
Constrained Derivation in Assumption-Based
Argumentation
Giovanni Buraglio1,*, Wolfgang Dvořák1, Anna Rapberger2,* and Stefan Woltran1

1TU Wien, Institute of Logic and Computation, Austria
2Imperial College London, Department of Computing, United Kingdom

Abstract
Structured argumentation formalisms provide a rich framework to formalise and reason over situations
where contradicting information is present. However, in most formalisms the integral step of constructing
all possible arguments is performed in an unconstrained way and is thus not under direct control of the
user. This can hinder a solid analysis of the behaviour of the system and makes explanations for the
results difficult to obtain. In this work, we introduce a general approach that allows constraining the
derivation of arguments for assumption-based argumentation.

Keywords
Assumption-Based Argumentation, Normative Reasoning, Non-monotonic Reasoning

1. Introduction

Assumption-based argumentation (ABA) [1, 2, 3] is a well-studied formalism in the realm of struc-
tured argumentation with applications ranging from medical reasoning and decision-making to
eXplainable AI [4, 5, 6]. Argumentative reasoning is hereby performed by instantiating ABA
frameworks (ABAF) representing debates through (structured) arguments and an attack relation
among them. Arguments are built as forward derivation supported by defeasible sentences
called assumptions, using (strict) inference rules from the underlying knowledge base. Accord-
ingly, attacks between arguments encode a consistency check among the assumptions that
support them. As already noticed by Modgil and Prakken [7], assumption-based argumentation
leaves the “set of inference rules unspecified” in the sense that rules are treated equally and no
distinction can be made among them. However, in some domains of application, rules might
be distinguished on the basis of their function. Such situations can be found, for instance, in
the area of normative reasoning. There it may become relevant to tell apart rules that produce
obligations and permissions on the one hand from those that produce institutional facts on the
other, based on Searle’s famous distinction between regulative and constitutive norms [8]. To
prevent instances of deontic paradoxes and fallacious conclusions, the combination of rules
is subject to certain restrictions [9]. In the context of multi-agent systems [10, 11], an agent’s
frame of reference may differ from that of others, giving rise to individual rule sets for each

7th Workshop on Advances in Argumentation in Artificial Intelligence (AI3), November 06–09, 2023, Rome, Italy
*Corresponding author.
" giovanni.buraglio@tuwien.ac.at (G. Buraglio); wolfgang.dvorak@tuwien.ac.at (W. Dvořák);
a.rapberger@imperial.ac.uk (A. Rapberger); stefan.woltran@tuwien.ac.at (S. Woltran)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giovanni.buraglio@tuwien.ac.at
mailto:wolfgang.dvorak@tuwien.ac.at
mailto:a.rapberger@imperial.ac.uk
mailto:stefan.woltran@tuwien.ac.at
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

agent. Another example that requires the separation of rules is the necessity to express a quali-
tative distinction between them. In order to account for such situations, several argumentation
formalisms such as ASPIC+ separate strict and defeasible inference rules [12, 13, 14, 15].

Let us consider the following illustrative example from the domain of normative reasoning.

Example 1 (adapted from [16, Example 3]). Our protagonist Alice has been accepted to a study
program with payment obligations. Every student whose application has been accepted counts as
eligible student (constitutive norm). Moreover, every eligible student must pay their tuition fee
(regulative norm) and every student who pays their tuition fee counts as a self-funding student
(constitutive norm). We can derive that Alice must pay her tuition fee (since she is an eligible
student), and hence she counts as a self-funding student.

However, Alice has furthermore received a study grant which means that she is not a self-funding
student after all. Hence we derive a counter-intuitive conflict, deducing Alice to be both self-funding
and have received a grant.

In the above example, we end up fallaciously deducing a contradiction from our assumptions.
The underlying issue is that the application of constitutive rules after regulative ones may
produce fallacious conclusions, called institutional wishful thinking. The undesired situation
in Example 1 could be circumvented by preventing the application of the rule “tuition fee→
self-funding student” after the rule “eligible student → tuition fee”. In the context of formal
argumentation, similar issues have been addressed in recent works, based on an ASPIC-like
formalism [17, 16, 18, 19]. Standard ABA is, however, not expressive enough to account for such
a qualitative distinction among inference rules. Consequently, it is not possible to constraint
the rule combinations on the basis of their kind.

In this work, we propose first steps in order to close this gap. In particular, we (a) extend the
ABA formalism with pairwise disjoint sets of rules in order to take into account qualitative dif-
ferences among them; (b) equip this extension of ABA with formal constraints (called derivation
graphs) that regulate its deductive machinery, by encoding applicability conditions for inference
rules; (c) investigate the role of derivation constraints within the argument construction process.
On the one hand, we examine the definition of constraints as pre-processing operations on
the underlying knowledge base, on the other hand, we present a prototype encoding of our
formalism in Answer Set Programming (ASP). Finally, we point out to the relation between the
possibility of expressing conflicts in normative reasoning and the expressive power of non-flat
ABA.

2. Background

In order to introduce our formalism, we first need to recall some preliminaries for assumption-
based argumentation. In ABA, frameworks representing debates are built up from a rule-based
knowledge base and defined in the following way:

Definition 1. An ABA framework (ABAF) is a tuple 𝐷 = (ℒ,ℛ,𝒜,) where: (i) ℒ andℛ form
together a deductive system and are respectively a set of atomic sentences in a language and a set
of inference rules; (ii) 𝒜 ⊆ ℒ is a non-empty set of atoms called assumptions; (iii) is a total
mapping from 𝒜 into ℒ, where 𝑎 is said to be the contrary of 𝑎, for each 𝑎 ∈ 𝒜.

Following [20], we write rules as 𝑟 : 𝜑← 𝜑1, . . . , 𝜑𝑚 and we say that 𝜑 is the head of the rule
and {𝜑1, . . . , 𝜑𝑚} is its body, formally ℎ𝑒𝑎𝑑(𝑟) = 𝜑 and 𝑏𝑜𝑑𝑦(𝑟) = {𝜑1, . . . , 𝜑𝑚}. For a set
of rules 𝑅, we use ℎ𝑒𝑎𝑑(𝑅) to indicate the set of atoms which are head of the rules contained
in it. We consider here the finite flat version of ABAF, i.e. frameworks where ℒ and ℛ are
finite and assumptions do not occur as conclusions of inference rules: there is no 𝑟 ∈ ℛ and
𝑎 ∈ 𝒜 for which 𝑎 = ℎ𝑒𝑎𝑑(𝑟). Arguments of an ABAF are based on proof-trees, constructed
by forward-derivation from leaf-nodes to the root:

Definition 2 (deduction). Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABAF. A deduction for 𝑝 ∈ ℒ supported
by 𝑆 ⊆ 𝒜 and 𝑅 ⊆ ℛ, denoted 𝑆 ⊢𝑅 𝑝 (or simply 𝑆 ⊢ 𝑝), is a finite rooted tree t with:

i) a labelling function that assigns each vertex of 𝑡 an element from ℒ ∪ {⊤} such that the
root is labelled by 𝑝 and leaves are labelled by either ⊤ or atoms in 𝑆;

ii) a surjective mapping 𝑚 from the set of internal nodes of 𝑡 onto rules 𝑅 satisfying, for each
vertex 𝑣, that the label of 𝑣 is the head of the rule 𝑚(𝑣) and the children of 𝑣 are (one-to-one)
labelled with the elements of the body of 𝑚(𝑣).

In ABA, the attack relation is defined over sets of assumptions.

Definition 3 (attack). Let 𝐷 = (ℒ,ℛ,𝒜,) be an ABAF, let 𝑆, 𝑇 ⊆ 𝒜 be two sets of assump-
tions. 𝑆 attacks 𝑇 (𝑆 → 𝑇) iff there is a set 𝑆′ ⊆ 𝑆 such that 𝑆′ ⊢ 𝑎 for some 𝑎 ∈ 𝑇 .

Semantics can be defined then in the usual way.

Definition 4 (semantics). Given ABAF 𝐷 = (ℒ,ℛ,𝒜,) and 𝑆, 𝑇 ∈ 𝒜. The set 𝑆 is conflict-
free iff it does not attack itself; and admissible iff it is conflict-free and 𝑇 → 𝑆 implies 𝑆 → 𝑇 .
stable iff it is conflict-free and 𝑎 ∈ 𝒜 ∖ 𝑆 implies 𝑆 → {𝑎}; preferred iff it is a ⊆-maximal
admissible set. We write 𝑆 ∈ 𝜎(𝐷) with 𝜎 ∈ {cf, adm, stb, prf} to say that 𝑆 is a conflict-free,
admissible, stable or preferred set of assumptions (or extension) of 𝐷.

Likewise, we can define the corresponding AF for a given constrained ABAF.

Definition 5. Given an ABAF 𝐷 = (ℒ,ℛ,𝒜,), we call 𝐹 = (A,R) its corresponding AF such
that:

• A = {𝑆 ⊢ 𝑝 | 𝑆 ⊆ 𝒜};
• R = {(𝑆 ⊢ 𝑝, 𝑇 ⊢ 𝑞) | 𝑝 = 𝑎 for some 𝑎 ∈ 𝑇} ⊆ A×A.

3. ABA Frameworks with Multiple Rule-Sets

We can now define ABAFs with multiple rule-sets and derivation graphs. Jointly, these enable to
trace rule kinds along with some constraint on their combination. We consider only frameworks
where rule-sets are pairwise disjoint. Further, it is often desirable to evaluate scenarios where
the same atom cannot be derived by rules of different kinds. Take for instance a legal debate
built up using constitutive and regulative rules, as the one described in Example 1. The very
difference between the two type of rules concern their output (i.e. their heads): constitutive

rules produce institutional facts whereas regulative rules produce deontic statements such
as obligations or permissions. It is therefore an intuitive requirement to separate these two
heterogeneous groups of statements. For this, we focus on the class of separated 𝑛-ABAFs, for
which heads of rules in different rule-sets are pairwise disjoint.

Definition 6 (𝑛-rule-sets ABA). A 𝑛-rule-sets ABAF (𝑛-ABAF) is a tuple 𝐷 = (ℒ, {ℛ𝑖 | 1 ≤ 𝑖 ≤
𝑛},𝒜,) such that (ℒ,

⋃︀𝑛
𝑖=1ℛ𝑖,𝒜,) is an ABAF. Moreover, we call 𝐷 separated whenever

ℎ𝑒𝑎𝑑(ℛ𝑖) ∩ ℎ𝑒𝑎𝑑(ℛ𝑗) = ∅ for all 𝑖, 𝑗 with 𝑖 ̸= 𝑗.

As mentioned earlier, one might want to represent some constraint on rules combinations on⋃︀
𝑖≤𝑛ℛ𝑖 depending on the particular application domain. Inspired by input/output combinations

presented in [17], we introduce the more expressive concept of derivation graph to formalise
combination constraints:

Definition 7 (derivation graph). Let 𝐷 = (ℒ, {ℛ𝑖 | 1 ≤ 𝑖 ≤ 𝑛},𝒜,) be an 𝑛-ABAF. A
derivation graph 𝐺 = (𝑉,𝐸) for 𝐷 is a directed graph with |𝑉 | ≥ 𝑛+ 1 such that 𝑉 contains:

i) a distinct vertex s (called “starting node") with no incoming edges;
ii) at least one vertex r𝑖 for eachℛ𝑖 (called “rule-node” forℛ𝑖) such that there is a surjective

mapping from rule-nodes onto the set of rule-sets {ℛ𝑖 | 1 ≤ 𝑖 ≤ 𝑛}.

The outcome of the constraint encoded by some derivation graph is a limitation on the
possibility of rules chaining. This affects the derivation process from the underlying deductive
system. In particular, the idea consists in allowing only those sequential combinations of rules
for which there is a path within the derivation graph. As a result, we extend the usual notion of
deduction presented in ABA to accommodate this additional requirement.

Definition 8. Let 𝐷 = (ℒ, {ℛ𝑖 | 1 ≤ 𝑖 ≤ 𝑛},𝒜,) be an 𝑛-ABAF and let 𝐺 = (𝑉,𝐸) be a
derivation graph for 𝐷. A 𝐺-deduction for 𝑝 ∈ ℒ supported by 𝑆 ⊆ 𝒜 and 𝑅 =

⋃︀𝑛
𝑖=1𝑅𝑖 with

𝑅𝑖 ⊆ ℛ𝑖, denoted 𝑆 ⊢𝑅𝐺 𝑝 (or simply 𝑆 ⊢𝐺 𝑝), is a deduction 𝑡 with a surjective mapping that
maps every internal 𝑣 node of 𝑡 to a rule node 𝑤 in 𝐺 such that i) 𝑣 corresponds to a rule that is in
the rule set of 𝑤 and ii) for each leaf-to-root-path 𝑣0 . . . 𝑣𝑘 in 𝑡, the corresponding series of nodes
𝑤0, . . . , 𝑤𝑘 in 𝐺 form a path in 𝐺 with 𝑤0 = s.

Notions of 𝐺-attack, 𝐺-semantics and corresponding AF under 𝐺 can be easily adapted from
the standard ones by employing the notion of 𝐺-deduction instead of regular deduction.

To show our new adaption at work, let us revisit our introductory example.

Example 2. Consider again Example 1. We construct a 2-ABAF 𝐷 = (ℒ,ℛ1,ℛ2,𝒜,)
where ℛ1 and ℛ2 contain our constitutive and regulative rules, respectively. We assume the
language ℒ to contain a modality 𝒪 where 𝒪𝑝 stands for “it is obligatory that 𝑝”. We let ℒ =
{𝑎 := 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑_𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥), 𝑏 := 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑔𝑟𝑎𝑛𝑡(𝑥), 𝑝 := 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒_𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥), 𝑞 :=
𝒪(𝑝𝑎𝑦_𝑓𝑒𝑒(𝑥)), 𝑠 := 𝑠𝑒𝑙𝑓_𝑓𝑢𝑛𝑑𝑖𝑛𝑔_𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥)}; 𝒜 = {𝑎, 𝑏}; ℛ1 = {𝑝 ← 𝑎, 𝑠 ← 𝑞} and
ℛ2 = {𝑞 ← 𝑝}. Moreover, 𝑠 = 𝑏. One can build the following conflicting derivations:

{𝑏} ⊢{} 𝑏 {𝑎} ⊢{𝑝←𝑎,𝑞←𝑝,𝑏←𝑞} 𝑏

We conclude that {𝑎} attacks {𝑏}. However, there should not be any conflict between a student
being accepted and receiving a grant. By prohibiting the application of constitutive rules in the
scope of regulative ones, 𝑏 is no longer derived from the assumption 𝑎. Let us consider the following
derivation graph 𝐺:

s r1 r2

Since (r2, r1) /∈ 𝐸(𝐺), we get {𝑎} ⊬{𝑝←𝑎,𝑞←𝑝,𝑏←𝑞}
𝐺 𝑏. Therefore, {𝑎} does not 𝐺-attack {𝑏}

and the assumption set {𝑎, 𝑏} is an extension under any 𝐺-semantics.

4. Investigating Constraints in ABA

In the present section, we examine the role of derivation constraints in the 𝑛-ABA formalism.
In doing so, we take three different paths: first, we show that under certain conditions it is
possible to exploit the information given by derivation graphs to pre-process the knowledge
base in order to obtain equivalent results in terms of ABAFs instantiation; Then, we present an
encoding for our formalism in Answer Set Programming that captures derivation constraints
and their effect on the procedure of argument construction; Finally, we devote a paragraph to
show how our formalism hints towards a possible relationship among non-flat ABA and certain
instances of normative reasoning.

4.1. Equivalence under Derivation Function

A core feature of ABA is that it comes with guidelines that specify how to instantiate a framework
from a given knowledge base. This job is largely done by the notions of deduction and attack.
In turn, derivation graphs work as a device for controlling and manipulate such instantiating
process. An interesting research question would be that of asking under which conditions one
can obtain an equivalent framework by pre-processing the knowledge base while leaving the
derivation process untouched. Initial results show that if a derivation graph contains exactly
one rule node for each rule set in the given 𝑛-ABAF, it is possible to define a derivation function
that works in such a way. This is an operation on the knowledge base which automatically
identifies and removes rules that would not be allowed under a derivation graph 𝐺, allowing
unconstrained deductions. For each graph constraint 𝐺, there is a derivation function 𝛾 that
extracts from the rulesℛ of an 𝑛-ABAF the subset of rules whose application is allowed under 𝐺.

Definition 9. Let D be an 𝑛-ABAF, 𝐺 = (𝑉,𝐸) be some derivation graph with 𝑉 =
{s, r1, . . . , r𝑛}. The derivation function 𝛾𝐺 : 2ℛ → 2ℛ corresponding to 𝐺 is defined as
𝛾(ℛ) = ℛ ∖ {𝐴 ∪𝐵} with

• 𝐴 = {𝑟 ∈ ℛ | 𝑟 ∈ ℛ𝑖, 𝒜 ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅ or 𝑏𝑜𝑑𝑦(𝑟) = ∅ and (s, r𝑖) /∈ 𝐸};
• 𝐵 = {𝑟 ∈ ℛ | 𝑟 ∈ ℛ𝑖,∃𝑗 ≤ 𝑛 s.t. ℎ𝑒𝑎𝑑(ℛ𝑗) ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅ and (r𝑗 , r𝑖) /∈ 𝐸}.

We omit subscript 𝐺 if clear from context.

Given some ABAF 𝐷, we use 𝐷𝛾 to indicate the ABAF obtained by restricting rule sets of 𝐷
via the derivation function 𝛾. As a result, the set of 𝐺-deductions for 𝐷 is equivalent to the set
of standard deductions that can be built using rules in 𝛾(ℛ) only.

Lemma 1. Let 𝐷 be a separated 𝑛-ABA framework, 𝐺 = (𝑉,𝐸) some derivation-graph and
𝛾 : ℛ → ℛ its corresponding derivation function. For any set of atomic sentences 𝑆 ⊆ ℒ, 𝑝 ∈ ℒ
and 𝑅 ⊆ ℛ, 𝑆 ⊢𝑅𝐺 𝑝 is a 𝐺-deduction for 𝐷 if and only if 𝑆 ⊢𝛾(𝑅) 𝑝 is a deduction for 𝐷𝛾 .

Proof. (⇒) Assume 𝑆 ⊢𝑅𝐺 𝑝 is a 𝐺-deduction for 𝐷. We show that 𝑆 ⊢𝛾(𝑅) 𝑝 is a deduction for
𝐷𝛾 . In order to do this, we first show that 𝑅 = 𝛾(𝑅). We prove this by contradiction. Suppose
there is an 𝑟 ∈ 𝑅 such that 𝑟 /∈ 𝛾(𝑅). Hence, either (a) 𝑟 ∈ 𝐴 or (b) 𝑟 ∈ 𝐵. We proceed by case
distinction.

(a) Suppose 𝑟 ∈ 𝐴. By Definition 9, the following holds true: (i) 𝑟 ∈ ℛ𝑖 and (ii)𝒜∩𝑏𝑜𝑑𝑦(𝑟) ̸=
∅ or 𝑏𝑜𝑑𝑦(𝑟) = ∅ and (iii) (s, r𝑖) /∈ 𝐸, where r𝑖 denotes the node in 𝐺 corresponding to
the classℛ𝑖.
By hypothesis, it holds that 𝑆 ⊢𝑅𝐺 𝑝. By Definition 2, this is a finite rooted tree 𝑡 that
assigns to each vertex an element in ℒ ∪ ⊤. 𝑡 is constructed in such a way that there is a
surjective mapping from rules in 𝑅 onto the nodes in 𝑡 such that each of these nodes and
their children respectively correspond to the head and the elements in the body of a rule
of 𝑅. Since 𝑟 ∈ 𝑅, there is a node 𝑣 in the deduction tree 𝑡 that corresponds to 𝑟 and is
labelled with ℎ𝑒𝑎𝑑(𝑟) and its children are labelled with the elements in 𝑏𝑜𝑑𝑦(𝑟) or ⊤.
We show that (i)-(iii) cannot be true at the same time. We do this for each disjunct in
(ii). First, consider 𝒜 ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅. In this case, there is at least one node 𝑣′, which is a
child of 𝑣, labelled with an assumption. Hence, it is a leaf (since we assume 𝐷 to be flat).
Consider now the leaf-to-root path 𝑣0 . . . 𝑣𝑘 with 𝑣0 = 𝑣′ and 𝑣1 = 𝑣. By Definition 8,
this path can be mapped to a path 𝑤0 . . . 𝑤𝑘 in 𝐺 such that 𝑤0 = 𝑠. Given that 𝑟 ∈ ℛ𝑖

and 𝑟 corresponds to 𝑣1, we know that 𝑤1 corresponds to the classℛ𝑖, i.e. 𝑤1 = r𝑖. Hence,
we have shown that (𝑠, r𝑖) ∈ 𝐸, in contradiction with the assumption (iii): (s, r𝑖) /∈ 𝐸.
Next, assume 𝑏𝑜𝑑𝑦(𝑟) = ∅. In this case, the only child 𝑣′ of 𝑣 is labelled with ⊤. Again,
the corresponding node 𝑣′ of ⊤ is a leaf in 𝑡. Consider the leaf-to-root path 𝑣0 . . . 𝑣𝑘 with
𝑣0 = 𝑣′ and 𝑣1 = 𝑣. By definition 8, this path can be mapped to a path 𝑤0 . . . 𝑤𝑘 in
𝐺 such that 𝑤0 = 𝑠 and 𝑤1 = r𝑖. Hence, (𝑠, r𝑖) ∈ 𝐸, contradiction to the assumption
(s, r𝑖) /∈ 𝐸. Consequently, 𝑟 /∈ 𝐴.

(b) Suppose 𝑟 ∈ 𝐵. By Definition 9, this means that (i) 𝑟 ∈ ℛ𝑖, (ii) ∃𝑗 ≤ 𝑛 such that
ℎ𝑒𝑎𝑑(ℛ𝑗) ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅ and (iii)(r𝑗 , r𝑖) /∈ 𝐸. We show that (i)-(iii) cannot be true at the
same time.
Given that D is separated, there is no atom ℎ ∈ ℒ such that ℎ ∈ ℎ𝑒𝑎𝑑(ℛ𝑘) ∩ ℎ𝑒𝑎𝑑(ℛ𝑗)
with 𝑘 ̸= 𝑗. Hence, for every atom in 𝑏𝑜𝑑𝑦(𝑟) there exists at most one 𝑗 ≤ 𝑛 such that
ℎ𝑒𝑎𝑑(ℛ𝑗) ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅.
By hypothesis, it holds that 𝑆 ⊢𝑅𝐺 𝑝. By Definition 2, this is a finite rooted tree, denoted
as 𝑡, where each vertex is associated with an element from ℒ ∪ ⊤. The construction of
tree 𝑡 ensures a surjective mapping from rules in 𝑅 onto its nodes. In 𝑡 each node and
its children respectively correspond to the head and body elements of a rule in 𝑅. For a
given rule 𝑟 ∈ 𝑅, there exists a node 𝑣 in the deduction tree 𝑡 that corresponds to 𝑟. This

node is labelled with ℎ𝑒𝑎𝑑(𝑟), and its children are labelled with elements from 𝑏𝑜𝑑𝑦(𝑟)
or ⊤.
Thus, there is at least one node 𝑣′ which is a child of 𝑣, labelled with ℎ𝑒𝑎𝑑(𝑟′) for some
𝑟′ ∈ ℛ𝑗 . Consider now the leaf-to-root path 𝑣0 . . . 𝑣𝑘 with 𝑣𝑚 = 𝑣′ and 𝑣𝑚+1 = 𝑣 (with
1 < 𝑚 < 𝑘). By Definition 8, this path can be mapped to a path 𝑤0 . . . 𝑤𝑘 in 𝐺 such that
𝑤0 = 𝑠. Moreover, 𝑟 ∈ ℛ𝑖. Since 𝑟 and 𝑟′ correspond to 𝑣𝑚 and 𝑣𝑚+1, the nodes 𝑤𝑚 and
𝑤𝑚+1 in 𝐺 correspond to the classesℛ𝑗 andℛ𝑖. Thus, 𝑤𝑚 = r𝑗 and 𝑤𝑚+1 = r𝑖. Hence,
we have shown that (r𝑗 , r𝑖) ∈ 𝐸, in contradiction with the assumption (iii): (rj, r𝑖) /∈ 𝐸.
Consequently, 𝑟 /∈ 𝐵.

Since there is a rule 𝑟 ∈ 𝑅 such that 𝑟 /∈ 𝐴 and 𝑟 /∈ 𝐵, we conclude that 𝑟 ∈ 𝛾(𝑅), in
contradiction with our initial assumption. We derive 𝑅 = 𝛾(𝑅). Thus we replace 𝑅 with 𝛾(𝑅)

in 𝑆 ⊢𝑅𝐺 𝑝, deriving that 𝑆 ⊢𝛾(𝑅)
𝐺 𝑝 is a 𝐺-deduction in 𝐷𝛾 . Hence, 𝑆 ⊢𝛾(𝑅) 𝑝 is a deduction in

𝐷𝛾 .
(⇐) Suppose 𝑆 ⊢𝛾(𝑅) 𝑝 is a deduction in 𝐷𝛾 . We show 𝑆 ⊢𝑅𝐺 𝑝 is a 𝐺-deduction in 𝐷. Since

𝛾(ℛ) ⊆ ℛ, we know that each rule in 𝛾(𝑅) is contained in 𝐷, i.e. we can use each rule in
𝛾(𝑅) under 𝐺. Hence, we can assume that 𝑅 = 𝛾(𝑅). We can thus replace 𝛾(𝑅) with 𝑅 in
𝑆 ⊢𝛾(𝑅) 𝑝, thus showing that it is a deduction for 𝐷𝛾 (and a fortiori for 𝐷). It remains to show
that 𝑆 ⊢𝑅 𝑝 is a 𝐺-deduction for 𝐷.

By Definition 2, there is a finite tree 𝑡 rooted in 𝑝 with leaves corresponding to assumptions
𝑆 ∪ {⊤} and each node 𝑣𝑖 is associated to a rule 𝑟 ∈ 𝑅. To prove further that 𝑆 ⊢𝑅 𝑝 is a
𝐺-deduction, we need to show that it is possible to map each leaf-to-root path 𝑣0 . . . 𝑣𝑘 in 𝑡
to a path 𝑤0 . . . 𝑤𝑘 in the graph 𝐺 (condition (ii) of Definition 8). Take one leaf-to-root-path
𝑣0 . . . 𝑣𝑘 in 𝑡 such that each node 𝑣𝑚 (corresponding to 𝑤𝑚) is associated with a rule 𝑟 ∈ ℛ𝑖.

Assume that there is no path 𝑤0 . . . 𝑤𝑘 in 𝐺 corresponding to 𝑣0 . . . 𝑣𝑘 . This means that there
is at least one edge (𝑣𝑚, 𝑣𝑚+1) in 𝑡 for which the corresponding (𝑤𝑚, 𝑤𝑚+1) /∈ 𝐸. To prove
that this always leads to a contradiction, we distinguish the following two cases.

(a) First suppose 𝑚 = 0, that is, (𝑤0, 𝑤1) /∈ 𝐸. Let 𝑟 denote the rule corresponding to 𝑣1.
Since 𝑟 ∈ 𝛾(𝑅) by hypothesis, 𝑟 is not deleted by 𝛾. By Definition 9 we have that 𝑟 /∈ 𝐴,
that is 𝒜 ∩ 𝑏𝑜𝑑𝑦(𝑟) = ∅ and 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅. However, by Definition 2, it holds that each
leaf is labelled with 𝑆 ∪ {⊤}. Hence, 𝑣0 corresponds either to an assumption or ⊤. In the
first case, 𝒜 ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅. In the second case, 𝑏𝑜𝑑𝑦(𝑟) = ∅. Both cases contradict the
assumption that 𝑟 ∈ 𝛾(𝑅). Hence we obtain (𝑤0, 𝑤1) ∈ 𝐸.

(b) Now suppose 𝑚 > 0 and (𝑤𝑚, 𝑤𝑚+1) /∈ 𝐸. Let 𝑟′ and 𝑟 denote the rules respectively
corresponding to 𝑣𝑚 and 𝑣𝑚+1. Since 𝑟 is not deleted by 𝛾 (𝑟 ∈ 𝛾(𝑅)), by Definition 9
we have that 𝑟 /∈ 𝐵, that is for all 𝑗 ≤ 𝑛 it holds that ℎ𝑒𝑎𝑑(ℛ𝑗) ∩ 𝑏𝑜𝑑𝑦(𝑟) = ∅.
By Definition 2, there is a surjective mapping from the set of internal nodes of 𝑡 onto rules
𝑅 satisfying, for each vertex 𝑣, that the label of 𝑣 is the head of the rule corresponding to
𝑣 and the children of 𝑣 are (one-to-one) labelled with the elements of the body of the rule.
Therefore, 𝑣𝑚+1 is labelled with the head of the rule 𝑟 and 𝑣𝑚, being a child of 𝑣𝑚+1,
labelled with the head of rule 𝑟′ which is is an element in the body of 𝑟. Letℛ𝑗 denote
the rule set corresponding to 𝑟′. Then ℎ𝑒𝑎𝑑(ℛ𝑗) ∩ 𝑏𝑜𝑑𝑦(𝑟) ̸= ∅. Therefore, 𝑟 ∈ 𝐵, that
is, 𝑟 is deleted in 𝐷𝛾 . But this is in contradiction with the assumption that 𝑟 ∈ 𝛾(𝑅).
Hence we obtain (𝑤𝑚, 𝑤𝑚+1) ∈ 𝐸.

𝑛-ABAF
𝐷

Restricted 𝑛-ABAF
𝐷𝛾

Argument
𝑆 ⊢𝑅𝐺 𝑝 ≡ 𝑆 ⊢𝛾(𝑅) 𝑝

𝛾 deduction

𝐺-deduction

Figure 1: Graphical representation of Lemma 1.

These results contradict our previous assumption that there is no path 𝑤0 . . . 𝑤𝑘 in 𝐺 corre-
sponding to some fixed 𝑣0 . . . 𝑣𝑘 in 𝑡. Hence, a path in 𝐺 corresponding to 𝑣0 . . . 𝑣𝑘 in 𝑡 is always
found. We conclude that 𝑆 ⊢𝑅 𝑝 is a 𝐺-deduction.

A graphical representation of the equivalence between 𝐺-deductions and deduction in 𝐷𝛾 is
given in Figure 1.

To see how the translation works from 𝐺-deduction of 𝐷 to regular deductions in 𝐷𝛾 ,
consider the following example.

Example 3. Let 𝐷 = (ℒ,ℛ1,ℛ2,𝒜,) be a 2-ABAF with ℒ = {𝑎, 𝑏, 𝑝, 𝑞, 𝑠},ℛ1 = {𝑝← 𝑎},
ℛ2 = {𝑞 ← 𝑝, 𝑠 ← 𝑏} and 𝒜 = {𝑎, 𝑏}. Let 𝐺 = (𝑉,𝐸) be a derivation graph with 𝑉 =
{s, r1, r2} and 𝐸 = {(s, r1), (r1, r2)} as follows:

s r1 r2

Under 𝐺, the set of 𝐺-deduction that can (and cannot) be built are the following:

{𝑎} ⊢𝐺 𝑎, {𝑏} ⊢𝐺 𝑏 {𝑎} ⊢{𝑝←𝑎}
𝐺 𝑝 {𝑎} ⊢{𝑝←𝑎,𝑞←𝑝}

𝐺 𝑞, but {𝑏} ⊬{𝑠←𝑏}
𝐺 𝑠

Let us now take the corresponding derivation function 𝛾 for 𝐺. By definition 9, we have
𝛾(ℛ) = ℛ ∖ {𝐴 ∪ 𝐵}, where 𝐴 = {𝑠 ← 𝑏} and 𝐵 = ∅ such that 𝐷𝛾 = (ℒ, 𝛾(ℛ),𝒜,).
Eventually, for 𝐷𝛾 we obtain the following:

{𝑎} ⊢ 𝑎, {𝑏} ⊢ 𝑏 {𝑎} ⊢{𝑝←𝑎} 𝑝 {𝑎} ⊢{𝑝←𝑎,𝑞←𝑝} 𝑞, but {𝑏} ⊬{𝑠←𝑏} 𝑠

As it can be seen, every 𝐺-deduction for 𝐷 is also a deduction for 𝐷𝛾 , and viceversa.

Remark 1. In Lemma 1, we require that the 𝑛-ABAF 𝐷 is separated, that is ℎ𝑒𝑎𝑑(ℛ𝑖) ∩
ℎ𝑒𝑎𝑑(ℛ𝑗) = ∅ for all 𝑖, 𝑗 with 𝑖 ̸= 𝑗. The motivation behind this choice lies in the fact that
the derivation function could in some occasions restrict the rule-set causing the set of deductions
for 𝐷𝛾 to be a subset of the set of 𝐺-deductions for 𝐷. To show this, let us consider the following
example: take 𝐷 such that ℒ = {𝑎, 𝑏, 𝑝, 𝑞}, ℛ1 = {𝑝 ← 𝑎, 𝑞 ← 𝑝}, ℛ2 = {𝑝 ← 𝑏} and
𝒜 = {𝑎, 𝑏}. 𝐷 is not separated due to the fact that 𝑝 ∈ ℎ𝑒𝑎𝑑(ℛ1) ∩ ℎ𝑒𝑎𝑑(ℛ2). Moreover, let
𝐺 = (𝑉,𝐸) be the following derivation graph:

sr1 r2

As it can be seen easily, the rule 𝑟 : 𝑞 ← 𝑝 would be eliminated by the function 𝛾 since 𝑟 ∈ 𝐵.
Indeed, we have 𝑝 ∈ ℎ𝑒𝑎𝑑(ℛ2) ∩ 𝑏𝑜𝑑𝑦(𝑟), 𝑟 ∈ ℛ1 and (r2, r1) /∈ 𝐸. Thus, {𝑎} ⊢𝛾(ℛ) 𝑞 is not a
deduction for 𝐷𝛾 . However, we would at the same time allow the rule 𝑟 under 𝐺 since (s, r1) ∈ 𝐸
and (r1, r1) ∈ 𝐸, so that {𝑎} ⊢ℛ𝐺 𝑞 is a 𝐺-deduction for 𝐷. In order to avoid such undesired
behaviour, we restrict our study to separated ABAFs.

From Lemma 1 it follows that the corresponding AF instantiated by means of 𝐺-deductions
is equivalent to the one instantiated through standard deductions after its rule-set has been
restricted by the derivation function. This assures that the same outcome is reached by limiting
deductions via some derivation graph or by restricting the knowledge base accordingly. This is
captured by the following theorem:

Theorem 1 (Equivalence under instantiation). Let 𝐷 be a separated 𝑛-ABA framework, 𝐺
some derivation graph and 𝛾 : ℛ → ℛ some derivation function. Let 𝐹𝐺 = (A𝐺,R𝐺) be the
corresponding AF with respect to 𝐷 under 𝐺 and 𝐹 ′ = (A′,R′) the corresponding AF with respect
to 𝐷𝛾 . For these, we derive that 𝐹𝐺 ≡ 𝐹 ′, in the sense that:

(1) A𝐺 = A′;
(2) R𝐺 = R′.

Proof. We start by considering (1). By Definition 5, we have A𝐺 = {𝑆 ⊢𝑅𝐺 𝑝 | 𝑆 ⊆ 𝒜}. Given
Lemma 1, we know that for each argument in such set, there is an equivalent argument that can
be obtained through some derivation function 𝛾 such that {𝑆 ⊢𝛾(𝑅) 𝑝 | 𝑆 ⊆ 𝒜} = A′. Hence,
A𝐺 = A′.

The proof of (2) is similar. By Definition 5, we have R𝐺 = {(𝑆 ⊢𝑅𝐺 𝑝, 𝑇 ⊢𝑅⋆

𝐺 𝑞) | 𝑝 =
𝑎 for some 𝑎 ∈ 𝑇}. Given Lemma 1, we know that for each pair of arguments in such set, there
is an equivalent pair of arguments that can be obtained through some derivation function 𝛾
such that 𝑆 ⊢𝑅𝐺 𝑝 ⇐⇒ 𝑆 ⊢𝛾(𝑅) 𝑝 and 𝑇 ⊢𝑅⋆

𝐺 𝑞 ⇐⇒ 𝑇 ⊢𝛾(𝑅⋆) 𝑞. Since these arguments are
pairwise equivalent, the attack relation among them will be equivalent as well. Thus, we obtain
{(𝑆 ⊢𝛾(𝑅) 𝑝, 𝑇 ⊢𝛾(𝑅⋆) 𝑞) | 𝑝 = 𝑎 for some 𝑎 ∈ 𝑇} = R′ as the set of attacks for 𝐹 ′. Finally,
we can state R𝐺 = R′, as desired.

A straightforward consequence of this is that semantics equivalence also holds:

Corollary 1 (Equivalence). Let D be a separated 𝑛-ABAF, 𝐷𝛾 its restriction under 𝛾 and 𝐺 the
corresponding derivation graph. Given any ABA semantics 𝜎 ∈ {cf , adm, stb, prf } and their
constrained version 𝜎𝐺, it holds that 𝜎𝐺(𝐷) = 𝜎(𝐷𝛾).

4.2. Encoding constrained 𝑛-ABA in ASP

In addition, we present an encoding of the 𝑛-ABA formalism and derivation graphs in ASP
(available at: https://www.dbai.tuwien.ac.at/research/argumentation/abasp/), inspired by the
one provided in [21] for regular ABA frameworks and semantics. Given an 𝑛-ABAF and
derivation graph as input, the encoding provides an answer set 𝑀 for each 𝜎𝐺-extension of a

https://www.dbai.tuwien.ac.at/research/argumentation/abasp/

given 𝑛-ABAF under the graph constraint 𝐺. Regarding the 𝑛-ABAF in input, we extend the
encoding presented in [21] by introducing a new predicate specifying for each rule the (unique)
rule-setℛ𝑖 it belongs to. Let 𝐷 = (ℒ, {ℛ𝑖 | 1 ≤ 𝑖 ≤ 𝑛},𝒜,) be an 𝑛-ABAF withℛ𝑖 be the
𝑖-th set of rules. We use the following set of facts in ASP to represent the 𝑛-ABAF 𝐷:

D ={assumption(𝑎). | 𝑎 ∈ 𝒜}∪
{head(𝑚, 𝑏). | 𝑏 ∈ ℎ𝑒𝑎𝑑(𝑟𝑚), 𝑟𝑚 ∈ ℛ}∪
{body(𝑚, 𝑏). | 𝑏 ∈ 𝑏𝑜𝑑𝑦(𝑟𝑚), 𝑟𝑚 ∈ ℛ}∪
{rule_set(𝑟𝑚, 𝑟𝑠𝑖). | 𝑟𝑚 ∈ ℛ𝑖}∪
{contrary(𝑎, 𝑏). | 𝑏 = 𝑎, 𝑎 ∈ 𝒜}.

Following [21], assumption(𝑎) and contrary(𝑎, 𝑏) respectively mean that 𝑎 is an assumption
and that 𝑏 is the contrary of 𝑎. Moreover, head(𝑚, 𝑏) and body(𝑚, 𝑏) mean that 𝑏 is the head
(resp. body) of the rule 𝑟𝑚 withinℛ. In addition, we introduce the predicate rule_set(𝑟𝑚, 𝑟𝑠𝑖)
to specify that 𝑟𝑚 is in the rule-setℛ𝑖.

The derivation graph 𝐺 is encoded as a labelled graph using predicates for nodes and edges,
specifying which node corresponds to the starting node and each rule set.

G ={node(𝑣). | 𝑣 ∈ 𝑉 }∪
{edge(𝑣1, 𝑣2). | (𝑣1, 𝑣2) ∈ 𝐸}∪
{start_node(𝑣). | 𝑣 is the starting node}∪
{rule_node(𝑣, 𝑟𝑠𝑖). | 𝑣 corresponds toℛ𝑖}.

We use the following ASP program 𝜋𝐺 that mirrors the argument construction process for
an 𝑛-ABAF under 𝐺 (see Listing 1). To present this in a more concise way, we say that “a rule
𝑅 is in a node 𝑁” whenever such rule is contained in the rule-set corresponding to the node 𝑁
in the derivation graph.

Listing 1: Module 𝜋𝐺

1 in(𝑋)← assumption(𝑋), 𝑛𝑜𝑡 out(𝑋).
2 out(𝑋)← assumption(𝑋), 𝑛𝑜𝑡 in(𝑋).
3 fact_rule(𝑅,𝑋)← head(𝑅,𝑋), 𝑛𝑜𝑡 non_fact_rule(𝑅,𝑋).
4 non_fact_rule(𝑅,𝑋)← head(𝑅,𝑋), body(𝑅, 𝑌).
5 supported_by_node(𝑋,𝑁)← in(𝑋), start_node(𝑁).
6 supported_by_node(𝑋,𝑁)← head(𝑅,𝑋), rule_set(𝑅, 𝐼), rule_node(𝑁, 𝐼) ,

𝑛𝑜𝑡 non_supported_by_node_via_rule(𝑋,𝑁,𝑅).
7 non_supported_by_node_via_rule(𝑋,𝑁,𝑅)← fact_rule(𝑅,𝑋), rule_set(𝑅, 𝐼) ,

rule_node(𝑁, 𝐼), start_node(𝑀), 𝑛𝑜𝑡 edge(𝑀,𝑁).
8 non_supported_by_node_via_rule(𝑋,𝑁,𝑅)← head(𝑅,𝑋), rule_set(𝑅, 𝐼), rule_node(𝑁, 𝐼)

, non_supported_by_node_via_rule_because_of(𝑋,𝑁,𝑅, 𝑌), body(𝑅, 𝑌).
9 non_supported_by_node_via_rule_because_of(𝑋,𝑁,𝑅, 𝑌)← head(𝑅,𝑋), rule_set(𝑅, 𝐼)

, rule_node(𝑁, 𝐼), body(𝑅, 𝑌), {supported_by_node(𝑌,𝑀) : edge(𝑀,𝑁)} = 0.
10 ← rule_set(𝑅, 𝐼), rule_set(𝑅, 𝐽), 𝐼! = 𝐽.

Lines 1 and 2 encode a guess of some possible extension in the set of assumptions, specifying
which of them are taken to be in and out respectively. We label facts via the predicate fact_rule,
telling them apart from rules with non-empty body (Lines 4 and 5). Lines 5-9 encode the
construction process of 𝐺-deductions as forward derivations from subsets of 𝒜 to supported
claims. These establish the connection between nodes of a derivation graph, rules and supported
atoms, represented by the predicate supported_by_node. As for Line 5, the set of assumptions
𝐴 ⊆ 𝒜 that is guessed to be in is set to be supported by the starting node of the derivation
graph. Subsequently, as in [21], for any atom 𝑝 that can be 𝐺-deduced from (a subset of) 𝐴,
we obtain supported_by_node(𝑥) in some answer set. In particular, Line 9 says that a rule
in a node 𝑁 that might fire is blocked when its body is not supported by any node from an
incoming edge (𝑀,𝑁). Combinations of rules which are not allowed under the derivation
graph in input are thus ruled out. Further, Line 8 enforces that all elements in the body of a rule
in some rule-node have to be supported for its head to be supported as well. Thus, it prevents
rules with partially supported body to fire, even when the derivation graph would allow for
such combination. Line 7 blocks facts in a node 𝑁 to be derived when there is no incoming
edge from the starting node. Finally, Line 6 makes use of the concept of negation as failure to
establish that an atom 𝑝 is supported by a node 𝑁 if it occurs in the head of some rule in 𝑁 and
no rule can be found in 𝑁 for which 𝑝 is non_supported. A constraint in Line 10 checks that
the same rule is not contained in two different rule sets, encoding the requirement that rule
sets are pairwise disjoint.

Eventually, each semantics-related module presented in [21] can be integrated into ours, after
being carefully adapted to take into account rule-sets and derivation constraints.

4.3. Non-flat ABA for Normative Reasoning

In the area of normative reasoning, conflicts may occur not only in presence of inconsistent
information regarding brute facts, but also regarding institutional facts and norms[16]. Scenarios
that concern the detachment of conflicting institutional facts are called normative conflicts and
arise when more agents agree on the same brute fact, but assign conflicting institutional values
to it. For example, an homosexual couple counts as married after having signed the marriage
contract in some legal systems, but not in others. Similarly, conflicts among obligations can arise,
giving rise to so-called moral dilemmas. Instances of these arise in presence of an obligation for
𝑝 and for its opposite (formally, this translates to deriving 𝒪𝑝 ∧ 𝒪¬𝑝 from assumptions).

In assumption-based argumentation, conflicts between sentences are encoded by the contrary
function over the assumption set. This represent a fundamental design property of ABA, because
it allows in turn to define semantics directly on the assumption level. For this reason, in order
to express normative conflicts and moral dilemmas, it is required that assumptions may not
only consist of so-called brute facts, but also of institutional facts (produced by constitutive
rules) or obligations (produced by regulative rules). Since these are always derived by rules in
our knowledge base, flat ABA may not always be expressive enough to encompass such cases.

Therefore, we anticipate here that the full expressiveness of non-flat ABA may be required
for capturing instances of normative reasoning. In order to see this, let us consider an instance
of Forrester’s paradox [22]. In Standard Deontic Logic [23], Forrester’s paradox, also known in
the literature as “gentle murderer paradox”, follows from the statements A: “One should not

(under the law) commit murder" and B: “if someone commits murder, then they should do it
gently". Moreover, B implies C: “if someone should commit murder gently, then they should
commit murder". Under the assumption that D: “someone commits murder", this eventually
creates a paradoxical situation whereby it is obligatory to commit and not to commit murder at
the same time. Therefore, a moral dilemma is created where it is contradictory to assume that a
law exists and someone violates it. In the following, we show that such an undesired outcome
can be avoided by imposing some constraint by means of a derivation graph 𝐺.

Example 4. Take a non-flat 1-ABAF 𝐷 = (ℒ,ℛ1,𝒜,) such that ℒ = {𝑎, 𝑏, 𝑝}, 𝒜 = {𝑎, 𝑏}
where 𝑎 := 𝑚𝑢𝑟𝑑𝑒𝑟(𝑥) and 𝑏 := 𝒪(¬𝑚𝑢𝑟𝑑𝑒𝑟(𝑥)) and ℛ1 = {𝑝 ← 𝑎, 𝑏 ← 𝑝, 𝑏 ←} where
𝑝 := 𝒪(𝑚𝑢𝑟𝑑𝑒𝑟_𝑔𝑒𝑛𝑡𝑙𝑦(𝑥)). Then one could build the arguments:

{} ⊢{𝑏←} 𝑏 {𝑎} ⊢{} 𝑎 {𝑎} ⊢{𝑝←𝑎} 𝑝 {𝑎} ⊢{𝑝←𝑎,𝑏←𝑝} 𝑏

As it can be seen immediately, {𝑎} attacks {𝑏}. Hence the contrary-to-duty paradox: the
assumptions that murdering is forbidden and that someone murders are mutually exclusive and
their union is not conflict-free. For this example, not every derivation graph will prevent the paradox
to arise. Consider the following:

s r1

𝐺1

s r1

𝐺2

s r1 r1

𝐺3

𝐺1 puts no restriction on deductions, 𝐺2 restricts deductions to using only one rule, and 𝐺3

restricts deductions to using only two rules per branch. In our example both 𝐺1 and 𝐺3 do not
prohibit any of the possible deductions, while 𝐺2 does and in fact is the only graph which prevents
the paradox. In fact, by forbidding the iteration for rules, it blocks the derivation of 𝑏 from the
assumption 𝑎. Indeed, we get {𝑎} ⊬{𝑝←𝑎,𝑏←𝑝}

𝐺 𝑏. Therefore, {𝑎} does not 𝐺-attack {𝑏} and the
assumption set {𝑎, 𝑏} is an extension under any 𝐺-semantics.

In this example, an instance of a contrary-to-duty paradox is easily formalised in non-flat
1-ABA and solved through some constraints imposed by a derivation graph. This suggest that
an exhaustive analysis of conflict resolution in the context of normative reasoning requires the
full expressiveness of non-flat 𝑛-ABA.

5. Concluding Remarks

This work introduces an extension of assumption-based argumentation with multiple rule-sets
together with some formal constraints on its deductive machinery. These constraints, called
derivation graphs, regulate the argument construction process from the underlying knowledge
base, thereby limiting the procedure for its instantiation into an ABA framework. While this
allows to avoid undesired conclusions as shown in Examples 1 and 4, we are currently working
on defining constraints that operate directly on the knowledge base. In addition, we presented
an encoding of our formalism in ASP, building up on the work presented in [21]. Finally, we

discussed the possibility to capture certain instances of normative reasoning in assumption-
based argumentation, using the full expressive power of non-flat ABA to represent and reason
about normative conflicts and moral dilemmas.

The derivation constraints presented in this work successfully avoid some paradoxes and
fallacies in the domain of normative reasoning, but they do so at the expense of the deductive
power of the ABA formalism. As a general direction for future research we want to broaden our
horizon and investigate different kinds of reasoning constraints that minimise this loss. In doing
so, we aim at positioning our formalism with respect to related frameworks: the work by Pigozzi
and Van der Torre on constitutive and regulative norms in argumentation [16]; modular ABA
[24] as it was proposed in connection with normative reasoning; Deontic ASP [25] encoding
input/output logics. Although we restricted our studies on flat ABAFs so far, we anticipate
that the full expressiveness of non-flat ABAFs may be needed to capture general instances of
normative reasoning (cf. Example 4). Equipping non-flat ABAFs with derivation graphs might
pose additional challenges since non-flat ABAFs require certain closure conditions on the set of
acceptable assumptions. In addition, we aim at studying how size and complexity of instantiated
ABAFs are influenced under our derivation constraints, in line with [26].

Acknowledgements

This research has been supported by Vienna Science and Technology Fund (WWTF) through
project ICT19-065 and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreements No. 101034440).

References

[1] A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework for non-
monotonic reasoning, in: L. M. Pereira, A. Nerode (Eds.), Logic Programming and Non-
monotonic Reasoning, Proceedings of the Second International Workshop, Lisbon, Portugal,
June 1993, MIT Press, 1993, pp. 171–189.

[2] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-theoretic
approach to default reasoning, Artif. Intell. 93 (1997) 63–101. URL: https://doi.org/10.1016/
S0004-3702(97)00015-5. doi:10.1016/S0004-3702(97)00015-5.

[3] P. M. Dung, R. A. Kowalski, F. Toni, Assumption-based argumentation, in:
G. R. Simari, I. Rahwan (Eds.), Argumentation in Artificial Intelligence, Springer,
2009, pp. 199–218. URL: https://doi.org/10.1007/978-0-387-98197-0_10. doi:10.1007/
978-0-387-98197-0_10.

[4] K. Cyras, T. Oliveira, A. Karamlou, F. Toni, Assumption-based argumentation with
preferences and goals for patient-centric reasoning with interacting clinical guide-
lines, Argument Comput. 12 (2021) 149–189. URL: https://doi.org/10.3233/AAC-200523.
doi:10.3233/AAC-200523.

[5] X. Fan, F. Toni, A. Mocanu, M. Williams, Dialogical two-agent decision making with
assumption-based argumentation, in: A. L. C. Bazzan, M. N. Huhns, A. Lomuscio, P. Scerri
(Eds.), International conference on Autonomous Agents and Multi-Agent Systems, AAMAS

https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1016/S0004-3702(97)00015-5
http://dx.doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1007/978-0-387-98197-0_10
http://dx.doi.org/10.1007/978-0-387-98197-0_10
http://dx.doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.3233/AAC-200523
http://dx.doi.org/10.3233/AAC-200523

’14, Paris, France, May 5-9, 2014, IFAAMAS/ACM, 2014, pp. 533–540. URL: http://dl.acm.
org/citation.cfm?id=2615818.

[6] X. Fan, On generating explainable plans with assumption-based argumentation, in:
T. Miller, N. Oren, Y. Sakurai, I. Noda, B. T. R. Savarimuthu, T. C. Son (Eds.), PRIMA 2018:
Principles and Practice of Multi-Agent Systems - 21st International Conference, Tokyo,
Japan, October 29 - November 2, 2018, Proceedings, volume 11224 of Lecture Notes in Com-
puter Science, Springer, 2018, pp. 344–361. URL: https://doi.org/10.1007/978-3-030-03098-8_
21. doi:10.1007/978-3-030-03098-8_21.

[7] S. Modgil, H. Prakken, Abstract rule-based argumentation, FLAP 4 (2017). URL: http:
//www.collegepublications.co.uk/downloads/ifcolog00017.pdf.

[8] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language, Cambridge, England:
Cambridge University Press, 1969.

[9] D. Makinson, L. W. N. van der Torre, Input/output logics, J. Philos. Log. 29 (2000) 383–408.
URL: https://doi.org/10.1023/A:1004748624537. doi:10.1023/A:1004748624537.

[10] J. Xie, C.-C. Liu, Multi-agent systems and their applications, Journal of International
Council on Electrical Engineering 7 (2017) 188–197.

[11] I. Rahwan, Guest editorial: Argumentation in multi-agent systems, Auton. Agents Multi
Agent Syst. 11 (2005) 115–125. URL: https://doi.org/10.1007/s10458-005-3079-0. doi:10.
1007/s10458-005-3079-0.

[12] H. Prakken, An abstract framework for argumentation with structured arguments,
Argument Comput. 1 (2010) 93–124. URL: https://doi.org/10.1080/19462160903564592.
doi:10.1080/19462160903564592.

[13] S. Modgil, H. Prakken, A general account of argumentation with preferences, Artif.
Intell. 195 (2013) 361–397. URL: https://doi.org/10.1016/j.artint.2012.10.008. doi:10.1016/
j.artint.2012.10.008.

[14] M. Caminada, S. Modgil, N. Oren, Preferences and unrestricted rebut, in: S. Par-
sons, N. Oren, C. Reed, F. Cerutti (Eds.), Computational Models of Argument - Pro-
ceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-
12, 2014, volume 266 of Frontiers in Artificial Intelligence and Applications, IOS Press,
2014, pp. 209–220. URL: https://doi.org/10.3233/978-1-61499-436-7-209. doi:10.3233/
978-1-61499-436-7-209.

[15] S. Modgil, H. Prakken, The ASPIC+ framework for structured argumentation: a tutorial,
Argument Comput. 5 (2014) 31–62. URL: https://doi.org/10.1080/19462166.2013.869766.
doi:10.1080/19462166.2013.869766.

[16] G. Pigozzi, L. van der Torre, Arguing about constitutive and regulative norms, J. Appl.
Non Class. Logics 28 (2018) 189–217. URL: https://doi.org/10.1080/11663081.2018.1487242.
doi:10.1080/11663081.2018.1487242.

[17] X. Sun, L. W. N. van der Torre, Combining constitutive and regulative norms in
input/output logic, in: F. Cariani, D. Grossi, J. Meheus, X. Parent (Eds.), Deontic
Logic and Normative Systems - 12th International Conference, DEON 2014, Ghent, Bel-
gium, July 12-15, 2014. Proceedings, volume 8554 of Lecture Notes in Computer Sci-
ence, Springer, 2014, pp. 241–257. URL: https://doi.org/10.1007/978-3-319-08615-6_18.
doi:10.1007/978-3-319-08615-6_18.

http://dl.acm.org/citation.cfm?id=2615818
http://dl.acm.org/citation.cfm?id=2615818
https://doi.org/10.1007/978-3-030-03098-8_21
https://doi.org/10.1007/978-3-030-03098-8_21
http://dx.doi.org/10.1007/978-3-030-03098-8_21
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.1023/A:1004748624537
http://dx.doi.org/10.1023/A:1004748624537
https://doi.org/10.1007/s10458-005-3079-0
http://dx.doi.org/10.1007/s10458-005-3079-0
http://dx.doi.org/10.1007/s10458-005-3079-0
https://doi.org/10.1080/19462160903564592
http://dx.doi.org/10.1080/19462160903564592
https://doi.org/10.1016/j.artint.2012.10.008
http://dx.doi.org/10.1016/j.artint.2012.10.008
http://dx.doi.org/10.1016/j.artint.2012.10.008
https://doi.org/10.3233/978-1-61499-436-7-209
http://dx.doi.org/10.3233/978-1-61499-436-7-209
http://dx.doi.org/10.3233/978-1-61499-436-7-209
https://doi.org/10.1080/19462166.2013.869766
http://dx.doi.org/10.1080/19462166.2013.869766
https://doi.org/10.1080/11663081.2018.1487242
http://dx.doi.org/10.1080/11663081.2018.1487242
https://doi.org/10.1007/978-3-319-08615-6_18
http://dx.doi.org/10.1007/978-3-319-08615-6_18

[18] B. Liao, M. Slavkovik, L. W. N. van der Torre, Building jiminy cricket: An architecture for
moral agreements among stakeholders, CoRR abs/1812.04741 (2018). URL: http://arxiv.org/
abs/1812.04741. arXiv:1812.04741.

[19] B. Liao, P. Pardo, M. Slavkovik, L. van der Torre, The jiminy advisor: Moral agreements
among stakeholders based on norms and argumentation, J. Artif. Intell. Res. 77 (2023)
737–792. URL: https://doi.org/10.1613/jair.1.14368. doi:10.1613/jair.1.14368.

[20] K. Cyras, X. Fan, C. Schulz, F. Toni, Assumption-based argumentation: Disputes, explana-
tions, preferences, FLAP 4 (2017). URL: http://www.collegepublications.co.uk/downloads/
ifcolog00017.pdf.

[21] T. Lehtonen, J. P. Wallner, M. Järvisalo, Declarative algorithms and complexity results
for assumption-based argumentation, J. Artif. Intell. Res. 71 (2021) 265–318. URL: https:
//doi.org/10.1613/jair.1.12479. doi:10.1613/jair.1.12479.

[22] J. W. Forrester, Gentle murder, or the adverbial samaritan, The Journal of Philosophy 81
(1984) 193–197.

[23] G. H. von Wright, Deontic logic, Mind 60 (1951) 1–15. doi:10.1093/mind/lx.237.1.
[24] P. M. Dung, P. M. Thang, Modular argumentation for modelling legal doctrines in com-

mon law of contract, Artif. Intell. Law 17 (2009) 167–182. URL: https://doi.org/10.1007/
s10506-009-9076-x. doi:10.1007/s10506-009-9076-x.

[25] R. Gonçalves, J. J. Alferes, An embedding of input-output logic in deontic logic programs,
in: T. Ågotnes, J. M. Broersen, D. Elgesem (Eds.), Deontic Logic in Computer Science - 11th
International Conference, DEON 2012, Bergen, Norway, July 16-18, 2012. Proceedings,
volume 7393 of Lecture Notes in Computer Science, Springer, 2012, pp. 61–75. URL: https:
//doi.org/10.1007/978-3-642-31570-1_5. doi:10.1007/978-3-642-31570-1_5.

[26] A. Rapberger, M. Ulbricht, J. P. Wallner, Argumentation frameworks induced by
assumption-based argumentation: Relating size and complexity, in: O. Arieli, G. Casini,
L. Giordano (Eds.), Proceedings of the 20th International Workshop on Non-Monotonic
Reasoning, NMR 2022, Part of the Federated Logic Conference (FLoC 2022), Haifa, Israel,
August 7-9, 2022, volume 3197 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp.
92–103. URL: https://ceur-ws.org/Vol-3197/paper9.pdf.

http://arxiv.org/abs/1812.04741
http://arxiv.org/abs/1812.04741
http://arxiv.org/abs/1812.04741
https://doi.org/10.1613/jair.1.14368
http://dx.doi.org/10.1613/jair.1.14368
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
https://doi.org/10.1613/jair.1.12479
https://doi.org/10.1613/jair.1.12479
http://dx.doi.org/10.1613/jair.1.12479
http://dx.doi.org/10.1093/mind/lx.237.1
https://doi.org/10.1007/s10506-009-9076-x
https://doi.org/10.1007/s10506-009-9076-x
http://dx.doi.org/10.1007/s10506-009-9076-x
https://doi.org/10.1007/978-3-642-31570-1_5
https://doi.org/10.1007/978-3-642-31570-1_5
http://dx.doi.org/10.1007/978-3-642-31570-1_5
https://ceur-ws.org/Vol-3197/paper9.pdf

	1 Introduction
	2 Background
	3 ABA Frameworks with Multiple Rule-Sets
	4 Investigating Constraints in ABA
	4.1 Equivalence under Derivation Function
	4.2 Encoding constrained n-ABA in ASP
	4.3 Non-flat ABA for Normative Reasoning

	5 Concluding Remarks

