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Abstract
Combinatorial game theory in the form of two-player games has played an important historical role in

formal argumentation, logic programming, nonmonotonic reasoning, database query languages, and

more recently in data provenance. While such game-based approaches played an integral role early

on in formal argumentation, in the study of expressiveness of query languages, and in the quest to

find well-behaved semantics for logic programs with recursion through negation, these areas seem

to have largely separated from their historical connections, following their own, separate paths with

distinct concepts, terminologies, and research results. We touch upon this history and highlight how

the use of a single, unstratified logic rule continues to underly many of the approaches developed today

within these different communities. We argue that a fruitful line of research exists by reconnecting the

communities, in a kind of “family reunion”, where results from one community may be transferable to

the other (mutatis mutandis), leading to new insights in the neighboring fields. We describe some initial

correspondences and connections and invite the community to join our exploration of additional ones.
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1. Introduction

Argumentation frameworks consist of abstract arguments and a binary attacks relation, specify-

ing how arguments may defeat each other. Given an argumentation framework, a fundamental

problem is to find admissible subsets of arguments, i.e., which (i) don’t attack each other, and

(ii) which are accepted, i.e., they defend themselves against attacks from outside arguments.

Arguments attacked by an admissible subset (so-called extensions) are said to be defeated.

In Dung’s seminal work on argumentation frameworks [1], the following two-line logic

program (𝑃AF2) is introduced as an “argument processing unit” (APU), i.e., a “general method for
generating meta-interpreters for argumentation systems”:

defeated(𝑋)← attacks(𝑌,𝑋), accepted(𝑌 ).

accepted(𝑋)←¬ defeated(𝑋).
(𝑃AF2)

The first rule states that an argument 𝑋 is defeated in an argumentation framework if there

exists an argument 𝑌 that attacks 𝑋 and is accepted. The second rule states that an argument is

7th Workshop on Advances in Argumentation in Artificial Intelligence (AI3), November 06–09, 2023, Rome, Italy
*
Corresponding author.

$ ludaesch@illinois.edu (B. Ludäscher); bowers@gonzaga.edu (S. Bowers); yilinx2@illinois.edu (Y. Xia)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ludaesch@illinois.edu
mailto:bowers@gonzaga.edu
mailto:yilinx2@illinois.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


accepted if it is not defeated. Dung’s work spawned a large body of research, including families

of models, semantics, tools, and applications of abstract and structured argumentation [2, 3, 4].

Note that the body of the second rule in 𝑃AF2 can be placed directly inside the first rule,

resulting in a single-rule APU that can be used to compute the defeated arguments (and thus,

through complementation, also the accepted arguments):

defeated(𝑋)← attacks(𝑌,𝑋),¬ defeated(𝑌 ). (𝑃AF)

Now compare the single-rule program 𝑃AF with the following single-rule program 𝑃WM:

win(𝑋)← move(𝑋,𝑌 ),¬win(𝑌 ). (𝑃WM)

We can view 𝑃WM as a game processing unit (GPU) that specifies the solutions of a two-player

game: A position 𝑥 in the game is winning (short: a win) if there exists a move to a position 𝑦
such that the new position 𝑦 is lost for the opponent.

1
In particular, this means that a position

𝑥 is lost, if there are no more outgoing moves left to play.
2

Both logic rules can be seen as close relatives, even “identical twins”, because they can be

understood as syntactic variants of each other, i.e., one can obtain one rule from the other via a

straightforward renaming of relation symbols. For a database theoretician this means that both

rules specify the same query (i.e., the same input-output mapping) up to renaming, as long as

the same semantics is applied (e.g., the three-valued well-founded model semantics [5]).

Going Separate Ways. Over the years, both logic rules and the argumentation-theoretic

and game-theoretic frameworks they represent have received considerable attention from their

respective communities. Somewhat surprisingly, however, there seems to be little or no work

that discusses these rules together and spans across the different communities.

Consider, e.g., the second rule (𝑃WM): It has played a key role in the logic programming,

nonmonotonic reasoning, and database communities in their quest to find the “right” semantics

for unstratified rules with recursion through negation. Recall that a stratified logic program 𝑃
can use both recursion and negation, but only in a “layered” manner, i.e., where the rule-goal

graph of 𝑃 must not contain negative cycles [6]. For unstratified programs such as 𝑃AF and

𝑃WM, two declarative semantics emerged as the most popular in the 1990s: The more expressive

stable-model semantics [7] (used in answer set programming) and the more skeptical well-founded
semantics [5]. For the latter, the win-move rule 𝑃WM has been the poster-child example because

its unique three-valued model assigns True, False, and Undefined to win(𝑥) iff a position 𝑥 in the

given game graph is won, lost, or drawn, respectively. In other words, 𝑃WM solves games and

thus indeed is a GPU (game processing unit) when evaluated under the well-founded semantics.

Similarly, the twin rule 𝑃AF is an APU that solves argumentation frameworks: Its well-

founded model yields the grounded extension (or grounded labeling) [8, 9] where an argument 𝑥
is defeated, accepted, or undecided iff defeated(𝑥) is True, False, and Undefined, respectively.

Although close connections between formal argumentation on the one hand, and logic

programming, database theory, and game-theory on the other have been known for a long

1

In draw-free games the complement of winning is losing; otherwise the complement of winning is losing or drawing.

2

For example, a checkmate position in chess!



time [1, 9, 10, 2], the overlap and cross-fertilization between them appears to be smaller than

one might expect. In particular, we could not find works that discuss 𝑃AF and 𝑃WM together,

despite (or maybe because of) the fact that these rules can be viewed as syntactic variants of

the same underlying query.

In database theory, the win-move query expressed by 𝑃WM has also been used to study the

expressive power of query languages [11, 12] and to develop a unified provenance model that can

explain the presence and absence of query answers [13, 14]. The game-theoretic notions and

concepts developed in these and other database and game-theory papers [15, 16] seem to carry

over to argumentation theory and may lead to new insights and results in formal argumentation.

Conversely, related notions studied in argumentation theory may carry over to database theory

and applications thereof.

Contributions and Game Plan. The purpose of this paper is to foster a “family reunion” of

sorts with the goal of developing new insights and findings through cross-fertilization, i.e., by

transferring concepts, ideas, and results between communities. Our game plan is as follows:

• In Section 2 we recall some standard definitions of argumentation frameworks and intro-

duce basics notions from two-player games, i.e., the win-move game defined by 𝑃WM.

• We kick off the family reunion in Section 3 by describing the nature of the correspondence

between the two rules 𝑃AF and 𝑃WM and their associated semantics: We show how the

grounded extension of an argumentation framework AF corresponds to the well-founded

model of an associated win-move game, the Defeatist’s Game DG. In that game, the attack
edges of AF are reversed and interpreted as defeated_by moves in DG. We illustrate this

correspondence with a running example.

• We then introduce another “lost sibling” of the family, i.e., a rule 𝑃ker that can be used to

compute the graph kernels of the move-relation. This gives rise to another correspondence,

this time between the stable extensions of AF (which coincide with the stable models of

𝑃AF) and the graph kernels of DG, which one obtains from the stable models of 𝑃ker.

• The correspondence to graph kernels allows us to transfer an important Decomposition
Theorem [15] from game-theory to argumentation frameworks. It turns out that the

well-founded model of 𝑃WM yields this decomposition—and thus further insights into an

argumentation framework AF—“for free”.

• In Section 4 we introduce query evaluation games, which are a means to reduce query

evaluation in databases to solving games. We also briefly compare this to related notions

in argumentation, e.g., assumption-based argumentation.

• Finally, in Section 5 we discuss how game-based notions of data provenance [13] lend

themselves to reinterpretation in argumentation frameworks and thus to new insights

and applications in AF. In particular the provenance structure of a solved game graph

consists of different move types, i.e., winning moves, delaying moves, and bad moves. This

edge structure seems to be unexplored in argumentation frameworks so far and thus

constitutes another example of cross-fertilization between the different communities.



2. Preliminaries

This section provides the basic graph-theoretic definitions and results of abstract argumentation

frameworks and win-move games. The definitions are based on those given in [17, 1] and

[13, 12], respectively. In this section, we also introduce a running example of an argumentation

framework and a win-move game, shown in Figure 1.

Argumentation Frameworks. An argumentation framework AF is a finite, directed graph

𝐺AF = (𝑉,𝐸), whose vertices 𝑉 denote atomic arguments and whose edges 𝐸 ⊆ 𝑉 × 𝑉
denote a binary attacks relation. An edge (𝑥, 𝑦) ∈ 𝐸 states that argument 𝑥 attacks argument

𝑦. An example AF is shown in Figure 1a, consisting of arguments a, b, c, . . . , and their attack

relation attacks(b, a), attacks(c, a), . . . A subset 𝑆 ⊆ 𝑉 of acceptable arguments is called an

extension, provided 𝑆 satisfies certain conditions. An extension 𝑆 is said to attack an argument

𝑥 if an argument 𝑦 ∈ 𝑆 attacks 𝑥. The attackers of 𝑆 are the arguments that attack at least one

argument in 𝑆. An extension 𝑆 is conflict-free if no argument in 𝑆 attacks another argument

in 𝑆. Conversely, an extension 𝑆 defends an argument 𝑥 if it attacks all attackers of 𝑥. The

arguments defended by 𝑆 are those that 𝑆 defends; this is often described via the characteristic
function of an argumentation framework.

Dung [1] and others have defined a variety of classes of extensions each of which are referred

to as different extension semantics. In the following, we focus on two popular extension semantics,

i.e., the skeptical grounded extension and the more expressive stable extensions. While every AF
has a unique grounded extension (corresponding to the unique 3-valued well-founded model

of 𝑃AF), it may have many stable extensions (including none). An extension 𝑆 ⊆ 𝑉 is called

stable if it is conflict-free and attacks every argument not in 𝑆 (i.e., all nodes in 𝑉 ∖ 𝑆). It was

shown by Dung [1] that stable extensions correspond to the stable models of logic programs,

and similarly, that the grounded extension corresponds to the well-founded model.

Similar to an extension, a (reinstatement) labeling [17] assigns each argument in an AF
one of three labels, in, out, or undec, such that an argument is labeled in if all its attackers

are labeled out, an argument is labeled out if it has an attacker that is labeled in, and an

argument is labeled undec otherwise. Caminada showed [17] that a labeling without any undec
arguments corresponds to a stable extension, and similarly, a labeling that maximizes undec
arguments corresponds to the grounded extension. Figure 1b shows the grounded extension of

the argumentation framework in Figure 1a using colors for labels (blue for in, orange for out,

yellow for undec). Similarly, Figure 1c shows one of two possible stable extensions of Figure 1a

using the same coloring scheme. Note that accepted and defeated correspond to labels in and

out, respectively.

In [1], Dung noted that logic programming corresponds to a form of argumentation and vice

versa: An AF can be evaluated via the logic program (meta-interpreter) 𝑃AF. In particular, he

shows that 𝑆 is a stable extension of an AF iff 𝑆 corresponds to a stable model of 𝑃AF. Similarly,

𝑆 is a grounded extension of an AF iff 𝑆 corresponds to the well-founded model of 𝑃AF.

Win-Move Games. A (win-move) game can be defined as a graph 𝐺WM = (𝑉,𝐸) such that

two players move alternately between a finite set of positions 𝑉 along move edges 𝐸 ⊆ 𝑉 × 𝑉 .

Each position 𝑝0 ∈ 𝑉 defines a game over the graph 𝐺WM when starting from position 𝑝0.
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(d) A win-move game
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(e) The well-founded model of (d)
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(f) A stable model of (d)

Figure 1: (a) The digraph in the upper left defines an argumentation framework 𝐺AF = (𝑉,𝐸) with
arguments 𝑉 and attacks 𝐸. (b) Its grounded extension is shown in the upper middle using a color-based
labeling where “in” arguments are blue, “out” arguments are orange, and “undec” arguments are
yellow. (c) 𝐺AF has two stable extensions, one of which is shown in the upper right. (d) The graph in the
lower left defines a win-move game 𝐺WM = (𝑉,𝐸) with moves 𝐸 between positions 𝑉 . (e) The solved
game under the well-founded semantics is shown in the lower middle using a color-labeling where won
positions are green, lost positions are red, and drawn positions are yellow. (f) 𝐺WM has two stable models
of rule 𝑃WM, one of which is shown in the lower right.

A play 𝜋 = 𝑝0 → 𝑝1 → 𝑝2 → · · · is a finite or infinite sequence of edges from 𝑉 where for

all 𝑖 = 0, 1, 2, . . . , the edge 𝑝𝑖 → 𝑝𝑖+1 is a move (𝑝𝑖, 𝑝𝑖+1) ∈ 𝐸. A play 𝜋 is complete if it is

infinite or if it ends after 𝑛 = |𝜋| moves in a sink of the game graph. The player who cannot

move loses the play 𝜋, while the previous player who made the last move wins 𝜋. A play 𝜋 of

infinite length is a draw, which in finite game graphs 𝐺WM means that 𝐸 must have a cycle.

Figure 1d shows an example game graph (similar but different to the AF graph in Figure 1a).

Assume e is the start position for Player I. In the play 𝜋1 = e→ d→ f , Player I moves to d and

Player II moves to f . Since Player I cannot move from f , Player II wins. However, in 𝜋2 = e→ h,

Player II cannot move, so 𝜋2 is won for Player I. Thus, from position e, the “best” move is e→ h,

whereas the other moves are “bad”: e → d loses, while e → m only draws (if Player II sticks



to m → n). To determine the true value of a position 𝑝 ∈ 𝑉 , bad moves are not considered.

Instead, only plays are considered where both players play optimally (or at least “good enough”)

so that the best possible outcome is guaranteed for both.

The solution of a game consists of assigning one of the labels win, lose, or draw to each

position in the game graph 𝐺WM. Specifically, a position 𝑝 ∈ 𝑉 is assigned the label win if

Player I has a winning strategy, i.e., can force a win, no matter how Player II moves. Conversely,

𝑝 is labeled lose, if Player II can force a win, no matter how Player I moves. If neither player

can force a win, a position is a draw. Figure 1e shows the labeled solution for the game graph of

Figure 1d where colors are used for labels (green ∼ win, red ∼ lose, yellow ∼ draw). A game

can be solved by evaluating the rule 𝑃WM from Section 1 under the well-founded semantics.

Similar to the AF in Figure 1a, the win-move rule under the stable-model semantics results in

two stable models. However, the interpretation of the stable models (e.g., Fig. 1f) is less intuitive

or natural for win-move games, and it is the well-founded model of 𝑃WM that correctly identifies

all won, lost, and drawn positions.

3. A Family Reunion: Argumentation, Games, and Kernels

Starting point for our “family reunion” is the observation that the argumentation framework

meta-interpreter
3

given by the single unstratified rule 𝑃AF and the “game engine” (or GPU)

given by 𝑃WM are syntactic variants of each other and thus specify the same query in the sense

of database theory. In particular, this means that for a given logic programming semantics such

as the well-founded or stable semantics, the resulting models of 𝑃AF and 𝑃WM are isomorphic.

One minor twist in this correspondence is that the two different interpretations of a given

graph 𝐺 = (𝑉,𝐸), i.e., either as an argumentation framework 𝐺AF or as a win-move game

𝐺WM have reversed edge directions (cf. Fig. 1): In the argumentation framework in Fig. 1a, e.g.,

the edge b→ a in 𝐸 means that argument b attacks a. Since the argument b has no attackers,

it follows that b is accepted (color-labeled blue in Fig. 1b and Fig. 1c). In the corresponding

win-move graph, however, there is a reversed edge a→ b, i.e., indicating that a player can move

from position a to b in the game. Since there are no further moves possible from b, it follows

that in the canonical game semantics, b is lost (red in Fig. 1e and Fig. 1f).

We can understand this edge reversal better by rewriting the APU rule 𝑃AF as follows:

defeated(𝑋)← attacked_by(𝑋,𝑌 ),¬ defeated(𝑌 ). (𝑃AF′ )

Here we replaced the “forward attack” relation attacks(𝑌,𝑋) (cf. the three AF graphs in the

top row of Fig. 1) by a “backward reasoning” relation attacked_by(𝑋,𝑌 ) analogously to the

game relation move(𝑋,𝑌 ) in 𝑃WM (see the three game graphs in the bottom row of Fig. 1).

With this renaming in place, the following correspondences between the well-founded model

of 𝑃AF′ and 𝑃WM are immediate: Arguments in the AF correspond to positions in the game.

The reverse of the attacks relation, attacks−1(𝑌,𝑋) is the relation attacked_by(𝑋,𝑌 ) and

corresponds to move(𝑋,𝑌 ), i.e., the moves of the game.

3

or argument processing unit (APU) as Dung [1] calls it



The Defeatist’s Game. Despite the natural correspondence between grounded extensions of

argumentation frameworks and solved win-move games in Fig. 1, this isomorphism under the

well-founded semantics can appear unintuitive at first: How is it that accepted arguments (e.g.,

the blue nodes b and c in Fig. 1b) correspond to lost positions (the red nodes b and c in Fig. 1e)

in the game, while defeated arguments (e.g., the orange nodes d and e in Fig. 1b) correspond to

won positions (the green nodes in Fig. 1e)?

The answer is that the win-move game 𝐺WM we are playing to solve an argumentation

framework is in fact a “defeatist’s game” 𝐺DG: In this game, when Player I (the defeatist) starts

to move from a position (e.g., a in Fig. 1), the claim made for this position is: a is defeated! The

opponent, Player II, begs to differ and tries to demonstrate that argument a is accepted. By

design, the defeatist’s game DG from a position 𝑥 is won (for Player I) if 𝑥 is defeated in the

grounded extension. Similarly it is lost (for Player I) from position 𝑥, i.e., argument 𝑥 is accepted,

if Player II has a winning strategy, i.e., can force a win. Finally, a drawn position 𝑥 in this game

means that argument 𝑥 is undecided in the grounded semantics and no player can force a win.

What is gained by viewing an argumentation framework as a game? After all, game-theoretic

treatments have been part of formal argumentation from the very beginning [1]. First, it

appears that our particular rendering, i.e., the defeatist’s game 𝐺DG hasn’t been considered

before, despite the fact that it is the most immediate path from AF to game theory since both

formalizations are equivalent, as sketched above. Therefore, concepts and results from game

theory can be directly applied to argumentation frameworks. One such natural notion, discussed

below, is the length of a position; another one is the provenance structure of a game, which can

be obtained from an (implied) edge coloring of solved games (cf. Fig. 4 and Fig. 5).

Digraph Kernels: Another Lost Twin Rejoins. One of the earliest mathematical tools

devised to study games are kernels of directed graphs [18, 19, 15, 20, 21]. As it turns out, by

studying kernels of game graphs, additional results for argumentation frameworks can be

(re-)discovered, further strengthening the family ties between the different communities. For

example, the concepts and results about kernels described by Fraenkel in [15] demonstrate that

at the core, the three formalisms (argumentation frameworks, win-move games, and digraph

kernels) are intimately related and based on a common underlying graph-theoretic machinery.

A kernel of a directed graph 𝐺 = (𝑉,𝐸) is a subset 𝐾 ⊆ 𝑉 that is both independent and

dominating [15]. Here, independent means that no edges exists between vertices in 𝐾 , and

dominating means that every vertex in 𝑉 ∖𝐾 has a follower (successor) in 𝐾 , i.e., an edge into

the kernel 𝐾 . If we view 𝐺 as an argumentation framework 𝐺AF, but with edges representing

the reversed attacked_by relation (as in Fig. 1d), then each kernel 𝐾 corresponds to a stable
extension of 𝐺AF. Similarly, if 𝐺 is viewed as a win-move game 𝐺WM (again Fig. 1d), then 𝐾 is

the set of lost nodes in a stable model of 𝑃WM (e.g., Fig. 1f depicts one such kernel).

The following unstratified rules 𝑃ker2 state that if there is an edge from 𝑥 to 𝑦, where 𝑦 is in

the kernel ker, then 𝑥 cannot be in the kernel but instead is in the kernel complement kerc:

kerc(𝑋)← edge(𝑋,𝑌 ), ker(𝑌 ).

ker(𝑋)←¬ kerc(𝑋).
(𝑃ker2)

As in the case of Dung’s APU rules, we can “plug in” the body of the second rule into the first,

to obtain another syntactic variant of 𝑃AF and 𝑃WM as follows:



kerc(𝑋)← edge(𝑋,𝑌 ),¬kerc(𝑌 ). (𝑃ker)

It is easy to see that the stable models of this program can be used to compute all kernels of a

digraph: For a given stable model, the kernel consists of all vertices that are not in the kernel

complement kerc. Note further that 𝑃ker is a syntactic variant of 𝑃WM (and thus also of 𝑃AF):

win(𝑋)← move(𝑋,𝑌 ),¬win(𝑌 ). (𝑃WM)

In other words, the winning positions of a stable model of 𝑃WM (green in Fig. 1) are precisely

the nodes not in the graph kernel of the move relation, while the lost positions (red in Fig. 1)

are the nodes in the kernel. Summarizing, we have three syntactic variants 𝑃AF′ , 𝑃WM, and

𝑃ker of a single underlying query “q(𝑋) ← e(𝑋,𝑌 ),¬q(𝑌 )” that encapsulates the common

core of all three frameworks: Using the well-founded semantics, we can solve win-move games

and compute grounded extensions. Via stable models, we can compute the stable extensions

of argumentation frameworks and the kernels of digraphs. There are other results from game

theory that carry over to argumentation frameworks as well, as shown next.

A Decomposition Theorem. In [15], Fraenkel proves various results regarding structural

properties of digraphs kernels. This enables another route to transfer results and insights from

games and kernel theory to argumentation frameworks. In [15], Fraenkel shows that:

(i) Any digraph 𝐺 = (𝑉,𝐸) can be partitioned in 𝑂(|𝐸|) time into subsets 𝑆1, 𝑆2, 𝑆3 ⊆ 𝑉
such that 𝑆1 lies in all of the kernels (= lost in the well-founded model of 𝑃WM), 𝑆2 lies

in the complements of all the kernels (= won in the well-founded model), and on 𝑆3 the

kernels may be non-unique (= drawn in the well-founded model of 𝑃WM)—e.g., see Fig. 1e;

(ii) 𝐺 can be decomposed into two subgraphs: 𝐺1 with vertex set 𝑆1∪𝑆2, which has a unique

kernel (= the won and lost positions of the well-founded model), and 𝐺2 with vertex set

𝑆3 (the drawn positions), such that any kernel 𝐾 of 𝐺 is the union of the unique kernel

of 𝐺1 and some kernel of 𝐺2 (if it exists);
4

and . . .

(iii) . . . since 𝐺1 is unique, the total number of kernels in 𝐺 (= number of stable extensions

of 𝑃AF) is determined by the number of kernels of 𝐺2.

These and other results [15, 19, 16] reinforce the fundamental connections that exist between

win-move games and argumentation frameworks, e.g., via well-founded and stable models.

These connections may also shed new light on the intricate connections between forms of

skeptical and credulous acceptance, and may lead to new, efficient inference algorithms.

4. On Query Evaluation Games and Structured Argumentation

In connecting logic programming and AF, Dung [1] states that an argumentation system consists

of two essential components: an argument generation unit (AGU) to generate arguments and their

4

In Fig. 1e, the 𝐺1 nodes are red and green, while the 𝐺2 nodes are yellow.



attack relationships (e.g., from a logic program), and an APU (𝑃AF) that finds the acceptability

of arguments produced by the AGU. We describe prior work [12, 13] (similar to an AGU) on

translating database queries into graphs in a game normal form. We also briefly highlight

similarities of this translation with assumption-based approaches [22] and with approaches for

showing correspondences between logic programming and argumentation semantics [10].

Games vs Stratified Rules. During the late 1980s and through the 1990s, the logic-programming

and non-monotonic reasoning community developed and studied a number of proposals for

a canonical semantics for rules with recursion through negation. Proponents of the stratified

semantics [6] simply ruled out such unstratified programs. An earlier paper [23] claimed that

stratified rules express all of Fixpoint [24], which is a large class of database queries with

PTIME data complexity. As shown in [11], however, the Fixpoint query that computes the

game positions for which a player has a winning strategy is not expressible by stratified rules,

therefore demonstrating that stratified Datalog is strictly less expressive than Fixpoint.

Win-Move: A Universal Query Engine. The rule 𝑃WM turns out to also be a universal query
engine in that every 𝑛-ary Fixpoint query with answer 𝑄(𝐷) of a query 𝑄 over database 𝐷
can be expressed in game normal form 𝑃WM: win(𝑋̄)← move(𝑋̄, 𝑌 ),¬win(𝑌 ), where 𝑋̄ and

𝑌 are 𝑛-tuples of variables, 𝑃WM is the only recursive rule, and move(𝑋̄, 𝑌 ) is definable via a

quantifier-free formula over the input database 𝐷 [12]. Positions of the game correspond to

(ground-instantiated) rules, head atoms, and body literals, and playing this query evaluation

game mimics a form of SLD(NF) resolution. Fig. 2 summarizes the translation
5
: Player I tries to

show that an atom 𝐴 ∈ 𝑄(𝐷) is in the answer by selecting a rule 𝑅 that derives 𝐴. Player II

then tries to refute this by selecting a subgoal 𝐴′
of 𝑅 that is not satisfied, after which Player I

tries to prove 𝐴′
and so on. To further illustrate the basic idea of this game, let

𝑟1𝑋 : q(𝑋)← s(𝑋),¬t(𝑋).

𝑟2 : s(a).

be two rules consisting of a query q and a single fact s(a). Assume Player I wants to show that

q(a) is an answer and so starts the query game by moving from position q(a) to the rule position

𝑟1a . Player II then selects a subgoal of 𝑟1a , either s(a) or ¬t(a), to refute. Assuming Player II

picks s(a) to refute, Player I then selects the rule 𝑟2, denoting the fact s(a), ending the game

immediately, as there are no additional moves from 𝑟2 (facts have an empty rule body). Thus

Player II loses and Player I wins. If Player II had instead chosen to refute ¬t(a), Player I could

then have moved to position t(a) (forcing Player II to justify t(a)). Since t(a) is not supported

by any rules, this play also ends, and again Player I wins. Since Player I can force a win, no

matter how Player II moves, q(a) is an answer to the query.

Fig. 3 gives another example of the translation to game form for a propositional logic program,

similar to the examples used for translating logic programs to argumentation frameworks in

[22, 10]. The program 𝑃 in Fig. 3a consists of four rules labeled 𝑟1 through 𝑟4. Using the

translation in Fig. 2, the game for 𝑃 is shown as a solved game graph in Fig. 3b. Note that under

the well-founded semantics, 𝑃 has a single model where 𝑎 and 𝑏 are Undefined, 𝑐 is True, and

𝑑 is False. This model exactly corresponds to the solved game graph in Fig. 3b where 𝑐 is a

5

This is a simplified version of the translation given in [13].



𝐴

𝑅 ¬𝐴

I: ∃

II

I⇌II

II

(a) Translation pattern

Move Claim made by making the move

𝐴
∃
⇝ 𝑅 “Atom 𝐴 holds because of rule 𝑅!”

𝑅⇝ 𝐴 “Not satisfied because a subgoal 𝐴 is false!”
𝑅⇝ ¬𝐴 “Not satisfied because a subgoal ¬𝐴 is false!”
¬𝐴⇝ 𝐴 “Not true, subgoal 𝐴 is false! (Prove me wrong)”

(b) Claims made with a move

Figure 2: (a) Move types of the query evaluation game. (b) The claims made when playing the game.
Moving along an edge, a player aims to verify a claim, thereby refuting the opponent. Initially, Player I
is a verifier, trying to prove 𝐴, while Player II tries to spoil this and refute Player I.

winning position, 𝑑 is a losing position, and both 𝑎 and 𝑏 are drawn. The solved game graph

(via position labels and move edges) also contains explanations for the truth-values of atoms

relative to the rules of a program. For instance, 𝑐 is true (winning) because it is derived from

rule 𝑟4 (i.e., there is a move from position 𝑐 to position 𝑟4), whose only subgoal ¬𝑑 holds (i.e., 𝑑
is false) since 𝑑 is not supported by any rules.

Similarities to LP⇝AF Translations. One of the commonly used transformations from logic

programs to argumentation frameworks [22, 10] shares some similarities with the query-to-game

translation above. In these transformations, an argumentation framework for a propositional

logic program consists of arguments representing the rules of the program such that an argument

𝐴 attacks an argument 𝐵 if 𝐴’s corresponding rule derives an atom that contradicts a premise

of 𝐵. The rules of Fig. 3a would be translated to the following AF attacks graph:

𝑟2 𝑟3 𝑟1 𝑟4

In [10], an argument is associated with each rule’s conclusion (e.g., 𝑎 is the conclusion of rule

𝑟1), and a procedure is given that relates the conclusions associated with an extension of the

argumentation framework under a given semantics to the set of answers of the corresponding

logic program under an equivalent semantics (e.g., grounded extensions with well-founded

semantics, and stable extensions with stable models). The grounded extension of the AF above,

using the approach in [10], yields the well-founded model of 𝑃 . Similar approaches have been

developed, e.g., in [22] for assumption-based argumentation frameworks.

5. Provenance and Explanations: Solved Games to the Rescue!

Provenance-based annotations can be added to game graphs [13] and then help to explain the

value of positions. We show how these annotations can be adopted directly to explain why

arguments are accepted or defeated in grounded AF extensions.

The Length of Plays. Consider the solved game from Fig. 1e, which is shown with additional

annotations in Fig. 4a (explained below). Games can be solved in stages. Positions b, f , and h are

immediately lost (red nodes): No moves are possible from sink nodes. Next we can infer that



𝑟1 : 𝑎← ¬𝑐,¬𝑑, 𝑏
𝑟2 : 𝑎← ¬𝑏
𝑟3 : 𝑏← ¬𝑎
𝑟4 : 𝑐← ¬𝑑

(a) Example propositional program 𝑃 .

𝑎

𝑟1

¬𝑏𝑏

𝑟2

¬𝑎

𝑟3

¬𝑐

𝑐

𝑟4

¬𝑑

𝑑

(b) Corresponding solved win-move game of 𝑃 .

Figure 3: (a) Example of a simple propositional program 𝑃 . (b) The corresponding translation of 𝑃 to a
solved win-move graph according to the win-move normal form of Fig. 2.

positions that have an outgoing move to a lost position (for the opponent) are definitely won

(green). Based on our initial determination that b, f , and h are lost, it then follows that a, d, and

e are won. What is the status of the remaining positions? The status of c is now determined

since all outgoing moves from c definitely end in a node that is won for the opponent (d and e
are already green), so c is objectively lost. Solving a game can thus proceed by iterating the

following two labeling rules in stages:
6

• Position 𝑥 is won (green) if ∃ move 𝑥→ 𝑦 and position 𝑦 is known to be lost (red)

• Position 𝑥 is lost (red) if ∀ moves 𝑥→ 𝑦, position 𝑦 is known to be won (green)

With each position 𝑥 we can associate its length [13], i.e., the stage number when its label first

became known. Similarly, we can associate a length with each move, indicating at what stage

its type (i.e., edge color) became known. In Fig. 4a, edges into (red) sinks are winning moves

(colored green) and labeled with length = 1, so a, d, e and those edges to sink nodes all have

length = 1. In the next stage, all successors of c are won, so c itself must be lost, and its length

is 1 + the maximal length of any of its succcessors. Similarly, for won 𝑥, length(𝑥) = 1 + the

minimal length of any lost successor, etc. After a fixpoint is reached, all remaining unlabeled

nodes correspond to drawn positions (colored yellow). We set length =∞ for drawn positions,

since neither player can force a win, but both can avoid losing by repeating moves indefinitely.

The length ℓ of an edge 𝑥
ℓ→𝑦 indicates how quickly a player can force a win, or how long a

player can delay a loss: In Fig. 4a that position a can be won in as few as one move (to position

b), whereas all moves from c delay for only two moves. Similarly, while there is a loop between

d and g, position g is lost in only two moves.

6

This method corresponds to the alternating fixpoint procedure [25] and to Algorithm 6.1 for computing the grounded
labeling of an argumentation framework in [9].
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(a) The solved win-move game with move-edge
lengths and corresponding (colored) edge
types.
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(b) The grounded argumentation framework
with attack-edge lengths and correspond-
ing (colored) edge types.

Figure 4: (a) The solved game 𝐺WM from Fig. 1e with the length ℓ of an edge 𝑥
ℓ→𝑦 indicating how

quickly one can force a win, or how long one can delay a loss, with that move, together with color-labeled
edges denoting the type of move being made [13]. (b) The grounded extension of 𝐺AF from Fig. 1b with
similar lengths and colors added to attacks edges [26].

Solved Games Explain it All! Solved games have an intriguing property: Node labels (colors)

induce different edge types, which in turn can be used to explain why a position is won, lost,

or drawn, respectively. Fig. 5 shows how edge types are determined from the color-labels of

incident vertices. These types, in turn, induce a downstream provenance (explanation) subgraph
that provides the justification or explanation for the status of any 𝑥 ∈ 𝑉 .

7
The provenance of

position 𝑥 in the solved game is the subgraph reachable from 𝑥 via certain regular path queries
(RPQs), where an RPQ is a regular expression 𝑅 over the labels of an edge-labeled directed graph

𝐺. The answer to an RPQ 𝑅, given a start node 𝑥, is the set of nodes 𝑦 reachable along simple

paths from 𝑥 whose (concatenated) labels match 𝑅. Assuming edges are labeled with their edge-

type colors, the provenance of a won position 𝑥 matches the RPQ 𝑥.green.(red.green)*, lost

positions match 𝑥.(red.green)*, and drawn positions match 𝑥.yellow+
. The following examples

are drawn from Fig. 4a.

• The provenance of e consists of the single path e→ h: e wins because h is lost.

• The provenance of d consists of paths d→ f and d→ g: d wins because f and g are lost.

• The provenance of g consists of the path g→ d→ f: g is lost ultimately because of f .

Interpreting Paths in AF. The correspondence described in Section 3 allows us to apply edge

lengths and typed edges, e.g., by playing the defeatist’s game, directly to grounded AFs. An

7

These explanations are similar in spirit to dialog trees as described in [27].



𝑦 won (W) 𝑦 drawn (D) 𝑦 lost (L)

𝑥 won (W) bad bad g: winning

𝑥 drawn (D) bad y: drawing n/a

𝑥 lost (L) r: delaying n/a n/a
W

 bad Dbad

L winning
bad

 drawing

n/a

  delaying

n/a

  n/a

Figure 5: Depending on node labels, moves 𝑥→ 𝑦 are either winning (green) (W
g
⇝ L), delaying (red)

(L r
⇝ W), or drawing (yellow) (D

y
⇝ D). All other moves are either “bad” (allowing the opponent to

improve the outcome), or cannot exist (n/a) due to the nature of the game: e.g., if 𝑥 is lost, then there
are only delaying moves (i.e., ending in won positions 𝑦 for the opponent) [13].

example of the grounded AF in Fig. 1b is shown with its provenance information in Fig. 4b.

Using this approach, the lengths assigned to attack edges in Fig. 4b correspond to stages of

the alternating fixpoint computation applied to attacked_by edges. Thus, edge lengths have a

similar interpretation in grounded extensions as in win-move graphs in that they represent the

stages in which argument labels become known. Another interpretation of attack-edge lengths

is as follows. The length ℓ of an attack edge 𝑥
ℓ→𝑦 states that argument 𝑥 is the ℓ-th argument

along an argument attack chain, i.e., a path composed of only alternating orange (accepted to

defeated) and blue (defeated to accepted) edges starting from an accepted argument without

any attackers and ending at the last possible defeated argument. Similar to lengths in win-move
games, the path (on the attack chain) leading into 𝑥 is assumed to be the shortest such path.

For instance, in Fig. 4b, argument b is the first argument in the argument attack chain that

terminates at argument a, and thus, the attack edge b → a has the value ℓ = 1. A similar

situation exists for arguments f and h. Argument d is the second argument along the (shortest)

argument attack chain f → d → c → a, and thus, the edge d → c has the value ℓ = 2. Note

that argument g lies on a non-simple argument attack chain where d is the second argument

(hence, ℓ = 2 for the edge d→ g), making g the third argument on the chain (hence, ℓ = 3 for

the edge g → d). Similarly, c is the third argument on two separate argument attack chains

of the same path length, and so ℓ = 3 for the edge c → a. Thus, the notion of edge lengths,

along with argument labels, can help to clarify the role (i.e., a part of the impact) played by each

argument in a grounded argumentation framework.

Explaining Acceptance and Defeat. Similarly to win-move games, an argument’s status in

the grounded extension in Fig. 4b can be explained by an RPQ-definable subgraph. To obtain the

provenance of defeated and accepted arguments, we adjust the RPQ examples by fixing the end

vertex (as opposed to the start vertex) of each RPQ. Assuming edges are labeled with their edge-

type colors, the provenance of a defeated position 𝑥 matches the RPQ orange.(blue.orange)*.𝑥,

accepted positions match (orange.blue)*.𝑥, and drawn positions match yellow+.𝑥. For Fig. 4b:

• The provenance of e consists of the single path h→ e: e is defeated since h is accepted.

• The provenance of d consists of f→ d and g→ d: d is defeated since f and g are accepted.

• The provenance of g consists of f→ d→ g: g is accepted ultimately because of f .



As in Fig. 4a, the edge-types of Fig. 4b filter out non-relevant attacks within the AF to focus

specifcally on those arguments that contribute to acceptance or non-acceptance of an argument.

6. Summary and Conclusion

Games have played an important role in the study of database query languages and in finding

acceptable arguments in argumentation frameworks. While these approaches share a common

history, it appears the communities have largely separated (or possibly haven’t had much

overlap to begin with). The goal of this paper was to demonstrate some of the deep underlying

connections that exist, exemplified by the win-move rule 𝑃WM and its twin-rules
8 𝑃AF and 𝑃ker,

and to use these to reestablish the lost family ties. We believe that a fruitful line of research can

be established by reconnecting the communities and transfering concepts, tools, and results

between them, leading to further cross-fertilization and new insights.

The results from database theory for the query 𝑃WM presented here should look familiar

to researchers in formal argumentation. Our starting point was the straightforward link be-

tween 𝑃AF and 𝑃WM: Twin rules that have their distinct histories and applications in separate

communities, but that haven’t been studied together, at least to the best of our knowledge.

Under the well-founded semantics, the solved win-move game 𝐺WM—with its additional struc-

ture and “built-in” provenance–corresponds to the grounded labeling of an argumentation

framework [17, 9]. The additional provenance structure induced by edge types (“not all edges

are created equal”) [13] and the decomposition results about graph kernels [15] immediately

suggest corresponding structures for argumentation frameworks, both of which appear to be

new results in abstract argumentation.

Finally, we invite feedback and welcome collaboration opportunities on these and similar

questions. An open source demonstration using Jupyter notebooks, including the example from

Fig. 4, is available [28]. We plan to evolve and expand these notebooks as teaching materials

for some of our undergraduate and graduate courses, covering knowledge representation and

reasoning, information modeling, and database theory.
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