literals of a clause belong. For a clause 𝑐 with 𝑛



literals from decision levels {𝑑1, 𝑑2, . . . , 𝑑𝑛}, LBD is given as:

LBD(𝑐) = |{𝑑1, 𝑑2, . . . , 𝑑𝑛}|

A lower LBD value suggests a high degree of interaction among the literals in the clause in
the implication graph, enhancing the potential of the clause for effective search space pruning.
Therefore, CDCL solvers prefer learnt clauses with lower LBD values. Owing to the effectiveness
of LBD, the LBD score has been used not only for learnt clause management but also for other
heuristic techniques (e.g., restart strategy [13] and decision branching heuristic [14]).

2.2. Structure of the SAT problem

The input for the SAT solver is usually given in the conjunctive normal form (CNF). A formula
is said to be in CNF if it is a conjunction of one or more clauses, where a clause is a disjunction
of literals. An example of a CNF formula is (𝑥 ∨ 𝑦) ∧ (¬𝑦 ∨ 𝑧), where (𝑥 ∨ 𝑦) and (¬𝑦 ∨ 𝑧)
are clauses, and 𝑥, 𝑦, and ¬𝑦, and 𝑧 are literals. Industrial SAT problems indicate prominent
structural properties. Examples of structural measures are treewidth and modularity. For the
graph representation of a SAT problem to calculate these measures, a variable incidence graph
(VIG) is widely used.

Definition 1. Variable incidence graph (VIG):
A VIG is a graph representation of logical expressions. Let 𝜓 be a SAT problem for a set of

variables 𝑉 and clauses 𝐶 . The nodes of the VIG are denoted by 𝑉 , and the edge 𝑒𝑣𝑖,𝑣𝑗 ∈ 𝐸
between 𝑣𝑖 and 𝑣𝑗 ∈ 𝑉 denotes the existence of a clause 𝑐 ∈ 𝐶 containing 𝑣𝑖, 𝑣𝑗 in 𝑐. The edge
weight 𝑤 is defined as 𝑤(𝑒𝑣𝑖,𝑣𝑗 ) =

∑︀
𝑐∈𝐶,𝑣𝑖,𝑣𝑗∈𝑐 1/

(︀|𝑐|
2

)︀
.

Both the 𝑣 and ¬𝑣 literals belong to node 𝑣 in VIG. When the same pair of variables (𝑣𝑖, 𝑣𝑗)
appears more than once in 𝐶 , 𝑤(𝑒) sums all the weights of pairs. This means that the shorter
the clause becomes, the higher the edge weight is, and vice versa. In this study, we used VIG
as a graph representation of the SAT problem. The two structural measures, treewidth and
modularity, are calculated on the VIG.

Definition 2. Treewidth:
Treewidth characterizes the degree of resemblance of a given graph to a tree. The smaller

the treewidth, the more the graph resembles a tree. For a graph 𝐺 = (𝑉,𝐸), the treewidth is
defined as the size of the largest bag (subgraph) in the optimal tree decomposition of the graph
minus one.

tw(𝐺) = min
T

max
𝑖∈𝑉 (𝑇 )

|𝐵𝑖| − 1 (1)

Here, 𝑇 = (𝑉 (𝑇 ), 𝐸(𝑇 )) is a tree of 𝐺, and 𝐵𝑖 ⊆ 𝑉 for 𝑖 ∈ 𝑉 (𝑇 ) represents a bag in the
decomposition. The following conditions must hold:

⋃︀
𝑖∈𝑉 (𝑇 )𝐵𝑖 = 𝑉 : Every vertex in 𝐺 is

included in at least one bag; for every edge (𝑢, 𝑣) ∈ 𝐸, there exists a bag 𝐵𝑖 such that 𝑢, 𝑣 ∈ 𝐵𝑖.
For all 𝐵𝑖, 𝐵𝑗 , 𝐵𝑘 ∈ 𝐵𝑖|𝑖 ∈ 𝑉 (𝑇 ), if 𝐵𝑗 is on the path from 𝐵𝑖 to 𝐵𝑘 in 𝑇 , then 𝐵𝑖 ∩𝐵𝑘 ⊆ 𝐵𝑗 ;
the bags that contain a particular vertex in 𝐺 must form a connected subtree in 𝑇 .



This concept involves decomposing a graph into a tree-structured collection of subgraphs.
Each subgraph contains a vertex subset. Treewidth is a useful parameter for various compu-
tational problems, as many NP-hard graph problems can be solved in polynomial time for
graphs of bounded treewidth [15]. For this reason, the relationship between the hardness of
SAT problems and the value of treewidth has been widely studied [4].

Definition 3. Modularity:
Modularity evaluates the quality of a given partition of the input graph. For a weighted edge

graph 𝐺 = (𝑉,𝐸) and a partition 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑘} of its vertices 𝑉 , where 𝑃 is pairwise
disjoint and

⋃︀𝑘
𝑖=1 𝑝𝑖 = 𝑉 , the modularity 𝑄 is computed as follows:

𝑄(𝐺,𝑃 ) =
1

2𝑚

|𝑉 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

[︂
𝐴𝑖𝑗 −

𝑤(𝑖)× 𝑤(𝑗)

2𝑚

]︂
𝛿(𝑐𝑖, 𝑐𝑗) (2)

Here, 𝐴𝑖𝑗 is the element at the 𝑖-th row and 𝑗-th column of the adjacency matrix 𝐴 of the
graph 𝐺, 𝑤(𝑖) denotes the sum of the weights of the edges connected to vertex 𝑖, 𝑚 equals
the sum of the weights of all edges in the graph, 𝑐𝑖 ∈ 𝑃 is the community to which vertex 𝑖
belongs, and 𝛿(𝑐𝑖, 𝑐𝑗) equals 1 if vertices 𝑖 and 𝑗 belong to the same community (i.e., 𝑐𝑖 = 𝑐𝑗),
and 0 otherwise.

A community in a graph is defined as a group of vertices more densely connected internally
than the rest of the graph. The division of a graph into such communities is often denoted
as a partition. Modularity quantifies the degree of deviation of the number of edges within
communities from a random distribution. A high modularity score suggests that the graph
exhibits a robust community structure. The following subsection introduces various research
regarding the modularity and structures of SAT.

2.3. Related work

Ferrara et al. [2] revealed that the graphs of the industrial SAT problems exhibit relatively smaller
treewidth than random problems. They attempted a theoretical explanation for the ability of
CDCL solvers to efficiently solve industrial problems by demonstrating the characteristics of
these industrial problems. Newsham et al. [3] investigated the relationship between the number
of communities of a clause and its LBD values. They found that the degree of community
structure is associated with the runtime of the instance. Furthermore, Newsham et al. [6]
visualized the graph structure of SAT problems and demonstrated that the acquisition of learnt
clauses (i.e., the search progress) diminishes the clarity of the structure. Ansótegui et al. [7]
demonstrated that industrial SAT problems exhibit considerably stronger community structures,
as measured via the modularity 𝑄. Ansótegui et al. [16] analyzed the change in modularity
(Δ𝑄) resulting from the acquisition of learnt clauses. Their findings indicate that although
most learnt clauses exhibit a negative Δ𝑄, some exhibit a positive Δ𝑄. These studies served as
an inspiration for our research to delve deeper into understanding the relationship between
learned clauses and the structure of SAT.



3. Experiments

3.1. Change in the structural measures by learning

First, we assessed how much and when learning changes the structural measures. Related works
[16, 6] showed that the structure of the problem becomes unclear (to be more random-like
structure) as the overall trend after learning. Our objective is to study the change in more detail
to understand the impact of learning and its deletion. For the measurement of the degree of the
structure, we selected two measures: modularity and treewidth. Modularity is widely used in
the context of SAT, and both of the abovementioned works use this concept. Although treewidth
is relatively less popular in the context of SAT, it is a well-studied and popular measure in
graph theory. We calculated the treewidth and modularity values using approximations as the
calculations of exact values of them are NP-hard. FlowCutter [17] calculated the upper-bound
value of treewidth, an application submitted at the PACE 2017 competition. The community
decomposition for modularity was conducted based on the Louvain community detection
algorithm using networkx, a Python library [18]. Our benchmark consisted of 400 problems
from the main tracks of the SAT competition in 2021. In this study, we excluded problems
from the result that provided no treewidth value within 1200 s or no modularity value within
24 h. We performed experiments on a computer equipped with an AMD Threadripper Pro
3995WX processor (64 cores) and 512 GB (128 GB four slots, DDR4-3200 MHz) of RAM. We
selected Glucose 4.2.1 [19] as the base solver for experiments because it is the first solver with
the implementation of LBD.

The scatterplot in Figure 1a reveals the variation in the treewidth value between 𝜓𝑜𝑟𝑔 and
𝜓𝑙𝑎𝑠𝑡. Let 𝜓𝑜𝑟𝑔 be the original problem and 𝐶𝑡 be the learnt clauses maintained by the solver at
time 𝑡. 𝐶𝑡 is the result of clauses learnt and deleted up to point 𝑡. The time when the search
is finished is 𝑡𝑙𝑎𝑠𝑡, which is either at the 3600 s timeout or when the solver finds a SAT or
UNSAT solution. The problem 𝜓𝑡 at time 𝑡 is defined by 𝜓𝑜𝑟𝑔 + 𝐶𝑡; thus 𝜓𝑙𝑎𝑠𝑡 = 𝜓𝑜𝑟𝑔 + 𝐶𝑡𝑙𝑎𝑠𝑡 .
Hereafter, 𝜓 refers to the graph of the problem. A dot in the scatter plot figure represents
a problem, and its position (original, last) represents the values of treewidth tw(𝜓𝑜𝑟𝑔) and
tw(𝜓𝑙𝑎𝑠𝑡), respectively. In 78% of problems, treewidth(𝜓𝑜𝑟𝑔) < treewidth(𝜓𝑙𝑎𝑠𝑡) were observed,
and in particular, 11% of problems have the value changed by a factor of 10 or more. Note that
the figure is on a double-logarithmic graph. Similarly, Figure 1b details the modularity value
for each problem. This result also reveals modularity(𝜓𝑜𝑟𝑔) > modularity(𝜓𝑙𝑎𝑠𝑡) for 84% of the
problems. In particular, there were 64% of problems that showed almost zero values below 0.05.
These results are consistent with those of existing studies; The learning changes the structure
toward the random-like one —in other words, the learning destroys the structure.

Next, Figure 2 details the temporal change of the values of the measures, showing four
problems as typical examples. Similar trends are observed in most problems, as seen in [20].
The left and right vertical axes indicate the modularity value and treewidth, respectively. The
horizontal axis indicates the time series: ‘original’ indicates the values of 𝜓𝑜𝑟𝑔 , original CNF
graph before preprocessing; ‘0’ is the value of the graph of the preprocessed formula. We
observed these measures approximately every 300 s until 𝑡𝑙𝑎𝑠𝑡. The figures claim two arguments.
First, the values of measures change immediately after starting the search, particularly between
0 and 300 s, and do not vary monotonically. Second, the measures oscillate back in a zigzag



1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

La
st

 st
at

e

Original state

(a) treewidth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

La
st

 st
at

e

Original state

(b) modularity

Figure 1: Scatter plot between the original formula 𝜓𝑜𝑟𝑔 and last formula 𝜓𝑙𝑎𝑠𝑡 including learnt clauses

manner as time progresses. This phenomenon is assumed to occur as the result of the deletion of
learnt clauses. These results suggest a hypothetical explanation: the deletion of badly evaluated
clauses with large LBD values restores the changed structure; and thus, the deletion of learnt
clauses is effective for solver performance because of the power of structure restoration.

0

500

1,000

1,500

2,000

2,500

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ori
gin
al 0

30
0
60
0
90
0
12
00
15
00
18
00
21
00
24
00
27
00
30
00
33
00
35
94

tre
ew
id
th

m
od
ul
ar
ity

modularity treewidth

(a) ktf_TF-3.tf_2_0.02_24

0

200

400

600

800

1,000

1,200

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ori
gin
al 0

30
0
60
0
90
0
12
00
15
01
18
00
21
00
24
00
27
00
30
00
33
02
35
95

tre
ew
id
th

m
od
ul
ar
ity

modularity treewidth

(b) puzzle37_unsat

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ori
gin
al 0

30
0
60
0
90
0
12
00
15
00
18
00
21
00
24
00
27
00
30
00
33
00
35
92

tre
ew
id
th

m
od
ul
ar
ity

modularity treewidth

(c) spg_300_300

0

500

1,000

1,500

2,000

2,500

3,000

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ori
gin
al 0

30
0
60
0
90
0
12
00
15
00
18
00
21
00
24
00
27
00
30
00
33
00
35
93

tre
ew
id
th

m
od
ul
ar
ity

modularity treewidth

(d) sum_of_3_cubes_87_bits_75

Figure 2: Values of Treewidth and modularity change over time



3.2. Analysis of the relationship between the quality and structural measure

We hypothesize that high-quality clauses decrease less the structural properties of SAT problems
less than low-quality clauses, or even increase them. If this is true, it will resolve the contradiction
between the explanation that the structure of the problem is a factor in the efficiency of the SAT
solver and the observation that learnt clauses increase the efficiency of the SAT solver while
destroying the structure of the problem. We conducted an experiment to identify which learnt
clause changed the structure more. We analyzed the relationship between LBD and the degree
of change by comparing the delta of the modularity Q between 𝜓𝑜𝑟𝑔 and 𝜓𝑜𝑟𝑔 + a learnt clause
𝑐, namely, delta with the addition of a learnt clause.

Definition 4. For a learnt clause 𝑐, Δ𝑄(𝑐) = 𝑄(𝜓𝑜𝑟𝑔 + 𝑐, 𝑃 ′)−𝑄(𝜓𝑜𝑟𝑔, 𝑃 ).

Modularity𝑄 requires a graph𝐺 and its partition 𝑃 . The calculation of partition (community)
detection costs numerous resources for millions of learnt clauses. Therefore, we calculated
Δ𝑄 with two assumptions: partition 𝑃 does not change by adding a clause, that is, 𝑃 ′ = 𝑃 ;
the change in 𝑚, i.e., the sum of the weight of all edges, can be ignored by adding a clause
with weight 1. These assumptions are reasonable when adding at most one learnt clause to the
original problem that has thousands of clauses. We ran Glucose 4.2.1 with a 3600 s time limit to
export all the learnt clauses and their information, such as LBD and its literals, to files. The
export was conducted when learnt clauses were obtained, updated, or deleted. The clause was
determined to be the same as literal identity.

Four typical examples are depicted in Fig 3 as boxplots of the Δ𝑄 distribution for each LBD.
Each chart shows the median as the orange line, quartiles as the edges of the box, and outliers as
the circles if data points are more than 1.5 times the interquartile box. Clear trends are observed
in these figures —the smaller the LBD is, the larger the average Δ𝑄 is. This result indicates
that better clauses (smaller LBD clauses) slightly decrease or even increase the modularity
value. This trend was observed among most problems, as shown in [20]. We analyzed the
differences between all the clauses and the clauses of LBD 2 to determine the overall trend
among all problems. The average Δ𝑄 for all clauses across problems was −5.3× 10−5, with
76% displaying a negative mean Δ𝑄. In contrast, clauses with an LBD of 2 had a mean Δ𝑄 of
−4.4× 10−5, and 68% exhibited negative values. These results show that clauses with small
values of LBD (here LBD of 2) are not necessarily positive clauses, while the percentage of
clauses with positive Δ𝑄 is high (i.e., enhancing the structure of the problem). This supports
our hypothesis that ‘high-quality clauses decrease the structural properties of SAT problems
less than low-quality clauses, or even increase them.’

Conversely, to see what characteristics are present in clauses with positive Δ𝑄 values, a
comparative analysis was performed between clauses with positive Δ𝑄 and any Δ𝑄. Mean
LBD values and the number of communities per problem for each set of learned clauses were
calculated. The aggregate means are shown in Table 1. Similar to the boxplot, positive Δ𝑄
clauses had lower LBD values and fewer community affiliations. Moreover, as anticipated,
clauses characterized by a positive Δ𝑄 were affiliated with a smaller number of communities.
Ansótegui et al.,[16] revealed that although most of the learnt clauses decreased the modularity
value, some clauses increased it. Combining this with our results suggests that learning low-
quality clauses decreases modularity, and learning high-quality clauses slightly decreases or



1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
LBD

2

1

0

1

2

de
lta

 Q

1e 6 mp1-Nb7T44.cnf

(a) mp1-Nb7T44

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
LBD

4

3

2

1

0

1

2

de
lta

 Q

1e 5 Circuit_multiplier53.cnf

(b) Circuit_multiplier53

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
LBD

6

4

2

0

2

4

6

de
lta

 Q

1e 7 Mycielski-10-hints-10.cnf

(c) Mycielski-10-hints-10

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
LBD

1.0

0.5

0.0

0.5

1.0

de
lta

 Q

1e 5 at-least-two-maris-s03-gripper11.cnf

(d) at-least-two-maris-s03-gripper11

Figure 3: Boxplot between modularity Δ𝑄 and the learnt clause LBD

even increases modularity.

Table 1
Differences between clauses of positive Δ𝑄 and all clauses. The values are the average of all problems.

ratio average LBD value number of community

clauses of positive Δ𝑄 24% 6.75 3.04
all clauses 100% 11.93 6.90

3.3. Further analysis on the relationship between LBD and modularity

The previous analysis showed that high-quality clauses (measured by LBD values) have a small
impact on the decrease of modularity (i.e., Δ𝑄). However, this is probably because of the
pseudo-correlation with size, not between LBD and Δ𝑄, because modularity is a measure on
the graph, LBD is correlated with the size of the clause, and the size strongly influences the
VIG weight. To analyze the impact solely based on the LBD values excluding the impact of
size, we visualized the correlation as a heatmap among the clause size, LBD, and mean Δ𝑄 in
Figure 4. The color of each cell represents the mean of Δ𝑄, and the vertical and horizontal axes



represent the LBD and clause size, respectively. When examining colors vertically for a given
size, a notable difference is observed —smaller LBD values correspond to larger average values
of Δ𝑄. These results support the argument presented in Figure 3. The complete results of all
problems are available in [20] where most of the problems show a similar trend.

Furthermore, we analyzed the overall trend of all problems by calculating the partial corre-
lation coefficients of the LBD, size, and Δ𝑄 values to confirm the above implication from the
observations. A partial correlation coefficient measures the relationship between two variables
when one variable is held constant. This assesses the pure correlation between two variables,
excluding the influence of other variables. To define the partial correlation coefficient, we
consider three random variables 𝑥, 𝑦, 𝑧. The partial correlation coefficient of 𝑥 and 𝑦 is denoted
as 𝑟𝑥𝑦.𝑧 , and the following formula can be derived:

𝑟𝑥𝑦.𝑧 =
𝑟𝑥𝑦 − 𝑟𝑥𝑧𝑟𝑦𝑧√︁

(1− 𝑟2𝑥𝑧)(1− 𝑟2𝑦𝑧)

. Here, 𝑟𝑥𝑦 represents the correlation coefficient of 𝑥 and 𝑦, and 𝑧 is the control variable of 𝑟𝑥𝑦.𝑧
calculating the correlation coefficient of 𝑥, 𝑦 without the influence of 𝑧. The partial correlation
coefficients were found to be +0.54 between the size and LBD, −0.09 between the size and
Δ𝑄, and −0.24 between LBD and Δ𝑄, respectively. These results indicate that LBD and Δ𝑄
weakly correlate, even without any outlier operation, and allow us to conclude that the value of
LBD affects the value of Δ𝑄. This could explain the effectiveness of the three-tier scheme for
clause management. The clauses that can enhance the structure remain in tier 1 (measured by
LBD), and those that destroy the structure are put in tier 3 and will be removed soon.

4. Conclusion

This study explored the impact of clause learning in CDCL SAT solvers on the structural
properties of SAT problems, focusing specifically on two measures: treewidth and modularity.
The investigation was organized around two key experiments: the time variance in these
measures during the search process to assess the impact of clause deletion, and the relationship
between the quality of a learnt clause and its subsequent effect on modularity.

The first experiment revealed that these measures do not change monotonically but fluctuate
periodically. This fluctuating pattern is due to the continuous interplay of clause learning
and deletion processes, indicating that clause deletion can restore the changed structure. This
implies differences in the impact of the structural change between the deleted and remaining
clauses. The second experiment showed that the quality of learnt clauses, measured by LBD
values, was a significant factor impacting structural changes; low-quality clauses, characterized
by large LBD values, were found to decrease in modularity more than high-quality clauses. This
result explains the fluctuation in the first experiment. More importantly, it resolves the question
of ‘why learnt clauses are effective though they destroy the structure of problems?’. The learnt
clauses as a whole (considering all obtained clauses) tend to decrease the structural properties
of problems, but the actual structural properties are maintained or even increased owing to
high-quality clauses. These insights can potentially inform that the benefits of clause deletion
are beyond addressing memory constraints and reducing the propagation time —forgetting



3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 76

size

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
lb

d

1.5

1.0

0.5

0.0

0.5

1.0

1.5
1e 6

(a) mp1-Nb7T44

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

size

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
lb

d

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
1e 5

(b) Circuit_multiplier53

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

size

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
lb

d

5

4

3

2

1

0

1

2
1e 7

(c) Mycielski-10-hints-10

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

size

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
lb

d

6

4

2

0

2

1e 6

(d) at-least-two-maris-s03-gripper11

Figure 4: Heatmap among modularity Δ𝑄, size, and LBD

low-quality learnt clauses helps restore the distinct structural properties of problems to maintain
the problem ‘structured’, enabling its efficient solution.

In future research, exploring similar studies employing other measures, such as scale-free and
centrality, could offer further insight into our current findings. The interrelation between the
degree of modularity changes (Δ𝑄) and the consequent effect on the solver runtime presents
yet another intriguing area of study. If a robust correlation in the runtime is found, Δ𝑄 or
other structural measures could provide effective evaluation measures for the quality of learnt
clauses. They could even replace traditional measures, such as LBD or size; for instance, a
clause that increases the structural measure might be deemed beneficial. Beyond modularity
Δ𝑄, other structural measures also warrant consideration for this purpose and can enhance the
performance of CDCL SAT solvers. Moreover, these measures could be invaluable specifically
for parallel learnt clause sharing. As LBD is derived from the solver decision tree, it inherently
depends on the state of the search. Given that each parallel worker would operate in a distinct
state of search, this inevitably results in different decision trees and LBD values. This suggests
that basing the decision of learnt clause sharing on LBD might not be the most effective
approach. On the other hand, structural measures derived from the original instance, such as
Δ𝑄 employed in this study, potentially offer better solutions. These measures are common



information available to all parallel workers and can thus provide a unified measure to judge
the usefulness of clauses.

Acknowledgments

We express our deep gratitude to the reviewers for their insightful comments and to participants
at the Pragmatics of SAT workshop for enriching discussions. We also wish to acknowledge the
meaningful discussion with Professor Hiroshi Imai and the members of his laboratory.

References

[1] R. R. Williams, C. P. Gomes, B. Selman, On the connections between backdoors, restarts,
and heavy-tailedness in combinatorial search, structure 23 (2003).

[2] A. Ferrara, G. Pan, M. Y. Vardi, Treewidth in verification: Local vs. global, in: Logic for
Programming, Artificial Intelligence, and Reasoning, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005, pp. 489–503. doi:10.1007/11591191_34.

[3] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, L. Simon, Impact of community
structure on sat solver performance, in: Theory and Applications of Satisfiability Testing
– SAT 2014, Springer International Publishing, Cham, 2014, pp. 252–268. doi:10.1007/
978-3-319-09284-3_20.

[4] T. N. Alyahya, M. E. B. Menai, H. Mathkour, On the structure of the boolean satisfiability
problem: A survey, ACM Comput. Surv. 55 (2022) 1–34. doi:10.1145/3491210.

[5] P. Gregory, M. Fox, D. Long, A new empirical study of weak backdoors, in: P. J. Stuckey
(Ed.), Principles and Practice of Constraint Programming, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 618–623. doi:10.1007/978-3-540-85958-1_53.

[6] Z. Newsham, W. Lindsay, V. Ganesh, J. H. Liang, S. Fischmeister, K. Czarnecki, Satgraf:
Visualizing the evolution of sat formula structure in solvers, in: Theory and Applications
of Satisfiability Testing – SAT 2015, Springer International Publishing, Cham, 2015, pp.
62–70. doi:10.1007/978-3-319-24318-4_6.

[7] C. Ansótegui, M. L. Bonet, J. Giráldez-Cru, J. Levy, L. Simon, Community structure in
industrial SAT instances, The journal of artificial intelligence research 66 (2019) 443–472.
doi:10.1613/jair.1.11741.

[8] M. J. H. Heule, O. Kullmann, V. W. Marek, Solving and verifying the boolean pythagorean
triples problem via Cube-and-Conquer, in: Theory and Applications of Satisfiability Testing
– SAT 2016, Springer, Cham, 2016, pp. 228–245. doi:10.1007/978-3-319-40970-2_15.

[9] C. Bright, I. Kotsireas, A. Heinle, V. Ganesh, Complex golay pairs up to length 28: A search
via computer algebra and programmatic sat, Journal of Symbolic Computation 102 (2021)
153–172. doi:10.1016/j.jsc.2019.10.013.

[10] R. J. Bayardo, R. C. Schrag, Using csp look-back techniques to solve real-world sat instances,
in: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, AAAI’97/IAAI’97, AAAI
Press, 1997, p. 203–208. URL: https://dl.acm.org/doi/10.5555/1867406.1867438.

[11] L. Zhang, C. Madigan, M. Moskewicz, S. Malik, Efficient conflict driven learning in a

http://dx.doi.org/10.1007/11591191_34
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1145/3491210
http://dx.doi.org/10.1007/978-3-540-85958-1_53
http://dx.doi.org/10.1007/978-3-319-24318-4_6
http://dx.doi.org/10.1613/jair.1.11741
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1016/j.jsc.2019.10.013
https://dl.acm.org/doi/10.5555/1867406.1867438


boolean satisfiability solver, in: IEEE/ACM International Conference on Computer Aided
Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281), 2001,
pp. 279–285. doi:10.1109/ICCAD.2001.968634.

[12] G. Audemard, L. Simon, Predicting learnt clauses quality in modern SAT solvers, in:
Proceedings of the 21st international jont conference on Artifical intelligence, IJCAI’09,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009, pp. 399–404. URL:
https://dl.acm.org/doi/10.5555/1661445.1661509.

[13] A. Biere, A. Frohlich, Evaluating cdcl restart schemes, in: Proceedings of Pragmatics of
SAT 2015 and 2018, volume 59 of EPiC Series in Computing, EasyChair, 2019, pp. 1–17.
doi:10.29007/89dw.

[14] W. Chang, G. Wu, Y. Xu, Adding a lbd-based rewarding mechanism in branching heuris-
tic for sat solvers, in: 2017 12th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE), 2017, pp. 1–6. doi:10.1109/ISKE.2017.8258780.

[15] E. C. Freuder, Complexity of k-tree structured constraint satisfaction problems, in:
Proceedings of the Eighth National Conference on Artificial Intelligence - Volume 1,
AAAI’90, AAAI Press, 1990, p. 4–9. URL: https://dl.acm.org/doi/10.5555/1865499.1865500.

[16] C. Ansótegui, J. Giráldez-Cru, J. Levy, L. Simon, Using community structure to
detect relevant learnt clauses, in: Theory and Applications of Satisfiability Test-
ing – SAT 2015, Springer International Publishing, 2015, pp. 238–254. doi:10.1007/
978-3-319-24318-4\_18.

[17] M. Hamann, B. Strasser, Flow-cutter-pace17, 2017. URL: https://github.com/kit-algo/
flow-cutter-pace17, last accessed: 2023-04-17.

[18] Networkx: Modularity, https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms.community.quality.modularity.html, 2023. Last accessed:
2023-04-17.

[19] G. Simon, Laurent; Audemard, About the glucose sat solver, 2018. URL: https://www.labri.
fr/perso/lsimon/research/glucose/, accessed: 2023-3-8.

[20] Image repository for all instances, https://github.com/messhiida/PoS2023-images.git, 2023.
Last accessed: 2023-05-03.

http://dx.doi.org/10.1109/ICCAD.2001.968634
https://dl.acm.org/doi/10.5555/1661445.1661509
http://dx.doi.org/10.29007/89dw
http://dx.doi.org/10.1109/ISKE.2017.8258780
https://dl.acm.org/doi/10.5555/1865499.1865500
http://dx.doi.org/10.1007/978-3-319-24318-4_18
http://dx.doi.org/10.1007/978-3-319-24318-4_18
https://github.com/kit-algo/flow-cutter-pace17
https://github.com/kit-algo/flow-cutter-pace17
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.quality.modularity.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.quality.modularity.html
https://www.labri.fr/perso/lsimon/research/glucose/
https://www.labri.fr/perso/lsimon/research/glucose/
https://github.com/messhiida/PoS2023-images.git

	1 Introduction
	2 Preliminaries
	2.1 SAT solver and clause learning
	2.2 Structure of the SAT problem
	2.3 Related work

	3 Experiments
	3.1 Change in the structural measures by learning
	3.2 Analysis of the relationship between the quality and structural measure
	3.3 Further analysis on the relationship between LBD and modularity

	4 Conclusion

