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Abstract
The virtual SAT Solver Museum is an effort towards preserving historical SAT solvers, by collecting and
porting their source code to modern compilers and evaluating them on representative benchmark sets
on the same hardware. This allows us to compare historic and modern solvers in the same environment.
Our results clearly show a remarkable improvement of SAT solver performance in the last 30 years.
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1. Introduction

It has been stated that “No major performance breakthrough [happened in SAT solving] in close
to two decades”. Notable proponents of this claim are Karem Sakallah at the recent Simons
Institute’s seminar in 2023 and Joao Marques-Silva during his invited talk at POS 2019 [1, Slide 12
(or 53 of the total number)]. The SAT Museum exists to document the history of SAT solving
and to show in contrast to these claims that indeed “SAT solvers are getting faster and faster”.

The SAT Museum is curated by two authors of this paper; Armin Biere and Marijn Heule have
put considerable effort into collecting and restoring the SAT solvers that have been published
since the first SAT competitions more than two decades ago. Some results of this effort have been
presented as a lightening talk at POS’20, as well as in the form of a (comparatively) high-impact
tweet with preliminary plots for the SAT Competition 2020 benchmarks on Twitter.

Even though a first SAT competition was conducted more than 3 decades ago in 1992 [2], the
current regular series of annual SAT competitions was started in 2002 [3] by Laurent Simon
and Daniel Le Berre and in most years attracts dozens of SAT solver submissions. The SAT
competition provides a fair environment where solvers compete on the same benchmarks
and hardware. These competitions have been credited as a main driving force in advancing
SAT-solving technology and are a well-recognized show-case with high visibility and impact
far beyond the core SAT community.

Each year, the benchmark suite consists of a combination of old and new benchmarks. In
recent years, at least 75% of the benchmarks were new, and no more than 14 out of 400 originated
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from the same research group to ensure diversity. For more information on the competition we
refer to the yearly SAT competition proceedings, e.g., the SAT Competition 2022 proceedings [4],
or to the last article describing the SAT Competition in 2020 [5].

To asses the progress in solver performance, we consider all winning solvers since the SAT
Competition 2002, whose code we could find on the SAT Competition website or obtain through
personal communication. Note, that there was no requirement to publish source code nor even
binaries in earlier incarnations of the SAT Competition (Section 3). Besides providing data on
competition winners we also include two historically important solvers: Boehm1, the winner of
the first SAT competition in 1992 [2], as well as Grasp [6] from 1997.

We run on the same hardware (from 2016) all collected and patched solvers on six benchmark
sets from SAT competitions spanning more than two decades, namely 2002, 2011, 2019, 2020,
2021, and 2022. We report results on each set separately, in order to address an argument brought
forward by Laurent Simon at a recent POS workshop, that the benchmark selection method of
more recent competitions might give a bias towards newer solvers and which arguably might
not be observable on the SAT Competition 2011 benchmark set for example. Our data on the
SAT Competition 2011 benchmark set refutes this argument as it clearly shows the same solver
progress which we observed in other years.

While in general we see a big improvement in solver performance in these 30 years across all
considered benchmark sets, the yearly improvement is mostly rather slow, except for perfor-
mance jumps in some years, which arguably happen with a frequency of 3 to 5 years. Analyzing
the reasons for this apparent progress, i.e., both with respect to algorithms, heuristics and
implementation, and in particular distilling the core ideas leading to these performance jumps
is considered an important follow-up work but out of the scope of this first study.

2. Preliminaries

For the sake of understanding this paper, no special knowledge of SAT is required and we refer
to the Handbook of Satisfiability [7] for more details. In short, CDCL [8] and its predecessor
DPLL [9] work on a partial assignment trying to satisfy a set of clauses. When a conflict
(mismatch between the assignment and the constraints) arises, the partial model is adapted and
CDCL learns new clauses to prevent the same conflict in the future.

On top of CDCL or DPLL, the set of clauses can be simplified by transforming the problem
more significantly. In earlier solvers, these techniques were employed as preprocessing before
running CDCL, whereas nowadays they are run interleaved with CDCL as inprocessing. We
refer to the corresponding preprocessing chapter [10] in the SAT handbook for details.

In general, this work considers SAT solvers (some of them developed by the first author),
which are run on problems from the SAT Competition (last two authors were frequently part of
the committee running it and selecting benchmarks).

Therefore, a major thread to validity of this work, as noted by one reviewer, is that its authors
are all stake holders in the SAT Competition, either as participants or as organizers. Showing
newer solvers to be better clearly serves their interest to support the competition and how its
artifacts are used in the scientific discourse on SAT. Nevertheless, we argue, that our carefully
executed and extensive experiments are convincing and allow to reach the favorable conclusion,



that SAT solvers are getting faster and faster.
The second major thread to validity is related to the fact that new solvers during development

are trained on at-that-time current set of benchmarks: To join the competition, developers
check that new technique work on previous competition benchmarks. For example, Kissat-mab-
hywalk-2022, the winner of 2022, is based on the 2021 winner (which in turn is based on the
2020 winner). And unsurprisingly, it performs better on the 2021 benchmarks than the 2021
winner. However, none of them has seen the 2022 benchmarks. It is also unlikely that it was
trained to perform well on the 2002 benchmarks. To counteract this potential thread to validity,
we have used a large benchmark, spanning more than two decades of competitions.

3. The Solvers

In this section, we list all tested solvers attempting to highlight some of their contributions. We
selected most SAT Competition winners and some others for their historical significance.

Before Preprocessing. In context of the SAT solver Grasp [6] CDCL was proposed, even
though the term CDCL was only later introduced [11]. The decision heuristic at that time
attempted to satisfy as many clauses as possible and is considered to be very costly to compute
in each search node. Improving such decisions heuristics was also the main topic for the DPLL
and thus pre-CDCL SAT solvers participating in the first SAT competition in 1992, from which
we include the winning solver Boehm1 [2]. The next historically most significant SAT solver is
Chaff [12]. It introduced various techniques that are now commonly used in all SAT solvers,
such as watched literals for efficient propagation and the VSIDS decision heuristic to quickly
find good decisions. We also consider its 2004 variant [13].

In 2002, the solver Limmat [14] won the competition (by one instance in a tie-breaking round).
It follows the ideas of zChaff (at a time when the source code was not available). In 2003 the
Siege SAT solver [11] finished 3rd in the SAT Competition (but run hors concours). Its main
features are blocking literals and the variable-move-to-front (VMTF) decision heuristic.

The SAT solver Berkmin [15] improved the Chaff bumping heuristics by more explicitly
picking literals in recently learned clauses and also taking into account literals that appear
during the conflict analysis and not only those appearing in the final conflict clause. Around
this time, restarts were still mostly random. In 2003 the SAT solver MiniSat [16] appeared1,
introducing essential algorithmic and implementation optimizations, including learned clause
minimization, exponential VSIDS, and lazy priority queue updates. It won for the first time
in 2006. The solver is further considered an attempt at providing clean code by removing
redundant features present in other SAT solvers.

CDCL and Preprocessing. In 2005 actually SatElite-GTI, a combination of the SatElite
preprocessor [17] with MiniSat as back-end solver, won the competition by a big margin, i.e.,
contributing to one of those performance jumps we will see. In that year, MiniSat 2005 was also
awarded, but it lost to the combination with SatElite. After this success many winning solvers
followed this recipe and included SatElite as preprocessor, until in 2008 MiniSat’s version 2.0
1This seminal paper received the first test-of-time award of the SAT conference in 2022.



won the competition. It is the first MiniSat version which combines CDCL with preprocessing
in one code base and executable.

In 2006 MiniSat dominated the (first) SAT Race 2006 and in 2007 the idea of rapid restarts
and phase saving helped the Rsat solver to win the SAT Competition 2007. This technique
afterwards became standard in all solvers. Also on the CDCL side the fruits of using the glue
(LBD) metric [18] of learned clauses to improve reduction of the learned clause data base as
well as improved dynamic restart schemes let the Glucose solver [18] win in 2011 and 2012.

The Glucose solver accordingly formed the basis of the development of the MapleSAT solver
series winning the competition three times in a row from 2016-2018. In 2016 it introduced
the idea of interleaving different policies for SAT (fewer restarts / longer assignments) and
UNSAT (more restart / short assignments) proposed by Chanseok Oh [19], contradicting earlier
intuitions that restarts mostly help solvers to avoid heavy-tail phenomenon [20] in satisfiable
formulas. The solver further included the new LRB decision heuristic and recursive reason side
bumping [21] in 2016 [22].

In 2017 vivification [23] was incorporated into MapleSAT in the form of simplifying (aka
“inprocessing” - see below) of learned clauses, while before vivification was only applied to
original / irredundant clauses during preprocessing. In 2018 the next variant of MapleSAT won
the competition, again extended by a different set of authors, by switching between the default
CDCL version of non-chronological backtracking and chronological backtracking [24, 25]. In
the SAT Race 2019 MapleSAT was again successful by filtering out redundant learned clauses
through hashing [26] and enforcing deterministic switches between LRB and VSIDS [27].

Inprocessing Solvers. While the earlier listed solvers did not perform any global transfor-
mation on the formula or only do so at the beginning, a different line of work is to include
techniques such as probing, subsumption, and blocked clauses during search.

In 2009, the winning SAT solver PrecoSAT [28] implemented this form of formula simplifica-
tion during search as the first of its kind. This would later be called inprocessing [29]. While
inprocessing can improve performance, when and for how long to schedule and preempt various
inprocessing algorithms becomes both important and difficult to get right.

In 2010, CryptoMiniSat [30] won the competition. It is mainly known for its special handling
of XOR clauses (parity or equivalence constraints) which are featured prominently but actually
were never used as CryptoMiniSat 2010 could not recover XORs with more than 2 inputs
from the CNF. Beyond that CryptoMiniSat features probing and hyper binary resolution in an
inprocessing fashion. Initially based on MiniSat, development is still continuing today.

The solver Lingeling (winning 2013 [31] and 2014 [32]) utilized advanced inprocessing tech-
niques, including equivalence reasoning and blocked clause elimination. These developments
were enabled by the proper theoretical foundations for model reconstruction [29]. In 2015,
the SAT solver abcdSAT [33] won the SAT Race 2014. It uses Lingeling as a preprocessor and
Glucose as main solver and featured a new strategy to keep recently used clauses.

Finally, in 2020, the SAT solver Kissat [34] was introduced. Compared to its predecessor
CaDiCaL [35], Kissat has fewer features, particularly inprocessors, which however are scheduled
more aggressively. While the performance improvement in 2020 is usually attributed to the
inclusion of a local search solver and target phases [36], it is worth noting that CaDiCaL was



actually the first solver to explore this. Successors of Kissat won the following two years; in
2021, a version with a more stable decision heuristic [37], and in 2022, an implementation
featuring aggressive random walks [38].

4. Collecting and Porting Solvers

In our view the most important outcome of this study is to collect solvers which either in the
competition or otherwise are important to the history of SAT solving. Furthermore we ported
these legacy solvers to modern compilers. This finally also allowed us to run and compare them,
also with more recent solvers, in a clean apple-to-apple comparison on the same hardware and
on the same set of benchmarks to asses the progress in the last quarter of a century.

We started this endeavor in 2019, probably right on time, as collecting original solvers is
becoming harder than we imagined. Most of the historic solvers still have webpages but links
to actual code are dysfunctional. Some webpages disappeared completely. In these cases we
reached out to the original authors, which dug through their old computers or found other
ways to help us out to retrieve source code or binaries (see acknowledgments at the end).

On top of collecting original source code and binaries, we also provide patches to several
legacy solvers, which allow us to compile them with modern compilers (we used gcc/g++ 9.4.0
for our experiments). Most of these issues were due to the g++ compiler becoming over the
years more picky about what C++ constructs are accepted. Besides removing some warnings in
theses patches, they also contain several fixes addressing bugs of some solvers, which led to
incorrect results, but which after debugging were only due to hard coded limits in parsers or in
the case of zChaff due to the code not being 64-bit clean. Patches will have to be updated for
newer version of the gcc/g++, similar to the restoration process in an ordinary museum.

Besides porting solvers, we also fixed the parser of the solver Boehm1 to support DIMACS
and to parse more than 1 000 variables. The implementation of the solver is actually recursive.
During experiments we considered increasing the stack size to reduce the number of errors, but
finally decided against this option and kept the default stack size (of 8 MB). In the end no solver
run showed any discrepancy on the 6 competition benchmark sets we used in the experiments.

5. Performance Results

We ran all the benchmarks on 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-
mode disabled) with a memory limit of 127 GB and a time limit of 5 000 seconds as in recent
SAT competitions even though on slightly slower hardware. All data, including solvers, patches,
log files and plots, is available at https://cca.informatik.uni-freiburg.de/satmuseum and [39].

Regarding results we want to stress again that SAT solver developers train on previous
competitions: The winner of the 2022 competition is based on the winner from 2021, had access
and most likely has been trained on the 2021 benchmarks to find better heuristics than its
predecessor from 2021, which has not been trained on them nor on more recent problems sets.

We use CDFs (cumulative distribution function) and not cactus plots: the higher the solver
the more problems solved and the more to the left the faster the solver. Our results are shown
in Fig. 1 for the SAT Competition 2002, in Fig. 2 for the SAT Competition 2011, in Fig. 3 for the
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SAT Competition 2019, in Fig. 4 for the SAT Competition 2020, in Fig. 5 for the SAT Competition
2021, and in Fig. 6 for the SAT Competition 2022. The conclusion is clear: consistently across
all benchmarks of several years, recent solvers are better than old solvers with some minor
variability. More recent solvers do solve more instances.

Nevertheless, there seems to be several major performance jumps in the reported results:
one when preprocessing was introduced around 2006 and a second inconsistent one: 2019 on
2021/2022 benchmarks and 2016 on older benchmark sets with a minor improvement in 2020.
The second jump can be attributed to a combination of local search (after 2019 in CaDiCaL and
Kissat), rephasing (after 2016), and more aggressive bounded variable elimination.

The behavior of solvers varies across benchmarks. The SAT solver maple-compsps-drup is a
striking example: after 2 500 seconds it changes the heuristics to switch to VSIDS (later variants
would change on a more regular and deterministic interval). In 2002 the effect is quite strong
and it solves many instances in a very short time (while still performing worse than Lingeling
2013). This effect is less pronounced in 2011 and barely visible later.

In Figure 7, we visualize the pairwise similarity between solvers. The highest similarity is
observed between the two most recent solvers, Kissat (2021) and Kissat (2022), while the lowest
similarity is observed between these two solvers and the oldest solvers, Boehm1 (1992) and Grasp
(1997). The dendrogram above the heat-map depicts a hierarchical clustering automatically
generated based on solver similarity. Remarkably, it very closely aligns with release years.

Generally, solvers developed after the introduction of a particular technique utilize that
technique and gain an advantage on the same benchmarks. This is most evident with the three
main clusters: the first groups solvers before introduction of preprocessing, and the other two
clusters group solvers before and after 2016. In that year, a new heuristic was introduced and
specialized phases targeting SAT and UNSAT problems became popular. The split between the
early preprocessing solvers and the inprocessing solvers after 2009 is also easily discernible.

RelatedWork. In this work, we compare SAT solvers on SAT competition instances. In related
work Dutertre compared various SAT solvers from 2019 (without restricting to competition
winners) and MiniSat but on SMT bitvector benchmarks [40]. He observed improvements over
MiniSat but the ranking did not reflect the results from the SAT Competition – the second best
SAT solver finished 7th. He also tested various features in CaDiCaL and tested on problems
hard for SAT solvers not requiring extensive theory reasoning. Recent work by Fazekas [41] on
simplifying the interface between SAT and SMT solvers reaches similar conclusions.

In another related work by Kochemazov, Ignatiev, and Marques-Silva [42] the focus was on
incremental SAT solving. They compared competition winners between 2016 and 2020 and
MiniSat, but they did not observe an improvement over MiniSat on MaxSAT instances, except
for two families. However, in recent work on incremental use of SAT solvers for backbone
extraction [43] the more recent solver CaDiCaL surpasses MiniSat by a large margin.

The SAT heritage effort by Audemard, Paulevé, and Simon [44] also tries to preserve and
enable to run historic SAT solvers. Their approach is based on system-level virtualization with
docker containers and thus orthogonal to ours by compiling the original source code with historic
compilers. They do not attempt to port and patch solvers, which means a comparison such as
ours on 6 sets of competition benchmark sets will result in many discrepancies, particularly for
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Figure 1: All time winners on the SAT Competition 2002 benchmarks (100 problems)
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Figure 2: All time winners on the SAT Competition 2011 benchmarks (300 problems)
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Figure 3: All time winners on the SAT Competition 2019 benchmarks (400 problems)
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Figure 4: All time winners on the SAT Competition 2020 benchmarks (400 problems)
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Figure 5: All time winners on the SAT Competition 2021 benchmarks (400 problems)
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Figure 6: All time winners on the SAT Competition 2022 benchmarks (400 problems)
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Figure 7: Heat-map and dendrogram (top) based on runtime similarity. The similarity between two
solvers is defined by comparing the solving time they achieve on each of the 2000 benchmarks over the
years. If a solver failed to solve an instance, we assign twice the timeout value (10 000). The absolute
difference in solving time is then accumulated and normalized to the interval [0, 1], where 1 indicates
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between solvers. A more precise relation between color and similarity-value together with a histogram
of the values that appear is given at the bottom. Above the heat-map we illustrates a hierarchical
clustering, with solvers or clusters with high similarity join lower in the dendrogram, while clusters with
significantly different performance are joined higher.



older solvers, and thus render it meaningless from the perspective of comparing performance.
Our approach will likely need additional patches for newer compilers in the future though.
However it is unclear whether container virtualization can survive decades without maintenance.

Finally, an on-first-sight related but in our view bogus experiment was conducted in 2020
by Fichte, Hecher, and Szeider [45]. It only focused on a small rather uncommon benchmark
set [46] of 202 benchmarks as well as on a small set of solvers. The key feature of their set-up
was to run unmodified legacy solver code on old legacy hardware (from 1999) as well as modern
hardware (from 2019), with the goal to compare SAT solver progress due to algorithms / software
(team SW) versus progress due to hardware improvements (team HW).

However, we argue that this goal was not reached, as the experiment ignored apparent dis-
crepancies: If we take for example the problem AProVE07-04.cnf from the SAT Competition
2012, zChaff claims that this problem is SAT (without having made any decision) within 0.1 s,
while all other solvers report UNSAT (as expected). We further observed 7 discrepancies for team
SW, on the old Sparc architecture and 9 for team HW on the new architecture, not including
problems solved only by zChaff. This actually changes the result substantially and makes the
team SW look much better than what was reported in [45]. Amazingly, the solver Grasp also
(incorrectly) claims that AProVE07-04.cnf is satisfiable. After pointing out these issues to
the authors they promised to address these problems in an extended version of their paper.

6. Conclusion

In this work we have collected and fixed the source code of winning SAT solvers from the
SAT competitions and compared their performance on many benchmarks. Overall more recent
solvers solve more problems, rather consistently. Thus SAT solvers get faster and faster. We are
looking forward to continue this preservation effort and performance evaluation on additional
older and future solvers as well as benchmark sets.

Clearly, our presented results disprove the false view discussed in the introduction that there
was no major progress in SAT solving in the last 20 years. Still, one nagging remaining issue
with our work is that we do not provide a deeper understanding about the differences between
solvers and whether all implemented techniques are useful. Are there some old techniques not
part of modern SAT solvers which are still useful? And most important, can we produce even
better SAT solvers by understanding this remarkable progress better?
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