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Abstract
In this paper we discuss Incomplete Bipolar Argumentation Frameworks (iBAFs) proposed in [1]. iBAFs
are the extension of Dung’s Abstract Argumentation Frameworks (AAFs) allowing the simultaneous
presence of supports (borrowed from BAFs - Bipolar AAFs) and of uncertain elements of the argumentation
graph (borrowed from iAAFs - incomplete AAFs). We discuss the computational complexity of verification
problem (under the possible perspective) and the acceptance problem, by showing how it varies depending
on the semantics of supports and the semantics of extensions. On the one hand, we show that adding
supports on top of incompleteness does not affect the complexity of the acceptance. On the other hand,
surprisingly, we show that the joint use of bipolarity and incompleteness has a deep impact on the
complexity of the verification: for the semantics under which the verification over AAFs is polynomial-
time solvable, although moving from AAFs to BAFs or to iAAFs does not change the complexity, the
complexity of the verification over iBAFs may increase up to NP-complete.

1. Introduction

In the recent years, owing to the usefulness exhibited by Dung’s Abstract Argumentation Frame-
work (AAF [2]) in various contexts (ranging from legal disputes [3] to process mining [4]), many
extensions of AAFs have been proposed to enhance their modeling capability. Two directions have
attracted particular attention: encoding support relationships between arguments, and taking into
account possible uncertainty involving arguments and attacks. The efforts in the former direction
have led to Bipolar AAFs (BAFs), a family of variants of AAFs differing from one another in the
semantics of supports. Two well-established semantics of supports (to which those in [5, 6, 7] are
added) are the abstract semantics [8], where a support encodes a positive interaction between
arguments (semantically opposite to the meaning of attack), and the deductive semantics [9],
where supports encode a “deductive” correlation: “𝑎 supports 𝑏” means that the acceptance of 𝑎
implies the acceptance of 𝑏. The introduction of supports following these semantics has called
for extending the reasoning paradigm defined over AAFs, since combining supports and attacks
yields “implicit” attacks, called supported and supermediated attacks, as shown in Example 1.
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admissible stable complete grounded preferred
d-ad s-ad c-ad d-st s-st c-st d-co s-co c-co d-gr s-gr c-gr d-pr s-pr c-pr

AAF, BAF P P P P coNP-compl
iAAF P P P P Σ𝑝

2-compl
d-iBAF NP-compl P P NP-compl NP-compl Σ𝑝

2-compl
s-iBAF P NP-compl P P NP-compl in NP NP-compl in NP Σ𝑝

2-compl

Table 1: Complexity of verifying extensions (for iAAFs and iBAFs, the possible perspective is taken into
account). The prefixes d-, s- and c- denote the coherence conditions considered for BAFs in the
literature (specifically, d- consists in the conflict-freeness condition).

Example 1. The BAF in Figure 1(𝑎) has “explicit” attacks (solid-line arrows) and supports
(double-line arrows), as well as “implicit” attacks (not shown in the figure). In fact, whatever
the semantics of supports (abstract or deductive), the facts that 𝑎 supports 𝑏 and that 𝑏 attacks
𝑐 imply the so called “supported attack” (𝑎, 𝑐). Moreover, under the deductive semantics, since
the acceptance of a supporting argument implies the acceptance of the supported argument, also
the so called “supermediated attack” (𝑒, 𝑎) should be considered, implied by the facts that 𝑏 is
attacked by 𝑒 and supported by 𝑎.

The second direction of research has led to several variants of AAFs, where the uncertainty
affecting arguments and attacks is modeled qualitatively, by allowing the uncertain aspects of
the dispute to be specified, or quantitatively, by also allowing the specification of the extent
of this uncertainty. Incomplete AAFs (iAAFs) [10] are prominent representatives of qualitative
approaches. Basically, an iAAF is an AAF where some arguments and/or attacks are marked
as uncertain, as their occurrence in the dispute is not guaranteed. To address this form of
incompleteness, the reasoning paradigm of AAFs has been refined to consider the multiple
scenarios for the argumentation graph implied by the uncertainty, as shown in Example 2.

Example 2. Figure 1(b) is an iAAF where the argument 𝑎 and the attack (𝑐, 𝑑) are uncertain.
This iAAF compactly represents the four AAFs in Figure 1(c), called “completions”, representing
the alternative combinations of presence/absence for 𝑎 and (𝑐, 𝑑). The existence of alternative
scenarios has been taken into account in the literature by revising the notion of “extension” into

“i*-extension”, under two perspectives: a set is a “possible” (resp., “necessary”) 𝑖*-extension if
it is an extension (in the classical sense) in at least one (resp., every) completion of the iAAF.
Thus, under the complete semantics, {𝑎, 𝑐} is a possible (but not necessary) i*-extension (as it is
an extension only in the rightmost completion), while {𝑏, 𝑑} is a necessary (thus, also possible)
i*-extension.

e

b

a

c d

f

a

?

b

c

d

a

b

c

d

a

b

c

d

b

c

d b

c

d

(a) (b) (c)

?

Figure 1: A BAF (a), an iAAF (b) and its completions (c)



In the literature, there are several works investigating suitable adaptions of the traditional
extension-based reasoning paradigm to BAFs, iAAFs [10] and their variants. A fundamental
result [11, 12] is that reasoning over BAFs, in terms of verifying extensions, is the same as over
AAFs, under the so called “Dungean” semantics (i.e. the admissible, stable, grounded, complete,
preferred semantics), independently from the semantics of supports (abstract or deductive) and
the coherence condition underlying the semantics – in fact, in the presence of supports, it may
make sense to consider more general coherence conditions than the conflict-freeness. This means
that the verification problem over BAFs is coNP-complete under the preferred semantics and in P
under every other Dungean semantics. The same holds for iAAFs, with the only exception of the
preferred semantics under the possible perspective [13]: in this particular case, the verification
problem’s complexity moves from coNP-complete to Σ𝑝

2-complete. In the other cases, the
complexity is the same as over AAFs: it is in coNP under the preferred semantics in the necessary
perspective, and in P under the other Dungean semantics, whatever the perspective. In other
words, using BAFs to specify supports or iAAFs to specify uncertain arguments/attacks does not
make the reasoning computationally more complex than over AAFs.

In this paper, we discuss Incomplete Bipolar AAFs (iBAFs), that, pushed by the popularity of
BAFs and iAAFs, were recently proposed in [1]. Basically, iBAFs augment AAFs with (abstract
or deductive) supports and the possibility of specifying which arguments, attacks, and supports
are uncertain. The need for introducing uncertain supports was thoroughly discussed in [14],
where an empirical study investigating how different people perceive the relationships between
arguments was presented and showed that, analogously to the case of attacks, it often happens
that, for a pair of arguments 𝑎, 𝑏, some people may see a support from 𝑎 to 𝑏, while others may
not. This clearly calls for resorting to the notion of uncertain support when merging different
subjective views into a single AAF. As a real-life example motivating uncertain supports under
the deductive perspective (the case of abstract supports is covered by several examples in [14]),
consider the arguments below, claimed in a trial against a company PharmaX producing a vaccine:

𝑎: “As drug preparations must be sterile, mercury was used by PharmaX as an excipient of the
vaccine”;
𝑏: “As the vaccine contains harmful ingredients, it should not have been used on humans.”

Now: 1) some jurors believing that mercury is harmful may see a deductive support (𝑎, 𝑏), as
they believe that if 𝑎 is accepted then 𝑏 is accepted too; 2) other jurors believing that mercury is
dangerous may not see this support, since they adopt a more ”scientific” reasoning: they think
that even if 𝑎 is accepted, 𝑏 may not be accepted, since 𝑏 does not take into account that toxicity
may be dosage-dependent; 3) jurors believing that mercury is safe probably see no correlation
between 𝑎 and 𝑏, and so on.

Starting from this, we review the results published in [1] on the computational complexity of
the reasoning over iBAFs, and consider both the verification problem (for which we investigate
the variant IBVER under the possible perspective) and the acceptance problem. Interestingly, we
observe that, while adding bipolarity on top of incompleteness does not affect the complexity
of the acceptance problem (as it can be easily shown to coincide with the case of iAAFs, where
supports cannot be specified), the simultaneous presence of bipolarity and incompleteness makes
things much more intricate for the verification than the case where these aspects do not occur or
do not co-exist, as the complexity of IBVER depends on the combination ⟨semantics of supports,



semantics of extensions⟩:
1) under the stable and the preferred semantics, IBVER is in P and Σ𝑝

2-complete, respectively,
meaning that there is no additional source of complexity compared with BAFs and iAAFs;
2) under the other Dungean semantics, IBVER may become intractable (NP-complete), depending
on the semantics of supports and on the coherence condition underlying the semantics of extension,
meaning that in these cases new sources of complexity can arise from the joint use of supports
and incompleteness.

The results on the verification problem are summarized in Table 1, looking into which it is
possible to appreciate that in some cases IBVER under the (variants of) the stable semantics is in
P while it is NP-complete under (variants of) the admissible semantics. This is rather unusual in
the context of frameworks generalizing AAFs, as typically the verification problems under the
admissible and stable semantics lie in the same complexity class.

2. Preliminaries

We assume that the reader is familiar with Abstract Argumentation Frameworks (AAFs) and
review Bipolar Abstract Argumentation Frameworks (BAFs). We do not provide specific prelimi-
naries for incomplete AAFs (iAAFs) since what said in the introduction about them provides a
sufficient background.

Definition 1 (BAF). A bipolar abstract argumentation framework (BAF) is a tuple ℱ = ⟨𝒜,ℛ𝑎,ℛ𝑠⟩,
where 𝒜 is a set of arguments, while ℛ𝑎 ⊆ 𝒜×𝒜 and ℛ𝑠 ⊆ 𝒜×𝒜 are relations whose elements
are called attacks and supports, respectively.

If ℛ𝑎 (resp., ℛ𝑠) contains (𝑎, 𝑏), we say “𝑎 attacks 𝑏” or “𝑎→ 𝑏” (resp., “𝑎 supports 𝑏” or
“𝑎⇒𝑏”). Moreover, for every (𝑎, 𝑏) in the closure of ℛ𝑠, we say that “𝑎 transitively supports 𝑏”
or 𝑎⇒+ 𝑏. Since in the following we will introduce forms of attack other than those encoded by
ℛ𝑎, those in ℛ𝑎 will be referred to as “direct attacks”. In what follows, all the definitions and
notions regarding BAFs will be reviewed by assuming that a BAF ℱ = ⟨𝒜,ℛa,ℛs⟩ is given.

In the first proposal of BAF [8], supports were given an abstract semantics, that is the opposite
of the traditional semantics of attack in AAFs. According to this semantics. the combination of
supports and direct attacks implies further attacks, called supported attacks.

Definition 2 (Supported attack). Let 𝑎, 𝑏 ∈ 𝒜. There is a supported attack from 𝑎 to 𝑏 (written
𝑎→s 𝑏) iff there is 𝑐 ∈ 𝒜 such that 𝑎⇒+ 𝑐 ∧ 𝑐→𝑏.

Among the other semantics for supports in the literature, we consider the well-established
deductive semantics [9]: “𝑎 supports 𝑏” means that if 𝑎 is accepted, then 𝑏 is accepted. As
observed in [12], adopting this semantics calls for considering not only direct and supported
attacks, but also supermediated attacks.

Definition 3 (Supermediated attack). Let 𝑎, 𝑏 ∈ 𝒜. There is a supermediated attack from 𝑎 to
𝑏 (written as 𝑎→m 𝑏) iff there is an argument 𝑐 ∈ 𝒜 such that 𝑏⇒+ 𝑐 ∧ (𝑎→s 𝑐 ∨ 𝑎→𝑐).

Example 3. The BAF in Figure 1(𝑎) has the “direct” attacks (𝑒, 𝑏), (𝑏, 𝑐), (𝑓, 𝑑), the supports
(𝑎, 𝑏), (𝑐, 𝑑), the supported attack (𝑎, 𝑐), and the supermediated attacks (𝑒, 𝑎), (𝑓, 𝑐).



We partition BAFs into s-BAFs and d-BAFs: s-BAFs (resp., d-BAFs) adopt the abstract
(resp., deductive) semantics, so only direct and supported attacks (resp., direct, supported and
supermediated) are considered. In BAFs of any type, 𝑎 →* 𝑏 will denote the existence of a
“generic attack” from 𝑎 to 𝑏: that is, over s-BAFs, 𝑎→* 𝑏 ≡ 𝑎→𝑏 ∨ 𝑎→s 𝑏, while, over d-BAFs,
𝑎→* 𝑏 ≡ 𝑎→𝑏 ∨ 𝑎→s 𝑏 ∨ 𝑎→m 𝑏.

The classical notion of defense becomes: given 𝑎, 𝑏 ∈ 𝒜 such that 𝑎→* 𝑏, the set 𝑆 defends 𝑏
against 𝑎 if ∃𝑠 ∈ 𝑆 s.t. 𝑠→* 𝑎. In turn, 𝑎 ∈ 𝒜 is acceptable w.r.t. 𝑆 ⊂ 𝒜 if ∀𝑏 ∈ 𝒜 such that
𝑏→*𝑎, 𝑆 defends 𝑎 against 𝑏.

2.1. Semantics of extensions

Three different requirements for coherence were defined: “conflict-freeness”, “safety”, and
“support closedness”.

Definition 4 (Conflict-freeness, safety, support closedness). A set of arguments 𝑆 is conflict-
free iff ̸ ∃ 𝑎 ∈ 𝑆 such that 𝑆→*𝑎, is safe iff ̸ ∃ 𝑎 ∈ 𝒜 such that 𝑆→*𝑎 ∧ (𝑆⇒+𝑎 ∨ 𝑎 ∈ 𝑆), and
is closed for ℛ𝑠 iff ̸ ∃ 𝑎 ∈ 𝒜 ∖ 𝑆 such that 𝑆⇒𝑎.

When moving from AAFs to BAFs, the classical semantics of extensions can be adapted
by imposing different combinations of coherence requirements. In particular, we consider the
following classical semantics (denoted as “Dungean semantics”): admissible (ad), stable (st),
complete (co), grounded (gr), preferred (pr), and start with reviewing the adaptions of the
admissible one. A set 𝑆 ⊆ 𝒜 that defends all of its arguments is 1) a d-admissible (Dung-
admissible) or d-ad extension iff 𝑆 is conflict-free; 2) an s-admissible (Safe-admissible) or
s-ad extension iff 𝑆 is safe; 3) a c-admissible (Closure-admissible) or c-ad extension iff 𝑆 is
conflict-free and closed for ℛ𝑠. Given this, 𝑆 is an extension of type:

– d-complete or d-co (resp., s-co, c-co) iff 𝑆 is d-ad (resp., s-ad, c-ad) and contains every
acceptable argument;

– d-grounded or d-gr (resp., s-gr, c-gr) iff 𝑆 is a minimal (w.r.t. ⊆) d-co (resp., s-co, c-co)
extension;

– a d-preferred or d-pr (resp., s-pr, c-pr) iff 𝑆 is a maximal (w.r.t. ⊆) d-co (resp., s-co, c-co)
extension.

Analogously, a set 𝑆 ⊆ 𝒜 is a d-stable or d-st (resp., s-st, c-st) extension iff ∀𝑎 ∈ 𝒜 ∖ 𝑆
𝑆→*𝑎 and 𝑆 is conflict-free (resp., is safe; is conflict free and closed for ℛ𝑠).

Example 4. In the BAF in Figure 1(𝑎), {𝑎, 𝑏, 𝑓} is conflict-free and safe, but is not a d-ad
extension for s-BAF or d-BAF (since 𝑏 is not defended). Furthermore, for the s-BAF case, {𝑎, 𝑓}
is a s-ad, s-gr and s-pr extension, {𝑎, 𝑒, 𝑓} is a st, d-ad, d-gr, and d-pr extension, {𝑒, 𝑓}
is a c-pr and c-gr extension. For the d-BAF case {𝑒, 𝑓} is the unique st extension, that is also
c-pr and c-gr.

Remark 1. Safety implies conflict-freeness, and these two requirements are equivalent in d-
BAFs (but not in s-BAFs). So, in d-BAFs, the d- and s- variants of every semantics coincide.
Furthermore, in d-BAFs, the three variants of the semantics st coincide, as the conflict-freeness
and the requirement that an extension 𝑆 attacks every argument outside 𝑆 implies that 𝑆 can
support no argument outside itself.



We denote as BVER𝜎(ℱ , 𝑆) the fundamental problem of verifying if the set 𝑆 of arguments
is an extension over the BAF ℱ under the semantics 𝜎. It is well known that the computational
complexity of BVER under any x-variant (with x ∈ {s, d, c}) of a classical Dungean semantics 𝜎
is the same as the verification problem VER for AAFs under 𝜎, as observed in [15]. The reason is
that checking if 𝑆 is an extension of a BAF ℱ under x-𝜎 can be done by first checking if 𝑆 is a
𝜎-extension of the AAF obtained from ℱ by materializing all the implicit attacks and removing
the supports, and then checking over ℱ the coherence requirements of x.

3. Incomplete BAFs (iBAFs)

We extend incomplete AAFs (iAAFs) [16, 10, 17, 18, 13, 19] to incomplete BAFs (iBAFs).

Definition 5 (iBAF). An incomplete Bipolar Abstract Argumentation Framework is a tuple
⟨𝒜,𝒜?,ℛ𝑎,ℛ?

𝑎,ℛ𝑠,ℛ?
𝑠⟩, where 𝒜, 𝒜? are disjoint sets of arguments, ℛ𝑎 and ℛ?

𝑎 disjoint sets
of attacks between arguments in 𝒜 ∪ 𝒜?, and ℛ𝑠 and ℛ?

𝑠 disjoint sets of supports between
arguments in 𝒜 ∪𝒜?.

The arguments in 𝒜 are said to be certain (they are definitely known to exist), while those in
𝒜? uncertain (it is not known for sure if they occur in the argumentation or not). Analogously,
the attacks in ℛ𝑎 and the supports in ℛ𝑠 are said to be certain (they are known to occur, if both
the incident arguments exist), while those in ℛ?

𝑎 and ℛ?
𝑠 uncertain (they may not occur, even

if both the incident arguments exist). An iBAF represents alternative scenarios, called comple-
tions, corresponding to the different combinations of occurrence/non-occurrence of uncertain
arguments/attacks/supports.

Definition 6 (Completion). A completion for an iBAF ℐℱ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?
𝑎,ℛ𝑠,ℛ?

𝑠⟩ is a BAF
ℱ= ⟨𝐴′,ℛ′

𝑎,ℛ′
𝑠⟩ where 𝒜 ⊆ 𝒜′ ⊆ (𝒜∪𝒜?) and ℛ𝑎∩(𝒜′×𝒜′)⊆ℛ′

𝑎⊆ (ℛ𝑎∪ℛ?
𝑎)∩(𝒜′×𝒜′)

and ℛ𝑠 ∩ (𝒜′ ×𝒜′)⊆ℛ′
𝑠⊆ (ℛ𝑠 ∪ℛ?

𝑠) ∩ (𝒜′ ×𝒜′).

As happens for iAAFs, the notion of extension in AAFs can be adapted to iBAFs under a
possible and a necessary perspective, where the condition imposed by the semantics is required to
be true in at least one and every completion, respectively. This yields the definition of i*-extension
below.

Definition 7 (i*-extension). Given an iBAF ℐℱ and a semantics 𝜎, a set 𝑆 is a possible (resp.,
necessary) i*-extension for ℐℱ (under 𝜎) if, for at least one (resp., for every) completion 𝐹 of
ℐℱ , 𝑆 is an extension of 𝐹 under 𝜎.

We focus on possible i*-extensions, and address IBVER𝜎(ℐℱ , 𝑆), that is the adaption of the
verification problem to iBAFs and asks if 𝑆 is a possible i*-extension of ℐℱ under 𝜎.

Example 5. Consider the iBAF ℐℱ obtained from the BAF in Figure 1 imposing that the argu-
ment 𝑐, the attack (𝑏, 𝑐) and the support (𝑐, 𝑑) are uncertain. It is easy to see that, under both the
abstract and deductive semantics of supports, {𝑎, 𝑐, 𝑒} is a possible i*-extension of ℐℱ under
d-ad (as it is a d-ad extension in the completion where (𝑏, 𝑐) and (𝑐, 𝑑) are not present), but it is
not a possible i*-extension under s-ad or c-ad (as, in every completion, 𝑒→𝑏 and 𝑎⇒𝑏).



Given an iBAF ℐℱ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?
𝑎,ℛ𝑠,ℛ?

𝑠⟩, every symbol ◇ ∈ {→,→*,⇒,⇒+} introduced
for BAFs will be used for ℐℱ with the semantics: 𝑎 ◇ 𝑏 over ℐℱ means that 𝑎 ◇ 𝑏 over the
BAF ⟨𝒜 ∪ 𝒜?,ℛ𝑎 ∪ ℛ?

𝑎,ℛ𝑠 ∪ ℛ?
𝑠⟩. Moreover, we write 𝑎↠* 𝑏 to say that 𝑎→* 𝑏 in the BAF

ℱ ′ = ⟨𝒜′,ℛ′
𝑎,ℛ′

𝑠⟩, where 𝒜′ = 𝒜 ∪ {𝑎, 𝑏}, ℛ′
𝑎 = ℛ𝑎 ∩ (𝒜′ × 𝒜′), ℛ′

𝑠 = ℛ𝑠 ∩ (𝒜′ × 𝒜′),
i.e. there is a generic attack from 𝑎 to 𝑏 even if every uncertain attack, support, and argument
(different from both 𝑎 and 𝑏) is removed from ℐℱ . For instance, consider the d-iBAF obtained
from the BAF in Figure 1(𝑏) by adding the support (𝑎, 𝑐). Then, 𝑏↠*𝑎, but not 𝑎↠* 𝑑 (since if
the uncertain attack (𝑐, 𝑑) is removed, the supported attack (𝑎, 𝑑) cannot be triggered).

Attacks and supports will be also considered from sets of arguments to arguments, and from
arguments to sets of arguments: for any ◇ ∈ {→,→s,→m,→*,⇒,⇒+,↠*}, 𝑆 ◇ 𝑎 (resp., 𝑎 ◇𝑆) means
that there is 𝑏 ∈ 𝑆 such that 𝑏 ◇ 𝑎 (resp., 𝑎 ◇ 𝑏). Moreover, we write ℐℱ ∖𝑋 , where 𝑋 ⊆ 𝒜?,
to denote the iBAF obtained from ℐℱ by removing all the arguments in 𝑋 and the attacks and
supports involving an argument in 𝑋 .

4. Computational Complexity of Verifying i*-extensions

We here provide a thorough analysis of the complexity of reasoning over iBAFs (in terms of
solving IBVER), where the sensitivity to the semantics of supports and the semantics of extensions
is studied. Theorem 1 states a general upper bound for the complexity of IBVER.

Theorem 1. For both s- and d- iBAFS. IBVER𝜎(ℐℱ , 𝑆) is in NP under every semantics x-𝜎,
with x ∈ {s, d, c} and 𝜎 ∈ {ad, st, co, gr}, and in Σ𝑝

2 under every semantics x-pr, with x ∈ {s,
d, c}.

Proof. IBVER𝜎(ℐℱ , 𝑆) can be solved by guessing a completion ℱ of ℐℱ and then solving
BVER𝜎(ℱ , 𝑆). Thus, IBVER is in NP (resp., Σ𝑝

2) when BVER is in P (resp., coNP). □

Under the variants of the preferred semantics, it is easy to see that the upper bound of Theorem 1
is tight, so IBVER is Σ𝑝

2-complete. In fact, the Σ𝑝
2-hardness holds for iAAFs [10], that are iBAFs

where supports are not used. We now focus on the variants of the other semantics, and show
when the upper bound is tight or not. We consider s-and d- iBAFs separately, in order to highlight
the role of the supports’ semantics in the complexity.

4.1. Reasoning over s-iBAFs

Theorem 2 states under which semantics IBVER over s-iBAFs is NP-complete.

Theorem 2. Over s-iBAFs, IBVER𝜎 is NP-complete under 𝜎 ∈ {s-ad, d-co, s-co, d-gr, s-gr}.

We now address the semantics not covered above, and show that under them IBVER is in P.
Preliminarily, we introduce some properties that may be satisfied or not by a given s-iBAF, and a
lemma, that will help the reasoning in the main theorem’s proof.

Definition 8. Properties 𝑝1, 𝑝2, 𝑝3 are satisfied by an s-iBAF ℐℱ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?
𝑎,ℛ𝑠,ℛ?

𝑠⟩
and a set 𝑆 ⊆ 𝒜 ∪𝒜? iff:
– 𝑝1: ℛ?

𝑎 ∩
(︀(︀
𝒜 ∪𝒜?

)︀
× 𝑆

)︀
= ∅, i.e. there are no uncertain attacks towards 𝑆;

– 𝑝2: ̸ ∃𝑎 ∈ 𝒜? ∖𝑆 s.t. 𝑎↠*𝑆, i.e. there are no uncertain arguments that will (generically) attack



𝑆 even if every other uncertain argument/attack/support is removed;
– 𝑝3: ̸ ∃(𝑎, 𝑦) ∈ ℛ?

𝑠 s.t. 𝑦 ∈ 𝒜 ∧ 𝑦↠* 𝑆, i.e. there are no uncertain supports towards certain
arguments that will (generically) attack 𝑆 even if every other uncertain argument/attack/support
is removed.

Lemma 1. Let ℐℱ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?
𝑎,ℛ𝑠,ℛ?

𝑠⟩ be an s-iBAF and 𝑆 ⊆ 𝒜 ∪𝒜?. Then:
𝐼) under 𝜎 ∈ {d-ad, c-ad, d-st, s-st, c-st}, 𝑆 is a possible i*-extension of ℐℱ iff it is a
possible i*-extension of ℐℱ ′ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?

𝑎 ∖
(︀(︀
𝒜 ∪𝒜?

)︀
× 𝑆

)︀
,ℛ𝑠,ℛ?

𝑠⟩;
𝐼𝐼) under 𝜎 ∈ {d-ad, d-st}, if 𝑝1 is satisfied, then, ∀𝑎 ∈ 𝒜? ∖ 𝑆 s.t. 𝑎↠* 𝑆, 𝑆 is a possible
i*-extension of ℐℱ iff 𝑆 is a possible i*-extension of ℐℱ ′ = ℐℱ ∖ {𝑎};
𝐼𝐼𝐼) under 𝜎 ∈ {d-ad, d-st}, if 𝑝1, 𝑝2 are satisfied, then ∀(𝑎, 𝑦) ∈ ℛ?

𝑠 s.t. 𝑦 ∈ 𝐴 ∧ 𝑦↠*𝑆, 𝑆
is a possible i*-extension of ℐℱ iff 𝑆 is a possible i*-extension of ℐℱ ′ = ℐℱ ∖ {(𝑎, 𝑦)}.

The theorem below states under which semantics IBVER is in P. Its proof (for the case
𝜎 = d-ad) relies on the correctness of Algorithm 1, that first enforces properties 𝑝1 (line 1), 𝑝2
(lines 2-3), 𝑝3 (lines 4-5) by removing the uncertain attacks/arguments/supports making them
violated, and then returns as answer the result of the verification performed over the completion
containing all the uncertain arguments/attacks/supports that were not removed. The other cases
can be solved via minor changes to the strategy of Algorithm 1.

As for c-co and c-gr, the general NP upper bound of Theorem 1 holds and a tighter charac-
terization is left to future work.

Theorem 3. Over s-iBAFs, IBVER𝜎 is in P under 𝜎 ∈ {d-ad, c-ad, d-st, s-st, c-st}.

Proof. (𝜎 = d-ad, the other cases are analogous). We first prove that Algorithm 1 is correct

Algorithm 1 Solving IBVER𝜎(ℐℱ , 𝑆) under 𝜎 = d-ad

Input: ℐℱ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?
𝑎,ℛ𝑠,ℛ?

𝑠⟩; 𝑆 ⊆ 𝐴 ∪𝐴?

Output: TRUE iff 𝑆 is a possible i*-extension for ℐℱ under d-ad;

1: ℐℱ ′ = ⟨𝒜′,𝒜′?,ℛ′
𝑎,ℛ′?

𝑎 ,ℛ′
𝑠,ℛ′?

𝑠 ⟩, where
𝒜′ = 𝒜; 𝒜′? = 𝒜?; ℛ′

𝑎 = ℛ𝑎; ℛ′
𝑠 = ℛ𝑠; ℛ′?

𝑠 = ℛ?
𝑠

ℛ′?
𝑎 = ℛ?

𝑎 ∖
(︀(︀
𝐴 ∪𝐴?

)︀
× 𝑆

)︀
2: while ∃𝑎 ∈ 𝒜′? ∖ 𝑆 s.t. ∃𝑠 ∈ 𝑆 where 𝑎↠* 𝑠 in ℐℱ ′ do
3: ℐℱ ′ = ℐℱ ′ ∖ {𝑎}

4: while ∃(𝑎, 𝑦) ∈ ℛ′?
𝑠 s.t. 𝑦 ∈ 𝒜′ ∧ 𝑦↠*𝑆 in ℐℱ ′ do

5: ℛ′?
𝑠 = ℛ′?

𝑠 ∖ {(𝑎, 𝑦)}
6: ℱ ′ = ⟨𝒜′ ∪ 𝒜′?,ℛ′

𝑎 ∪ℛ′?
𝑎 ,ℛ′

𝑠 ∪ℛ′?
𝑠 ⟩

7: return TRUE if 𝑆 is a d-ad extension of ℱ ′; FALSE otherwise

(i.e. it returns true iff 𝑆 is a possible i*-extension for ℐℱ under 𝜎 =d-ad). Lemma 1 implies
that, under 𝜎 = d-ad, 𝑆 is a possible i*-extension for ℐℱ iff 𝑆 is a possible i*-extension for the
iBAF ℐℱ ′ constructed by Lines 1- 5. Thus, to prove the correctness of Algorithm 1, it suffices to
prove the equivalence EQ: “𝑆 is a d-ad extension of ℱ ′”⇔ “𝑆 is a possible i*-extension for ℐℱ ′

under d-ad”, where ℱ ′ is the BAF built at Line 6 and ℐℱ ′ the iBAF buillt by Lines 1- 5. The ⇒
direction is straightforward. We prove the ⇐ direction reasoning by contradiction. Assume that
𝑆 is a possible i*-extension for ℐℱ ′ under d-ad and 𝑆 is not a d-ad extension of ℱ ′. Let ℱ be a



completion of ℐℱ ′ such that 𝑆 is a d-ad extension of ℱ . Since 𝑆 is not a d-ad extension of ℱ ′,
(at least) one of the following holds:

𝑖) ∃𝑎, 𝑏 ∈ 𝑆 such that 𝑎→* 𝑏,
𝑖𝑖) ∃𝑎 ∈ 𝑆 and ∃𝑏 ∈ 𝐴′ ∖ 𝑆 such that 𝑏→*𝑎 and 𝑆 does not defend 𝑎 against 𝑏.

We show that 𝑖) and 𝑖𝑖) yield contradictions. If 𝑖) holds, 𝑎 →* 𝑏 also over ℱ , as all the
supports/attacks and arguments that imply the presence of the attack (𝑎, 𝑏) over ℱ ′ are certain
in ℐℱ ′, as implied by 𝑝1, 𝑝2, 𝑝3. Hence, 𝑆 is not a d-ad extension of ℱ , as it is not conflict
free, which is a contradiction. If 𝑖𝑖) holds, properties 𝑝1, 𝑝2 and 𝑝3 imply that 𝑏→* 𝑎 over ℱ .
Hence, since 𝑆 is a d-ad extension of ℱ , 𝑆→ 𝑏 over ℱ , and this, in turn, implies that 𝑆→ 𝑏
over ℱ ′, as every uncertain attack in ℐℱ ′ from 𝑆 towards arguments not in 𝑆 is present in ℱ ′.
Therefore, 𝑆 defends 𝑎 against 𝑏, which is a contradiction. This completes the proof of EQ and
of the correctness of Algorithm 1. Then, the statement follows from the fact that that Algorithm 1
runs in polynomial time. □

4.2. Reasoning over d-iBAFs

Theorem 4. Over d-iBAFs, IBVER𝜎 is NP-complete under 𝜎 ∈ {d-ad, s-ad, d-co, s-co, c-co,
d-gr, s-gr, c-gr}.

As for the other semantics, Theorem 5 below states that IBVER is in P for the semantics not con-
sidered in Theorem 4 (under which IBVER is NP-complete). For the case 𝜎 = c-ad, the core of
the tractability result of Theorem 5 is Algorithm 2. This algorithm first computes the completion
ℱ containing all the certain and uncertain arguments/attacks/supports except: 1) the uncertain at-
tacks between arguments in 𝑆, 2) the uncertain arguments that are supported (via certain supports)
by 𝑆, and 3) the uncertain supports from 𝑆 towards arguments outside 𝑆. After checking in ℱ if 𝑆
is conflict free and closed for supports (otherwise, it returns FALSE), it considers every undefended
attack (𝑎, 𝑠) towards 𝑆 and tries to remove it from ℱ : it accomplishes this in the two cases where
(𝑎, 𝑠) was uncertain in ℐℱ (in this case, (𝑎, 𝑠) is directly removed from ℱ ) or 𝑎 was uncertain in
ℐℱ (in this case, (𝑎, 𝑠) is removed as the side effect of removing 𝑎). Finally, it returns TRUE if and
only if the so obtained ℱ contains no more undefended attacks towards 𝑆. Basically, the proof
of Theorem 5 consists in showing that this strategy is correct: as ℱ is obviously a completion for
which 𝑆 is a c-ad extension, the hard part of the proof consists in showing that, if the algorithm
returns FALSE, there is no completion (different from ℱ) for which 𝑆 is a c-ad extension.

Theorem 5. Over d-iBAFs, IBVER𝜎 is in P under 𝜎 ∈ {c-ad, d-st, s-st, c-st}.

Proof. Case 𝜎 = c-ad (the other cases can be proved with similar reasoning). We first prove that
Algorithm 2 is correct (it returns TRUE iff 𝑆 is a possible c-ad i*-extension of ℐℱ). The only if
direction is straightforward as Algorithm 2 returns TRUE iff 𝑆 is a c-ad extension of ℱ ′, which is
a completion of ℐℱ . We prove the if direction reasoning by contradiction. Assume that 𝑆 is a
possible c-ad extension of ℐℱ , but Algorithm 2 returns FALSE. If FALSE is returned at line 3, at
least one of the following cases holds:

𝑐1 : ∃(𝑥, 𝑦) ∈ ℛ𝑎 ∩ (𝑆 × 𝑆);
𝑐2 : ∃(𝑥, 𝑦) ∈ ℛ𝑠 ∩ (𝑆 × (𝒜 ∖ 𝑆)).



Algorithm 2 Verifying c-ad extensions over d-iBAFs
Input: ℐℱ = ⟨𝒜,𝒜?,ℛ𝑎,ℛ?

𝑎,ℛ𝑠,ℛ?
𝑠⟩; 𝑆 ⊆ 𝒜 ∪𝒜?;

Output: TRUE iff 𝑆 is a possible i*-extension for ℐℱ under c-ad;
1: ℱ ′ = ⟨𝒜′,ℛ′

𝑎,ℛ′
𝑠⟩: where

𝒜′ = 𝒜 ∪𝒜? ∖
{︀
𝑎 ∈ 𝒜? | ∃𝑥 ∈ 𝑆 s.t. (𝑥, 𝑎) ∈ ℛ𝑠

}︀
ℛ′

𝑎 = ℛ𝑎 ∪
(︀
ℛ?

𝑎 ∖ (𝑆 × 𝑆)
)︀

ℛ′
𝑠 = ℛ𝑠 ∪

(︀
ℛ?

𝑠 ∖ (𝑆 × (𝒜′ ∖ 𝑆))
)︀

2: if 𝑆 is not conflict free and closed for ℛ′
𝑠 in ℱ ′ then

3: return FALSE
4: ℛ′

𝑎 = ℛ′
𝑎 ∖ {(𝑥, 𝑠) ∈ ℛ?

𝑎| 𝑠 ∈ 𝑆 ∧ not 𝑆→* 𝑦}
5: while ∃(𝑦, 𝑠) ∈ ℛ′

𝑎 s.t. 𝑠 ∈ 𝑆 and not 𝑆→* 𝑦 do
6: if 𝑦 ∈ 𝒜? then ℱ ′ = ℱ ′ ∖ {𝑦} else return FALSE

7: return TRUE

As in both cases there is no completion of ℐℱ where 𝑆 is conflict free and closed for supports,
𝑆 is not a possible c-ad extension of ℐℱ , which is a contradiction. This means that FALSE is
returned at line 6. We use the following claim.

Claim 1. Assume that Algorithm 2 returns FALSE at some iteration of the while loop (lines
5-6), and let 𝑗 be the iteration at which FALSE is returned. Let 𝑖 < 𝑗 and ℱ 𝑖 = ⟨𝒜𝑖,ℛ𝑖

𝑎,ℛ𝑖
𝑠⟩

be the completion generated at the end of the 𝑖-th step of the while loop. For any completion
ℱ ′′ = ⟨𝒜′′,ℛ′′

𝑎,ℛ′′
𝑠⟩ of ℐℱ , if 𝒜′′ ∖ 𝒜𝑖 ̸= ∅ or ℛ′′

𝑎 ∖ ℛ𝑖
𝑎 ̸= ∅ or ℛ′′

𝑠 ∖ ℛ𝑖
𝑠 ̸= ∅, then 𝑆 is not a

c-ad extension of ℱ ′′.

Let 𝑛 be the while step before the one at which Algorithm 2 returns FALSE. Now, for any
completion ℱ ′′ of ℐℱ such that 𝒜′′ ∖ 𝒜𝑛 ̸= ∅ or ℛ′′

𝑎 ∖ ℛ𝑛
𝑎 ̸= ∅ or ℛ′′

𝑠 ∖ ℛ𝑛
𝑠 ̸= ∅, Claim 1

implies that 𝑆 is not a c-ad extension of ℱ ′′. Moreover, for any completion ℱ ′′ of ℐℱ such that
𝒜′′ ∖ 𝒜𝑛 = ∅ and ℛ′′

𝑎 ∖ ℛ𝑛
𝑎 = ∅ and ℛ′′

𝑠 ∖ ℛ𝑛
𝑠 = ∅, it holds that ∃(𝑦, 𝑥) ∈ ℛ′′

𝑎 s.t. 𝑥 ∈ 𝑆 and
not 𝑆→* 𝑦 and (𝑦, 𝑥) ̸∈ ℛ?

𝑎 and 𝑦 ̸∈ 𝒜?, and then 𝑆 is not a c-ad extension of ℱ ′′ either, as 𝑦
attacks 𝑆 but is not attacked by 𝑆 in ℱ ′′. Thus, every completion ℱ ′′ of ℐℱ is such that 𝑆 is not
a c-ad extension of ℱ ′′, which is a contradiction. This completes the proof of the correctness
of Algorithm 2. The fact that Algorithm 2 runs in polynomial time concludes the proof for
𝜎 = c-ad. The proof for 𝜎 ∈ {d-st, s-st, c-st} is analogous. □

5. The Acceptance Problem

We start from the classical definitions of credulous acceptance (CA) and skeptical acceptance
(SA) over AAFs: “CA𝜎(𝑎, 𝐹 ) (resp., SA𝜎(𝑎, 𝐹 )) is the problem of deciding if the argument 𝑎 is in
at least one (resp., every) extension of the AAF 𝐹 ”.

Then, we consider the adaption of the acceptance problem introduced in [17] for iAAFs
(where supports are not considered). That is, we consider the four variants of the acceptance
problem PCA,PSA,NCA,NSA, where the credulous (C) and skeptical (S) perspectives implied
by the presence of multiple extensions are combined with the possible (P) and necessary (N)
perspectives implied by the presence of multiple completions:
“PXA𝜎(𝑎, 𝐼𝐹 ) (resp., NXA𝜎(𝑎, 𝐼𝐹 )), where 𝑋 ∈ {C,S}, is the problem of deciding if in at least
one (resp., every) completion 𝐹 of 𝐼𝐹 the answer of XA(𝑎, 𝐹, 𝜎) is yes.”



Semantics 𝜎 PCA NCA PSA NSA

ad NP-c Π𝑝
2-c trivial trivial

st NP-c Π𝑝
2-c Σ𝑝

2-c coNP-c
gr NP-c coNP-c NP-c coNP-c
co NP-c Π𝑝

2-c NP-c coNP-c
pr NP-c Π𝑝

2-c Σ𝑝
3-c Π𝑝

2-c

Table 2: Computational complexity of the (variants of) the acceptance problem over iAAFs and iBAFs.
As for iBAFs, the results hold for s-iBAFs and d-iBAFs and for all the coherence conditions
(d-,s-,c-).

Now, we naturally extend the acceptance problem to the case of iBAFs by using the same
definition above, with the only difference that now 𝐼𝐹 is an iBAF.

In order to provide a complexity characterization of the acceptance problems over iBAFs,
we start from what is known about the same problems over iAAFs. A complete picture of the
complexity of PCA, NCA, PSA, NSA over iAAFs is given by Table 2, taken from [17]. From
Table 2, it turns out that, except for the trivial case of PSA and NSA under 𝜎 =ad, under the other
Dungean semantics PCA, NCA, PSA, NSA over iAAFs are complete for complexity classes above
P in the polynomial hierarchy. An immediate consequence is that, except for the above mentioned
trivial cases, PCA, NCA, PSA, NSA over (s- and d-) iBAFs are hard for the same classes as over
iAAFs, since iAAFs are iBAFs without supports. Moreover, the guess-and-check strategies used
in [17] to prove the memberships work also in the case of s- and d- iBAFs, after a minor change
to the check phase. In fact, in the case of iBAFs, the guessed completion is a BAF (while in
the case of iAAFs, the guessed completion is an AAF). Hence, the check phase over iBAFs
simply consists in performing the same check phase done over iAAFs after two preliminary
steps: 1) translating the guessed completion/BAF into an equivalent AAF where the implicit
attacks are materialized; 2) checking the coherence condition (conflict-freeness, safety, or support
closedness). Since 1) and 2) can be done in polynomial time, the check phase over iBAFs has the
same complexity as over iAAFs, thus also the memberships reported in the table above hold for
iBAFs.

What said above, along with the fact that, under 𝜎 = x-ad (with x ∈ {d, s, c}), it is
straightforward to see that PSA and NSA over iBAFs are trivial (as over iAAFs), proves the
following statement.

Theorem 6. The computational complexities of PCA, NSA, PSA and NSA over d-iBAFs and
s-iBAFs and for all the coherence conditions (d-,s-,c-) are reported in Table 2.

6. Related Work

BAFs (along with the abstract semantics of supports) were first introduced in [8], and then revisited
in [9, 20, 21], where the deductive, necessary, evidential semantics (that are comprehensively
reviewed in [12]) were introduced, respectively. We observe that the results in this paper hold
also under the necessary semantics, that is dual to the deductive one (as necessary supports are
deductive supports in the opposite direction). More recently, alternative supports’ semantics have
been proposed in [5, 6], where supporting arguments are capable of defending the supported



arguments. Analogously, the semantics in [7] pursues the idea of enforcing some monotonicity,
in the sense that supports are prevented from decreasing the acceptance degree of arguments
(from skeptically to credulously accepted, or even rejected). In fact, the various semantics in the
literature catch different intuitions on the meaning of supports, so there can hardly be consensus
on which is the most natural one. In this context, this paper has focused on two traditional and
well-established semantics of supports, and proposes a line of research that is worth investigating
under the other semantics in the literature.

Further related works are those where correlations similar to supports have been investigated,
such as the subarguments in [22] (which are closely related with necessary supports [23]), the
dependencies in [24, 25], the pro arguments in [26], as well as the acceptance conditions of
Abstract Dialectical Frameworks [24], that can express different forms of supports.

As for iAAFs, they were introduced in [10], and their semantics based on i*-extensions
in [13]. Previously, Partial Argumentation Frameworks (PAFs) had been introduced in [27]
to encode incompleteness affecting attacks. The possibility of specifying correlations over
iAAFs between uncertain arguments/attacks was studied in [18, 19, 28], where correlations
are expressed in terms of constraints restricting the set of completions to be considered in
the reasoning (thus, in spirit, these constraints are different from constraints and preferences
studied in the deterministic setting [29, 30, 31]). A recent survey discussing how iAAFs are
related to the forms of incompleteness encoded in other variants of AAFs (such as Control
Argumentation Frameworks [32]) can be found in [33]. The reasoning over AAFs in the presence
of incompleteness is also related to revising AAFs to enforce the existence of an extension [34], or
to make a set an extension [35], even when information on the agents who claimed the arguments
is available [36]. In this regard, this paper suggests that the enforcement problem over BAFs is
worth investigating, since it may raise issues that are not present over AAFs (as the enforcement
over BAFs would require the insertion/removal of supports to be considered as a new primitive,
that comprises the insertion/removal of groups of attacks).

iBAFs are also related to probabilistic BAFs (prBAFs) [15], that merge BAFs with prAAFs
(i.e. probabilistic AAFs adopting the constellations approach [37, 38, 39, 40, 41, 42]): basically,
iBAFs can be viewed as prBAFs where all the uncertain terms of the dispute are independent
one from another, and no measure of this uncertainty is given. However, the results in this work
are not subsumed by those in [15], where the problem P-EXT of computing the probability of
extensions (that is the probabilistic counterpart of the verification) has been shown to be highly
intractable under independence (i.e. FP#𝑃 -complete) for every combination of semantics of
supports and extensions. Indeed, the results obtained for prBAFs neither subsume those in this
paper nor make them less surprising: on the one hand, the role of assembling supports and
probabilities in the high complexity of P-EXT over prBAFs is blurred by the fact that P-EXT is
already FP#𝑃 -hard under most of Dungean semantics over prAAFs (without supports). On the
other hand, the FP#𝑃 -hardness of P-EXT gives no hint for a tight complexity characterization of
IBVER, as the source of complexity related to the counting mechanism underlying probability
evaluation is absent in the verification problem (in fact, the literature contains several functional
problems complete for “hard” complexity classes, whose decision counterparts are in P).

Finally, the framework in [43] is related to iBAFs since it mixes probabilities, supports (in
the form of subarguments [44]) and a form of incompleteness: it allows labelings where some
arguments are marked as “OFF” (thus, excluded from the reasoning), but the semantics of “OFF”



differs from iBAFs’ “non-occurrence”, since the “OFF” label is propagated to the supporting
arguments (and this does not happen with non-occurrence).

7. Conclusions and Future Work

We have discussed iBAFs [1], that augment AAFs with the possibility of simultaneously specify-
ing supports between arguments (according to the traditional abstract and deductive supports’
semantics) and the presence of uncertain elements of the argumentation graph. We have discussed
the results in [1] on the computational complexity of fundamental reasoning problems, and in
particular a surprising result regarding the verification problem under the possible semantics: that
is, although bipolarity and incompleteness do not affect the complexity of this problem under the
Dungean semantics (except for the preferred semantics) if considered separately, they may have
a deep impact on the tractability/intractability of this problem when jointly used. Future work
will focus on: 1) the two cases (under the variants c-co and c-gr of the complete and grounded
semantics) for which the complexity characterization in this paper was not tight, and 2) extending
the study to the necessary perspective of the verification problem, and 3) extending iBAFs with
the possibility of specifying correlations between uncertain arguments/attacks/supports, as done
in [18, 19] for arguments and attacks only.
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