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Abstract
Modelling the behaviour of concurrent agents that interact and reason in a dynamic environment is
a difficult task. It requires tools that can effectively capture different types of interactions, such as
persuasion and deliberation, while helping agents make decisions or reach agreements. This paper
proposes a revised and extended version of the (timed) concurrent language for argumentation, better
suited for modelling real-world scenarios. Our focus is on private information: we have given each agent
a local argumentation store for reasoning with private knowledge. With this feature, agents can use
the argumentation engine to implement courses of action based on their personal information and only
disclose the bare minimum. Finally, we present an application example that models a privacy-preserving
multi-agent decision-making process to demonstrate the capabilities of our language.
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1. Introduction

Intelligent agents can exploit argumentation techniques to accomplish complex interactions
like, for instance, negotiation [1, 2] and persuasion [3, 4]. The Timed Concurrent Language for
Argumentation (tcla) [5, 6] offers constructs to implement such interactions. Agents involved in
the process share an argumentation store that serves as a knowledge base and where arguments
and attacks represent the agreed beliefs. The framework can be changed via a set of primitives
that allow adding and removing arguments and attacks. The language makes use of two
kinds of expressions: a syntactic check that verifies if a given set of arguments and attacks is
contained in the knowledge base, and semantic test operations that retrieve information about
the acceptability of arguments in the knowledge base.

This paper introduces a number of new features aimed at facilitating the use of the language
and making it more suitable for modelling real-world interaction scenes. The main contributions
we will discuss are as follows:

• local stores that agents can use to enhance their reasoning with private information;
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• the possibility of optional timeouts to make some operators more flexible;
• syntactic sugar that simplifies the modelling of complex situations recurring in real cases.

Autonomous agents can benefit from local stores for hiding data they are unwilling to disclose
and only making public the necessary information needed to reach the desired outcome. Think,
for example, about intelligent agents negotiating over a shared resource. Some information
owned by the agents might have a future strategic value or be subject to privacy concerns.
While this kind of information should remain unavailable to other agents, the owner must be
able to integrate it into the reasoning process. Our language allows modelling agents endowed
with both a shared and a local store to realise the behaviour reported above. Timeouts are
another fundamental component to enable proper interaction between agents. Usually, in the
real world, one has limited time to make a decision on the next action to be taken. In some
situations, however, especially when working with partial knowledge, agents must be able to
wait for an indefinite amount of time until a certain condition is fulfilled. We also included
an application example for showing the capabilities of tcla, with particular focus on using
local stores. Contextually, we present syntactic sugar for realising frequently used complex
operations.

2. Background

In this section, we recall some fundamental notions concerning Computational Argumentation.
The first definition we need is that of Abstract Argumentation Framework (AF) [7].

Definition 1. Let 𝑈 be the set of all possible arguments, which we refer to as the “universe”.1

An Abstract Argumentation Framework is a pair ⟨𝐴𝑟𝑔,𝑅⟩ where 𝐴𝑟𝑔 ⊆ 𝑈 is a set of adopted
arguments and 𝑅 is a binary relation on 𝐴𝑟𝑔 (representing attacks among adopted arguments).

Given an AF, we want to identify subsets of acceptable arguments which are selected by ap-
plying criteria called argumentation semantics. Non-accepted arguments are rejected. Different
kinds of semantics have been introduced that reflect desirable qualities for sets of arguments.
Among the most studied ones, we find the admissible, complete, stable, semi-stable, preferred,
and grounded semantics [8, 7] (denoted as adm, com, stb, sst, prf and gde, respectively). To
identify acceptable arguments, we can resort to labelling-based semantics [9], an approach that
associates with an AF a subset of all the possible labellings.

Definition 2. A labelling of an AF 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩ is a total function 𝐿 : 𝐴𝑟𝑔 → {in, out, undec}.
Moreover, 𝐿 is an admissible labelling for 𝐹 when ∀𝑎 ∈ 𝐴𝑟𝑔

• 𝐿(𝑎) = in =⇒ ∀𝑏 ∈ 𝐴𝑟𝑔 | (𝑏, 𝑎) ∈ 𝑅.𝐿(𝑏) = out;
• 𝐿(𝑎) = out ⇐⇒ ∃𝑏 ∈ 𝐴𝑟𝑔 | (𝑏, 𝑎) ∈ 𝑅 ∧ 𝐿(𝑏) = in.

In other words, an argument is labelled in only if all its attackers are labelled out, and it is
labelled out when at least one in node attacks it. In all other cases, the argument is labelled
undec. In particular, in arguments are acceptable, while the others will be rejected.
1The set 𝑈 is not present in the original definition by Dung and we introduce it for our convenience to distinguish
all possible arguments from the adopted ones.



Similar criteria to that shown in Definition 2 can be used to capture other semantics [9]. In
the following, we will write ℒ𝐹

𝜎 to identify the set of all possible labellings of 𝐹 with respect to
the semantics 𝜎. Besides computing the possible labellings with respect to a certain semantics
𝜎, one of the most common tasks performed on AFs is to decide whether an argument 𝑎 is
accepted (labelled as in) in some labelling of ℒ𝐹

𝜎 or in all labellings. In the former case, we say
that 𝑎 is credulously accepted with respect to 𝜎; in the latter, 𝑎 is instead sceptically accepted
with respect to 𝜎.

3. Syntax and Operational Semantics

Communication between tcla agents is implemented via shared memory, similarly to cla [10]
and CC [11], and opposed to other languages (e.g. CSP [12] and CCS [13]) based on message
passing. In tcla, the shared memory consists of an AF which agents can access and modify.
All agents are synchronised via a shared global clock, tracking the simultaneous execution of
concurrent agents. We present the syntax of tcla in Table 1, where 𝑃 denotes a generic process,
𝐶 a sequence of procedure declarations (or clauses), 𝐴 a generic agent and 𝐸 a generic guarded
agent.

Table 1
tcla syntax.

𝑃 ::= let 𝐶 in 𝐴

𝐶 ::= 𝑝(𝑥) :: 𝐴 | 𝐶,𝐶
𝐴 ::= success | failure | add(𝐴𝑟𝑔,𝑅) → 𝐴 | rmv(𝐴𝑟𝑔,𝑅) → 𝐴 | 𝐸 | 𝐴 ‖𝐴 | new 𝑆 in 𝐴 | 𝑝(𝑥)
𝐸 ::= check𝑡(𝐴𝑟𝑔,𝑅) → 𝐴 | c-test𝑡(𝑎, 𝑙, 𝜎) → 𝐴 | s-test𝑡(𝑎, 𝑙, 𝜎) → 𝐴 | 𝐸 + 𝐸 | 𝐸 +𝑃 𝐸

where 𝐴𝑟𝑔 and 𝑆 are supposed to be sets of arguments, 𝑅 a set of attacks, 𝑎 an argument,
𝑙 ∈ {in, out, undec}, 𝜎 ∈ {adm, com, stb, prf, gde}.

In a process 𝑃 = 𝑙𝑒𝑡 𝐶 𝑖𝑛 𝐴, 𝐴 is the initial agent to be executed in the context of the set of
declarations 𝐶 . A clause defined with 𝐶,𝐶 corresponds to the concatenation of more procedure
declarations. An agent 𝑛𝑒𝑤 𝑆 𝑖𝑛 𝐴 behaves like agent 𝐴 where arguments in 𝑆 and attacks
built from 𝑆 are local to 𝐴. Before describing in detail how the operators in Table 1 work,
let us introduce the notion of timeout used by guarded agents (i.e., the check, c-test and s-test
operations). Those agents verify if arguments and attacks in the shared memory meet certain
properties and can be executed again in case they do not succeed. To specify how many times
the execution can be repeated, guarded agents are endowed with a timeout 𝑡 ∈ N∪{∞} stating
after how many cycles of the global clock the operation will expire and terminate with failure.

The passing of time between all concurrent agents is handled on the same global clock
via a timeout environment 𝑇 as specified below. Let ℐ be a set of (timeout) identifiers. A
timeout environment is a partial mapping 𝑇 : ℐ ⇀ N ∪ {∞} such that the set 𝑑𝑜𝑚(𝑇 ) =
{𝐼 ∈ ℐ | 𝑇 (𝐼) ∈ N ∪ {∞}} (domain of 𝑇 ) is finite. 𝑇0 is the empty timeout environment
(𝑑𝑜𝑚(𝑇0) = ∅). As we need to manipulate 𝑇 , for instance, to insert new timeouts or update a
timer, we introduce some utility functions. If 𝑇1 and 𝑇2 are timeout environments such that



for each 𝐼 ∈ 𝑑𝑜𝑚(𝑇1) ∩ 𝑑𝑜𝑚(𝑇2) we have that 𝑇1(𝐼) = 𝑇2(𝐼), then 𝑇1 ∪ 𝑇2 is the timeout
environment such that 𝑑𝑜𝑚(𝑇1 ∪ 𝑇2) = 𝑑𝑜𝑚(𝑇1) ∪ 𝑑𝑜𝑚(𝑇2) and for each 𝐼 ∈ 𝑑𝑜𝑚(𝑇1 ∪ 𝑇2)

(𝑇1 ∪ 𝑇2)(𝐼) =

{︃
𝑇1(𝐼) if 𝐼 ∈ 𝑑𝑜𝑚(𝑇1)

𝑇2(𝐼) otherwise

We denote by 𝑇 [𝐼 : �̄�] an update of 𝑇 , with a possibly enlarged domain, namely

𝑇 [𝐼 : �̄�](𝐼) =

{︃
𝑇 (𝐼) if 𝐼 ̸= 𝐼

�̄� otherwise

The passing of time is marked by decreasing timers in a timeout environment 𝑇 . At each
step of the execution, all timers are decreased according to the function 𝑑𝑒𝑐(𝑇 ) such that
𝑑𝑜𝑚(𝑑𝑒𝑐(𝑇 )) = 𝑑𝑜𝑚(𝑇 ) and

𝑑𝑒𝑐(𝑇 )(𝐼) =

{︃
𝑇 (𝐼)− 1 if 0 < 𝑇 (𝐼) ∈ N
𝑇 (𝐼) if 𝑇 (𝐼) = 0 or 𝑇 (𝐼) = ∞

In this paper, we only consider the parallelism achieved with the true concurrency paradigm,
i.e., all concurrent agents can be executed simultaneously as if an infinite number of processors
were available. The adoption of a global clock defined via timeout environment allows time
to elapse for all agents, not only in the case of true concurrency but also, for example, with
interleaving (i.e., only one parallel agent is executed at a time) which could be introduced in
future work. Below, we outline the functioning of all tcla operators, focusing in particular on
the management of the timeouts and the composition of concurrent agents.

Notation 1. Let 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩ be an AF and 𝑆 a set of arguments. We define:

• 𝑅|𝑆 = {(𝑎, 𝑏) ∈ 𝑅 | 𝑎 ∈ 𝑆 or 𝑏 ∈ 𝑆};
• 𝑅‖𝑆 = {(𝑎, 𝑏) ∈ 𝑅 | 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑆};
• 𝐹 ↓ 𝑆 = ⟨𝐴𝑟𝑔 ∩ 𝑆′, 𝑅|𝑆⟩ where 𝑆′ = 𝑆 ∪ {𝑏 | (𝑏, 𝑐) ∈ 𝑅|𝑆 or (𝑐, 𝑏) ∈ 𝑅|𝑆};
• 𝐹 ↑ 𝑆 = ⟨𝐴𝑟𝑔 ∖ 𝑆,𝑅 ∖𝑅|𝑆⟩.

The operational model of tcla processes can be formally described by a transition system
𝑇 = (Conf ,−→), where we assume that each transition step takes exactly one time-unit. Con-
figurations (in) Conf are triples, each triple consisting in a process 𝑃 , an abstract argumentation
framework 𝐴𝐹 representing a knowledge base and a timeout environment 𝑇 . The transition
relation −→⊆ Conf × Conf is the least relation satisfying the rules in Tables 2 - 8, and it
characterises the (temporal) evolution of the system. So, ⟨𝐴,𝐹, 𝑇 ⟩ −→ ⟨𝐴′, 𝐹 ′, 𝑇 ′⟩ means that,
if at time 𝑡 we have the process 𝐴, the framework 𝐹 and the time environment 𝑇 , then at time
𝑡+ 1 we have the process 𝐴′, the framework 𝐹 ′ and the time environment 𝑇 ′. In the following,
we will usually write a tcla process 𝑃 = 𝐶 .𝐴 as the corresponding agent 𝐴, omitting 𝐶 when
not required by the context.

Rules Ad and Re of Table 2 modify the store by adding and removing, respectively, arguments
and attacks. Attacks can only be added between arguments that will be in the store after the



Table 2
Add and remove semantics.

⟨add(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩, 𝑇 ⟩ −→ ⟨𝐴, ⟨𝐴𝑟𝑔 ∪𝐴𝑟𝑔′, (𝑅 ∪𝑅′)‖(𝐴𝑟𝑔∪𝐴𝑟𝑔′)⟩, dec(𝑇 )⟩ Ad

⟨rmv(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩, 𝑇 ⟩ −→ ⟨𝐴, ⟨𝐴𝑟𝑔 ∖𝐴𝑟𝑔′, (𝑅 ∖𝑅′)‖(𝐴𝑟𝑔∖𝐴𝑟𝑔′)⟩, dec(𝑇 )⟩ Re

execution of the add operation. On the other hand, when an argument is removed, also the
attacks involving that argument are removed.

Table 3 presents the semantics for the check operation. Whenever a rule is executed, all
timers in the timeout environment 𝑇 are decremented after the possible introduction of new
timeouts. The first time a check is performed (rules Ch1 and Ch2), a new timeout must be
inserted in 𝑇 . If the check is not successful on the first attempt, it will be repeated using the
already existing timeout. In detail, rule Ch1 triggers when the guard of the agent is satisfied,
and the associated timer is positive. In this case, the agent proceeds to the subsequent action.
Rule Ch2 inserts a new timeout into 𝑇 and repeats the check operation in the next step when
the condition is not satisfied and the timer has not expired. The system will use the operator
𝑐ℎ𝑒𝑐𝑘𝐼 (rule Ch4) to execute a check on the store with a timeout 𝐼 already present in 𝑇 . In rule
Ch3, the guard succeeds, and the timer associated with the check operation is not expired and
already in 𝑇 . Therefore, the program continues to the next action. Rule Ch4 is the counterpart
of Ch2, the only difference being that no new timeout is added to 𝑇 . This is needed for the
system to automatically repeat a check operation which did not succeed in the previous step.
Note that if a timer 𝑡 is set to ∞ and the timeouts are decreased with dec(𝑇 ), then 𝑡 will be left

Table 3
Check semantics. In the rules, 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩.

𝐴𝑟𝑔′ ⊆ 𝐴𝑟𝑔 ∧𝑅′ ⊆ 𝑅, 𝑡 > 0

⟨check𝑡(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, 𝑇 ⟩ −→ ⟨𝐴,𝐹, dec(𝑇 )⟩
Ch1

¬(𝐴𝑟𝑔′ ⊆ 𝐴𝑟𝑔 ∧𝑅′ ⊆ 𝑅), 𝑡 > 0

⟨check𝑡(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, 𝑇 ⟩ −→ ⟨check 𝐼(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, dec(𝑇 [𝐼 : 𝑡])⟩
where 𝐼 is a fresh timeout identifier

Ch2

𝐴𝑟𝑔′ ⊆ 𝐴𝑟𝑔 ∧𝑅′ ⊆ 𝑅, 𝑇 (𝐼) > 0

⟨check 𝐼(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, 𝑇 ⟩ −→ ⟨𝐴,𝐹, dec(𝑇 )⟩
Ch3

¬(𝐴𝑟𝑔′ ⊆ 𝐴𝑟𝑔 ∧𝑅′ ⊆ 𝑅), 𝑇 (𝐼) > 0

⟨check 𝐼(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, 𝑇 ⟩ −→ ⟨check 𝐼(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, dec(𝑇 )⟩
Ch4

⟨check0(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, 𝑇 ⟩ −→ ⟨failure, 𝐹, dec(𝑇 )⟩ Ch5

𝑇 (𝐼) = 0

⟨check 𝐼(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹, 𝑇 ⟩ −→ ⟨failure, 𝐹, dec(𝑇 )⟩
Ch6



unchanged. This behaviour is similar to that of the check with waiting in [10]. When the timer
is 0, the agent fails as per rules Ch5 and Ch6. This behaviour is similar to that of the check
with failure in [10]. After the execution of rules Ch3 and Ch6, i.e. when the check operation
has terminated with success or failure, respectively, the timeout that was potentially entered in
𝑇 becomes useless since no rule will inspect it afterwards. In this sense, a garbage collection
procedure that removes from 𝑇 the timeouts that are no longer used could be introduced.

Credulous and sceptical test operators perform a semantic verification on the acceptability
of arguments in the store. Their rules follow the same idea as those for the check operation,
with the only exception of the condition to satisfy, that is, respectively ∃𝐿 ∈ ℒ𝐹

𝜎 | 𝐿(𝑎) = 𝑙
for c-test 𝐼(𝑎, 𝑙, 𝜎) and ∀𝐿 ∈ ℒ𝐹

𝜎 .𝐿(𝑎) = 𝑙 for s-test 𝐼(𝑎, 𝑙, 𝜎) instead of 𝐴𝑟𝑔′ ⊆ 𝐴𝑟𝑔 ∧𝑅′ ⊆ 𝑅.
The guard for the credulous test is satisfied when there exists at least one labelling 𝐿 of 𝐹 for a
chosen semantics 𝜎 such that 𝐿(𝑎) = 𝑙. The sceptical test, instead, demands 𝑎 be assigned the
label 𝑙 by any labelling in ℒ𝐹

𝜎 .
In Table 4, which concerns the rules for nondeterminism, and in Table 5 that realises the

if-then-else, ℰ is the class of guarded agents, while ℰ𝑓 a subset of the former class such that
all outermost guards have either the associated timer 𝑇 (𝐼) = 0 or the timer on the check/test
expression set to 0 (𝑡 = 0). In other words, the execution of agents in ℰ𝑓 always leads to
termination with failure. Rule ND1 states that if two non-failing expressions 𝐸1 and 𝐸2

composed through the operator + can transit into guarded expressions 𝐸′
1 and 𝐸′

2, respectively,
they will do so in the same execution step, producing the agent 𝐸′

1 + 𝐸′
2. According to rule

ND2, the execution continues with 𝐸1 if it can transit into a non-guarded agent. Finally, if one
of the two agents fails, it is discarded, and the execution continues with the other agent (rule
ND3).

Table 4
Nondeterminism semantics.

⟨𝐸1, 𝐹, 𝑇 ⟩ −→ ⟨𝐸′
1, 𝐹, 𝑇1⟩, ⟨𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐸′

2, 𝐹, 𝑇2⟩, 𝐸1, 𝐸2 ̸∈ ℰ𝑓 , 𝐸′
1, 𝐸

′
2 ∈ ℰ

⟨𝐸1 + 𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐸′
1 + 𝐸′

2, 𝐹, 𝑇1 ∪ 𝑇2⟩
ND1

⟨𝐸1, 𝐹, 𝑇 ⟩ −→ ⟨𝐴1, 𝐹, 𝑇
′⟩, 𝐸1 ̸∈ ℰ𝑓 , 𝐴1 ̸∈ ℰ

⟨𝐸1 + 𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴1, 𝐹, 𝑇 ′⟩
ND2

𝐸1 ∈ ℰ𝑓 , ⟨𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴2, 𝐹, 𝑇
′⟩

⟨𝐸1 + 𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴2, 𝐹, 𝑇 ′⟩
ND3

The operator of Table 5 realises the (non-commutative) if-then-else construct: if we have
𝐸1 +𝑃 𝐸2 and 𝐸1 can transit into 𝐸′

1, like in rule If1, then the execution continues with
𝐸′

1 +𝑃 𝐸2. If 𝐸1 transits into an agent different from a guarded expression, the rightmost
expression is discarded (rule If2). This behaviour is different from that obtainable with the +
operator for nondeterminism, which will arbitrarily execute one of the two branches, discarding
the other. Finally, if 𝐸1 fails, the first branch is discarded and the rightmost agent is executed as
per If3. Rules ND3 and If3, therefore, serve the same purpose and are identical, apart from the
operator.

The procedure call defined in Table 6 only takes a single parameter 𝑥 that can be an argument,



Table 5
If-then-else semantics.

⟨𝐸1, 𝐹, 𝑇 ⟩ −→ ⟨𝐸′
1, 𝐹, 𝑇

′⟩, 𝐸1 ̸∈ ℰ𝑓 , 𝐸′
1 ∈ ℰ

⟨𝐸1 +𝑃 𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐸′
1 +𝑃 𝐸2, 𝐹, 𝑇 ′⟩

If1

⟨𝐸1, 𝐹, 𝑇 ⟩ −→ ⟨𝐴1, 𝐹, 𝑇
′⟩, 𝐸1 ̸∈ ℰ𝑓 , 𝐴1 ̸∈ ℰ

⟨𝐸1 +𝑃 𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴1, 𝐹, 𝑇 ′⟩
If2

𝐸1 ∈ ℰ𝑓 , ⟨𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴2, 𝐹, 𝑇
′⟩

⟨𝐸1 +𝑃 𝐸2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴2, 𝐹, 𝑇 ′⟩
If3

a label among in, out and undec, a semantics 𝜎, or an instant of time 𝑡. If necessary, this
solution can be easily adjusted to accommodate additional parameters or consider parameterless
procedures. Executing a procedure call 𝑝 corresponds to replacing each instance of 𝑝 with
agent 𝐴 in the execution, according to what is specified in the procedure declaration within the
context of 𝐶 .

Table 6
Procedure call semantics.

⟨𝑝(𝑦), 𝐹, 𝑇 ⟩ −→ ⟨𝐴[𝑦/𝑥], 𝐹, dec(𝑇 )⟩ with 𝑝(𝑥) :: 𝐴 and 𝑥 ∈ {𝑎, 𝑙, 𝜎, 𝑡} PC

Rule TC in Table 7 models the true concurrency operator. It only succeeds if all the agents
composed through ‖ succeed. In our implementation, we use *(𝐹, 𝐹 ′, 𝐹 ′′) := (𝐹 ′ ∩ 𝐹 ′′) ∪
((𝐹 ′ ∪ 𝐹 ′′) ∖ 𝐹 ) to handle concurrent additions and removals of arguments.2 If an argument 𝑎
is added and removed in the same instant (e.g., through the process add({𝑎}, {}) → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ‖
rmv({𝑎}, {}) → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠), we have two possible outcomes: if 𝑎 was not present in the knowl-
edge base, then it will be added since 𝑎 ∈ ((𝐹 ′ ∪ 𝐹 ′′) ∖ 𝐹 ); on the other hand, when 𝑎 was
already in the shared memory, we have that 𝑎 ̸∈ ((𝐹 ′ ∪ 𝐹 ′′) ∖ 𝐹 ), and 𝑎 is removed. In other
words, we add the argument to shared memory if it is not present and remove it if it is already
there. The operator * can nevertheless be customized to obtain different behaviour and fit
specific requirements.

Table 7
True concurrency semantics.

⟨𝐴1, 𝐹, 𝑇 ⟩ −→ ⟨𝐴′
1, 𝐹

′, 𝑇1⟩, ⟨𝐴2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴′
2, 𝐹

′′, 𝑇2⟩
⟨𝐴1 ‖𝐴2, 𝐹, 𝑇 ⟩ −→ ⟨𝐴′

1 ‖𝐴′
2, *(𝐹, 𝐹 ′, 𝐹 ′′), 𝑇1 ∪ 𝑇2⟩

TC

In Tables 4 and 7, we have omitted the symmetric rules for the choice operator + and the
parallel composition ‖. Indeed, + is commutative, so 𝐸1 + 𝐸2 produces the same result as
𝐸2 + 𝐸1. The same is true for ‖. Moreover, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 are the identity and the

2Union, intersection and difference between AFs are intended as the union, intersection and difference of their sets
of arguments and attacks, respectively.



absorbing elements, respectively, under the parallel composition ‖; that is, for each agent 𝐴, we
have that 𝐴 ‖ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝐴 ‖ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 are the agents 𝐴 and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, respectively.

As specified by the rule in Table 8, the agent new 𝑆 in 𝐴 behaves like agent𝐴where arguments
in 𝑆 ⊆ 𝐴𝑟𝑔 are considered local to 𝐴, i.e. the information on 𝑆 provided by the external 𝐴𝐹 is
hidden from 𝐴 (therefore we consider the agent 𝐴 executed in the argumentation framework
(𝐴𝐹 ↑ 𝑆) ∪𝐴𝐹𝑙𝑜𝑐) and, conversely, the information on 𝑆 produced locally by 𝐴 is hidden from
external world (therefore the returned argumentation framework is (𝐴𝐹 ′ ↑ 𝑆) ∪ (𝐴𝐹 ′′ ↓ 𝑆).

Table 8
Locality semantics.

⟨𝐴, (𝐴𝐹 ↑ 𝑆) ∪𝐴𝐹𝑙𝑜𝑐, 𝑇 ⟩ −→ ⟨B, 𝐴𝐹 ′, 𝑇 ′⟩
⟨new 𝑆 in 𝐴𝐴𝐹𝑙𝑜𝑐 , 𝐴𝐹, 𝑇 ⟩ −→ ⟨new 𝑆 in 𝐵𝐴𝐹 ′↓𝑆 , (𝐴𝐹 ′ ↑ 𝑆) ∪ (𝐴𝐹 ′′ ↓ 𝑆), 𝑇 ′⟩

where 𝐴𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩, 𝐴𝐹 ′ = ⟨𝐴𝑟𝑔′, 𝑅′⟩ and 𝐴𝐹 ′′ = ⟨𝐴𝑟𝑔,𝑅‖𝐴𝑟𝑔′∪𝑆⟩
Loc

To describe locality, in Table 8, the syntax has been extended by an agent new 𝑆 in 𝐴𝐴𝐹𝑙𝑜𝑐 ,
where 𝐴𝐹𝑙𝑜𝑐 is a local 𝐴𝐹 of 𝐴 containing information on 𝑆 which is hidden from the external
𝐴𝐹 . When the computation starts, the local 𝐴𝐹𝑙𝑜𝑐 is empty, i.e. new 𝑆 in 𝐴 = new 𝑆 in 𝐴⟨∅,∅⟩.
Finally, for each set of arguments 𝑆, new 𝑆 in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and new 𝑆 in 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 are the agents
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, respectively.

In the next section, we make use of some syntactic sugar to simplify the presentation of the
results. Let 𝑆 = {𝑎1, . . . , 𝑎𝑛} ⊆ 𝐴𝑟𝑔 and let 𝐺1 and 𝐺2 be guards of the form check𝑡(𝐴𝑟𝑔,𝑅),
c-test𝑡(𝑎, 𝑙, 𝜎) or s-test𝑡(𝑎, 𝑙, 𝜎):

(𝐺1 ∧𝐺2) → 𝐴 represents (𝐺1 → 𝐴) ‖ (𝐺2 → 𝐴);

(𝐺1 ∨𝐺2) → 𝐴 represents (𝐺1 → 𝐴) + (𝐺2 → 𝐴);

true represents a dummy check∞({}, {});
false represents a dummy check0({}, {});
∃𝑥 ∈ 𝑆 | check𝑡({𝑥}, 𝑅) → 𝐴 represents (check𝑡({𝑎1}, 𝑅) → 𝐴)+

(check𝑡({𝑎2}, 𝑅) → 𝐴) + · · ·+ (check𝑡({𝑎𝑛}, 𝑅) → 𝐴).

Analogously for ∃𝑥 ∈ 𝑆 | 𝑐-𝑡𝑒𝑠𝑡𝑡(𝑥, 𝑙, 𝜎) → 𝐴 and

∃𝑥 ∈ 𝑆 | 𝑠-𝑡𝑒𝑠𝑡𝑡(𝑥, 𝑙, 𝜎) → 𝐴;

∀𝑥 ∈ 𝑆 | check𝑡({𝑥}, 𝑅) → 𝐴 represents (check𝑡({𝑎1}, 𝑅) → 𝐴)‖
(check𝑡({𝑎2}, 𝑅) → 𝐴)‖ . . . ‖(check𝑡({𝑎𝑛}, 𝑅) → 𝐴).

Analogously for ∀𝑥 ∈ 𝑆 | 𝑐-𝑡𝑒𝑠𝑡𝑡(𝑥, 𝑙, 𝜎) → 𝐴 and

∀𝑥 ∈ 𝑆 | 𝑠-𝑡𝑒𝑠𝑡𝑡(𝑥, 𝑙, 𝜎) → 𝐴.

4. Modelling Multi-Agent Decision Making with Privacy
Preserved in tcla

A possible use case for tcla can be identified in modelling Multi-Agent Decision Making with
Privacy Preserved (DMPP) in which agents need to communicate with other agents to make



socially optimal decisions but, at the same time, have some private information that they do not
want to share. This problem can be instantiated as done in other works like [14] as a debate
in a multi-agent environment where argumentation techniques are exploited for arriving at
socially optimal outcomes by only revealing the necessary” and “disclosable” information. We
start from (a slight modification of) the scenario proposed by [14], adapted from the Battle of
the Sexes game in [15] and the meeting scheduling problem in [16]. In this example, we use the
true concurrency operator from Table 7 to handle the parallel execution of agents. However,
the illustrated methodology could be adjusted to also work with an interleaving approach.

Example 1. Alice and Bob are trying to agree on an activity to do together for the day. Alice is
more interested in going to the ballet (we represent this statement with A:Ballet), while Bob
would rather watch a football game (B:Football). Their beliefs can be modelled as in the AFs of
Figure 1.

Figure 1: AFs representing Alice’s (top) and Bob’s (bottom) beliefs and observation [14].

Alice is worried that Bob’s ex-wife might attend the ballet as well (denoted by Ex?), but she
does not want Bob to know about this concern. However, Alice was informed by Caroline, Bob’s
ex-wife’s daughter, that she had gone hiking with her mother earlier that day (C:Hiking). Alice
would also be concerned about the weather (Wea) in case they decide to go watch the game
(Football). However, she found from a forecast that it will be sunny (Sun). We also know that
Alice does not mind sharing her concerns about the weather.

On the other hand, Bob forgot whether Alice enjoys sport or not (LikeSport?) and would
prefer Alice not to be aware of this. However, they recently attended a tennis match, which
Alice enjoyed (EnjoyTennis). Bob also came across a Facebook post by Caroline, mentioning
that she was attending the ballet (C:Facebook). Note that C:Facebook is in conflict with C:Hiking,
but this will only emerge when Alice and Bob will share their arguments.

A Multi-Agent Decision Making with Privacy Preserved problem is formalised as follows.

Definition 3. A Multi-Agent Decision Making with Privacy Preserved problem is a triple
𝐷𝑀𝑃𝑃 = ⟨𝐴𝑔,𝐴𝑐𝑡, 𝑆𝑜𝑙⟩, where

• 𝐴𝑔 = {𝐴𝑔𝑒𝑛𝑡1 . . . , 𝐴𝑔𝑒𝑛𝑡𝑁} is a finite set of agents;
• 𝐴𝑐𝑡 = {𝑎1, . . . , 𝑎𝑀} is a finite set of available actions for the agents;
• 𝑆𝑃 = {⟨𝐴𝑔𝑒𝑛𝑡1 : 𝑎1, . . . , 𝐴𝑔𝑒𝑛𝑡𝑁 : 𝑎𝑁 ⟩ | {𝑎1, . . . , 𝑎𝑁} ⊆ 𝐴𝑐𝑡} the set of all strategic

profiles, namely the set of all the possible tuples of actions (one for each agent) and
• 𝑆𝑜𝑙 ⊆ 𝑆𝑃 is the set of the acceptable solutions of the problem.



Example 2. In Example 1, 𝑁 = 2, since there are two agents: 𝐴 (Alice) and 𝐵 (Bob), 𝑀 = 2
since there are two actions 𝐵𝑎𝑙𝑙𝑒𝑡 and 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙 (‘go to the ballet’ and ‘watch football’, respec-
tively) and two acceptable solutions of the problem, namely 𝑆𝑜𝑙 = {⟨A:Ballet,B:Ballet⟩, ⟨𝐴 :
𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙,B:Football⟩}. Note that the two strategic profiles ⟨A:Ballet,B:Football⟩ and ⟨𝐴 :
𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙,B:Ballet⟩ are not acceptable solutions, because both agents want to attend these
activities together (or not at all).

Differently from [14], we model agents’ actions and acceptable solutions, which are common
and visible to all agents, as public arguments. Each agent 𝐴𝑔𝑒𝑛𝑡𝑖 can decide for its own actions
and not for those of the other agents. Therefore, the actions of one agent are disjoint from those
of the others and are of the form 𝐴𝑔𝑒𝑛𝑡𝑖 : 𝑎𝑗 , where 𝑎𝑗 ∈ 𝐴𝑐𝑡. We define the attacks between
agents’ actions and acceptable solutions as follows:

𝑁𝑜𝐺 = {(𝐴𝑔𝑒𝑛𝑡𝑖 : 𝑎, ⟨𝐴𝑔𝑒𝑛𝑡1 : 𝑏1, . . . , 𝐴𝑔𝑒𝑛𝑡𝑁 : 𝑏𝑁 ⟩ | 𝑖 ∈ {1, . . . , 𝑁}, 𝑎 ∈ 𝐴𝑐𝑡𝑖,
⟨𝐴𝑔𝑒𝑛𝑡1 : 𝑏1, . . . , 𝐴𝑔𝑒𝑛𝑡𝑁 : 𝑏𝑁 ⟩ ∈ 𝑆𝑜𝑙, and 𝑎 ̸= 𝑏𝑖}

Example 3. In Example 1 we have that

𝑁𝑜𝐺 = { (A:Ballet, ⟨𝐴 : 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙,B:Football⟩),
(𝐴 : 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙, ⟨A:Ballet,B:Ballet⟩,
(B:Ballet, ⟨𝐴 : 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙,B:Football⟩),
(B:Football, ⟨A:Ballet,B:Ballet⟩)) }.

Note that in this formalisation the arguments 𝐵𝑎𝑙𝑙𝑒𝑡 and 𝐹𝑜𝑜𝑡𝑏𝑎𝑙𝑙 are private arguments for
Alice who uses them to privately decide what action to take, while A:Ballet and A:Football are
public arguments with which Alice informs Bob of the action she would like to take. Analogously
for Bob.

Now, let us consider a communication protocol inspired by Chronological synchronous
backtracking (SBT), one of the simplest while most fundamental algorithms for distributed
constraint satisfaction problems, which requires a static ordering of agents. Following this,
agents try to make a social decision. Agents pass a token among them; the agent who has the
token can check if the current solution (proposed by the first agent) is acceptable to him. In this
case, send the token to the next agent; otherwise, send a message ngd (short for “not good”)
to the previous agent. The communication terminates either because all the agents agree on
a solution or because every solution proposed by the first agent has been discarded. In the
former case, the partial solution constitutes a solution for the problem, while in the latter case,
the problem is unsatisfiable. SBT is guaranteed to terminate and is sound and complete (i.e., it
terminates only with correct answers and for all problems).

We can write a tcla program emulating a multi-agent decision making with privacy preserved
to model the Battle of Sexes game. We know that Alice’s preference is the sequence of actions
Ballet · Football, while Bob’s preference is the sequence of actions Football · Ballet. Moreover,
Alice and Bob’s private information is represented by the following two AFs, respectively:

𝐴𝐹𝑝𝐴 =⟨ {Ballet, Football,Ex?,C:Hiking,Wea},
{(Ex?,Ballet), (Wea, Football), (C:Hiking,Ex?)}, and

𝐴𝐹𝑝𝐵 =⟨ {Ballet, Football,LikeSport?, EnjoyTennis},



{(EnjoyTennis,LikeSport?), (LikeSport?, Football)}.

The interaction that takes place between Alice and Bob in order to reach a jointly agreed
decision can be modelled in tcla as reported in Tables 9 and 10, respectively. The computation
of 𝒯 (𝐴) ‖ 𝒯 (𝐵) starts in an initial public shared framework

𝐴𝐹𝑑 = ⟨{C:Hiking,Wea, Sun, EnjoyTennis,C:Facebook,
⟨A:Ballet,B:Ballet⟩, ⟨A:Football,B:Football⟩},
{(Sun,Wea), (C:Facebook,C:Hiking)}⟩.

Suppose Alice is ranked higher in the static agent ordering; thus, she obtains the to-
ken first. Since a final agreement has to be reached, the order of the participants does
not influence the final result in this example. Different outcomes may, however, be ob-

Table 9
Alice’s behaviour in tcla.
𝒯 (𝐴) = new ({Ballet, Football,Ex?}) in 𝑇𝐴(Ballet · Football)𝐴𝐹𝑝𝐴 , where
𝑇𝐴(Ballet · Football) =
𝑐-𝑡𝑒𝑠𝑡1(Ballet, in, 𝑎𝑑𝑚) →

( add({A:Ballet}, {(A:Ballet, ⟨A:Football,B:Football⟩)}) →
( ( 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Ballet,B:Ballet⟩, in, 𝑎𝑑𝑚) ∨

𝑐-𝑡𝑒𝑠𝑡1(⟨A:Football,B:Football⟩, in, 𝑎𝑑𝑚) ) →
( add({𝑡𝑜𝑘𝐵}, ∅) →

( check∞({𝑔𝑑}, ∅) → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 +

check∞({𝑛𝑔𝑑𝐴}, ∅) → rmv({𝑛𝑔𝑑𝐴, A:Ballet}, ∅) →
𝑇𝐴(Football) ) ) )

+𝑃

𝑡𝑟𝑢𝑒 → rmv({A:Ballet}, ∅) → 𝑇𝐴(Football) )
+𝑃

𝑡𝑟𝑢𝑒 → 𝑇𝐴(Football)
and
𝑇𝐴(Football) =
𝑐-𝑡𝑒𝑠𝑡1(Football, in, 𝑎𝑑𝑚) →

( add({A:Football}, {(A:Football, ⟨A:Ballet,B:Ballet⟩)}) →
( ( 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Ballet,B:Ballet⟩, in, 𝑎𝑑𝑚) ∨

𝑐-𝑡𝑒𝑠𝑡1(⟨A:Football,B:Football⟩, in, 𝑎𝑑𝑚) ) →
( add({𝑡𝑜𝑘𝐵}, ∅) →

( check∞({𝑔𝑑}, ∅) → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 +

check∞({𝑛𝑔𝑑𝐴}, ∅) → rmv({𝑛𝑔𝑑𝐴, A:Football}, ∅) →
𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ) ) )

+𝑃

𝑡𝑟𝑢𝑒 → rmv({A:Football}, ∅) → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 )

+𝑃

𝑡𝑟𝑢𝑒 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒



Table 10
Bob’s behaviour in tcla
𝒯 (𝐵) = new ({Ballet, Football,Ex?}) in 𝑝𝐴𝐹𝑝𝐵

𝐵 , where
𝑝𝐵 :: check∞({𝑡𝑜𝑘𝐵}, ∅) → rmv({𝑡𝑜𝑘𝐵}, ∅) → 𝑇𝐵(Football · Ballet),
𝑇𝐵(Football · Ballet) =
𝑐-𝑡𝑒𝑠𝑡1(Football, in, 𝑎𝑑𝑚) →

( add({B:Football}, {(B:Football, ⟨A:Ballet,B:Ballet⟩)}) →
( ( 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Ballet,B:Ballet⟩, in, 𝑎𝑑𝑚) ∨

𝑐-𝑡𝑒𝑠𝑡1(⟨A:Football,B:Football⟩, in, 𝑎𝑑𝑚) ) →
add({𝑔𝑑}, ∅) → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 )

+𝑃

𝑡𝑟𝑢𝑒 → rmv({B:Football}, ∅) → 𝑇𝐵(Ballet) )
+𝑃

𝑡𝑟𝑢𝑒 → 𝑇𝐵(Ballet)
and
𝑇𝐵(Ballet) =
𝑐-𝑡𝑒𝑠𝑡1(Ballet, in, 𝑎𝑑𝑚) →

(add( {B:Ballet}, {(B:Ballet, ⟨A:Football,B:Football⟩)}) →
( ( 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Ballet,B:Ballet⟩, in, 𝑎𝑑𝑚) ∨

𝑐-𝑡𝑒𝑠𝑡1(⟨A:Football,B:Football⟩, in, 𝑎𝑑𝑚) ) →
add({𝑔𝑑}, ∅) → 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 )

+𝑃

𝑡𝑟𝑢𝑒 → rmv({B:Ballet}, ∅) → add({𝑛𝑔𝑑𝐴}, ∅) → 𝑝𝐵 )

+𝑃

𝑡𝑟𝑢𝑒 → add({𝑛𝑔𝑑𝐴}, ∅) → 𝑝𝐵

tained depending on the preference for the actions taken by the agents in their turns. Al-
ice checks whether her most preferred action Ballet (“going to the ballet”) is globally fea-
sible (𝑐-𝑡𝑒𝑠𝑡1(Ballet, in, 𝑎𝑑𝑚)) in the framework 𝐴𝐹𝑝𝐴 ∪ 𝐴𝐹𝑑, but she gets a negative an-
swer; Alice thus checks her next preferred action, i.e. watching football (Football), and
she finds that it is feasible. So she adds {A:Football}, {(A:Football, ⟨A:Ballet,B:Ballet⟩)} (Al-
ice, “watch football”) in 𝐴𝐹𝑑 and then checks the consistency of A:Football with respect to
the current partial solution (which is empty) and the acceptable solutions, namely she runs
𝑐-𝑡𝑒𝑠𝑡1(⟨A:Ballet,B:Ballet⟩, in, 𝑎𝑑𝑚) ∨ 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Football,B:Football⟩, in, 𝑎𝑑𝑚). In this case,
there exists an acceptable solution ⟨A:Football,B:Football⟩ in the global framework which is
admissible. Thus Alice adds 𝑡𝑜𝑘𝐵 (for Bob) to the global framework, obtaining a new global
framework

𝐴𝐹𝑑′ = ⟨{C:Hiking,Wea, Sun, EnjoyTennis,C:Facebook,A:Football, 𝑡𝑜𝑘𝐵,

⟨A:Ballet,B:Ballet⟩, ⟨A:Football,B:Football⟩},
{(Sun,Wea), (C:Facebook,C:Hiking),
(A:Football, ⟨A:Ballet,B:Ballet⟩}⟩.

Once Bob has verified the presence of the token 𝑡𝑜𝑘𝐵 in the global framework, he starts



proposing his own actions. He begins with his favourite action Football (“watching football”),
and he finds that it is feasible by using 𝑐-𝑡𝑒𝑠𝑡1(Football, in, 𝑎𝑑𝑚) in 𝐴𝐹𝑝𝐵 ∪ 𝐴𝐹𝑑′. So he
adds {B:Football}, {(A:Football, ⟨A:Ballet,B:Ballet⟩)} (Bob, “watch football”) to 𝐴𝐹𝑑′. Then
he analyses the consistency of B:Football with respect to the current partial solution (which
now includes Alice’s proposal A:Football) and the acceptable solutions. Analogously to Alice,
he executes 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Ballet, B:Ballet⟩, in, 𝑎𝑑𝑚) ∨ 𝑐-𝑡𝑒𝑠𝑡1(⟨A:Football, B:Football⟩, in, 𝑎𝑑𝑚).
Again, we can find an acceptable solution ⟨A:Football,B:Football⟩ in the global framework which
is admissible. Since Bob is the last agent, he adds 𝑔𝑑 to the global framework and terminates
with success. Finally, Alice verifies the presence of the token 𝑔𝑑 in the global framework and
terminates with success as well. In the global framework, we find the solution to the problem,
which is the only admissible acceptable solution ⟨A:Football,B:Football⟩.

Note that we can construct another model where Alice and Bob always have a private knowl-
edge base, but the two agents simply work concurrently. However, the illustrated methodology
could be easily adjusted to also model generic Multi-Agent Decision Making with Privacy
Preserved, with any number of agents.

5. Conclusion

We have introduced a new version of tcla with local stores to allow agents to keep important
data private while still incorporating it into their decision-making processes. As a result, our
language is well-suited to model real-life scenarios, and we have provided an example of how it
can be used in a privacy-preserving setting to make decisions.

In the future, we plan to further extend tcla to capture more aspects that may influence the
behaviour of agents interacting through the exchange of arguments. For instance, we want
to endow the agents with a notion of ownership to establish which actions can be performed
on the shared arguments. In the current implementation, an autonomous agent could remove
arguments added to the shared store by its opponents in order to win a debate. However, this is
not an effective solution in practical cases and is also considered an illegal move in dialogue
games. In addition, since the reasoning process of an agent involved in some form of interaction
(e.g. persuasion) usually includes elaborating a winning strategy, we want to introduce tcla
constructs that a user can employ to identify the best sequence of actions to perform. To this
end, we could resort either to a greedy approach, in which the agent identifies the best actions
with respect to a given time instant (and configuration of the shared store), or to a more robust,
optimised strategy that spans over a certain number of execution steps. Together with true
concurrency, we also want to include an interleaving operator for handling parallel agents.
The user may rely on both constructs depending on the purpose. Finally, we plan to use the
language to model chatbot interactions [17] and explanation activities [18].
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