CEUR-WS.org/Vol-3546/paperld.pdf

Demonstrating PyArg 2.0

Daphne Odekerken?, AnneMarie Borg’ and Matti Berthold’

'Department of Information and Computing Sciences, Utrecht University, The Netherlands
2National Police Lab Al Netherlands Police, The Netherlands
3ScaDS.AI Dresden/Leipzig, Universitdt Leipzig, Germany

Abstract

We demonstrate the latest release of PyArg, an open-source Python package of implementation algorithms
with a web interface. PyArg provides various argumentation-based functionalities, including evaluation
and visualisation of abstract argumentation frameworks, ASPIC* argumentation theories and assumption-
based argumentation frameworks; explanation algorithms; multiple generators; a learning environment;
implementations of theoretical papers and a showcase of a practical application.

Keywords

argumentation, implementation, visualisation, education

1. Introduction

PyArg is an open-source software implementation in Python that provides practical algorithms
for theoretical problems in various argumentation formalisms and makes (potential) applications
of these algorithms visible in a web interface. PyArg is intended to be a software solution for
researchers within the argumentation community, students who may become part of it, as well
as stakeholders outside the community. Depending on the users’ goals, they can (A) validate and
extend the open-source implementations of argumentation algorithms on GitHub; (B) install
the Python package in one line and use it as a dependency in other Python projects; and/or (C)
explore PyArg’s functionalities in the web interface. PyArg was first presented in [1]. A new
version, with multiple new functionalities, was proposed in [2]. In this paper, we give a brief
overview of PyArg’s functionalities from the front-end and from the back-end.

2. Related work

For an extended overview of software related to computational argumentation, we refer to
[3]. The implementations that are most similar to PyArg are Tweety [4], the Online Argument
Structures Tool (TOAST) [5], Gorgias Cloud [6] and NEXAS [7]. Finally, many algorithms for a
limited set of argumentation-related problems have been submitted to the ICCMA competition®.

7th Workshop on Advances in Argumentation in Artificial Intelligence

Q d.odekerken@uu.nl (D. Odekerken); a.borg@uu.nl (A. Borg); berthold@informatik.uni-leipzig.de (M. Berthold)
& https://webspace.science.uu.nl/~3827887/ (D. Odekerken); https://annemarieborg.nl/ (A. Borg);
https://www.informatik.uni-leipzig.de/~berthold/ (M. Berthold)

@ 0000-0003-0285-0706 (D. Odekerken); 0000-0002-7204-6046 (A. Borg); 0009-0006-9231-5115 (M. Berthold)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

=== CEUR Workshop Proceedings (CEUR-WS.org)

'http://argumentationcompetition.org/

mailto:d.odekerken@uu.nl
mailto:a.borg@uu.nl
mailto:berthold@informatik.uni-leipzig.de
https://webspace.science.uu.nl/~3827887/
https://annemarieborg.nl/
https://www.informatik.uni-leipzig.de/~berthold/
https://orcid.org/0000-0003-0285-0706
https://orcid.org/0000-0002-7204-6046
https://orcid.org/0009-0006-9231-5115
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
http://argumentationcompetition.org/

3. Back-end functionalities

In this section, we describe the functionalities that can be used from the back-end, by
cloning the Python code from GitHub? or installing it from PyPI® using pip install python-
argumentation. Specific usage examples can be found on the documentation website.*

The Python package PyArg currently supports abstract argumentation [8], ASPIC* [9] and
assumption-based argumentation (ABA) [10, 11]: it provides algorithms for evaluating argu-
mentation settings in different semantics [12]. In addition, it has functionality for explaining
the (non-)acceptance of arguments and formulas in abstract argumentation frameworks (AFs)
and ASPIC" argumentation theories [13, 14]. Furthermore, PyArg provides algorithms for
dynamic argumentation problems. In particular, the package contains an implementation of the
approximation algorithm for the stability problem from [15], as well as an inexact but efficient
algorithm for estimating relevance [16] based on the labels from the aforementioned stability
algorithm. Finally, PyArg provides algorithms for realisability in abstract argumentation [17]
and ABA [18], that is: given a semantics and a set of extensions, is there an (assumption-based)
AF that, for the given semantics, has exactly these extensions?

In addition, PyArg provides several generators. For generating ASPIC* argumentation systems,
PyArg uses the “layered” generator from [15, Section 4.2.5]. For abstract AFs, PyArg provides
a basic random generator. Furthermore, PyArg provides various importers and exporters to
convert argumentation settings to various formats.

4. Web interface

In order to demonstrate how PyArg’s algorithms can be applied in various settings, we provide
a web interface.” In this section, we describe each of its five pages.

On the generator pages, users can generate an ASPIC™ argumentation system or abstract
AF, parameterised by specific settings.

For visualisation, the user can choose between abstract argumentation [8], ASPIC" [9]
and ABA [10, 11]. As a first step, the user either chooses a predefined argumentation setting
or gives a specification of a new one. For the abstract AFs, users can provide arguments and
the attacks between them; in the ASPIC™ setting users can provide axioms, ordinary premises
with their preferences, strict rules, defeasible rules with their preferences and a choice in how
to derive an ordering from these preferences; and in the ABA setting, users provide atoms,
rules, assumptions and contraries. Given this input, the corresponding AF is visualised as a
graph. Next, this input is evaluated based on a large variety of extension-based semantics [12].
The extensions of a given semantics are presented as buttons; by clicking on a button, the
corresponding extension is visualised by coloring the graph — see Figure 1. PyArg features
both a regular mode (in which arguments in the extension are coloured green, while other
arguments are yellow or red) and a colourblind-friendly mode that uses an adapted colour

*https://github.com/DaphneOdekerken/PyArg
*https://pypi.org/project/python-argumentation/
*https://daphneodekerken.github.io/PyArg/
Shttps://pyarg.npai.science.uu.nl/

https://github.com/DaphneOdekerken/PyArg
https://pypi.org/project/python-argumentation/
https://daphneodekerken.github.io/PyArg/
https://pyarg.npai.science.uu.nl/

Generate ~ Visualise~ Learn~ Algorithms ~ Applications ~ @) colorblind mode

Visualisation of abstract argumentation frameworks
Abstract Argumentation Framework v .

Evaluation ~

Semantics Complete v .\

Evaluation strategy Credulous v

The extension(s): H
{} {D.E} {B.EG}

The accepted argument(s):

8D EG)
Click on the extension/argument buttons to display the corresponding
argument(s) in the graph.

Explanation ~

Figure 1: The visualisation page for abstract AFs.

Generate~ Visualise~ Learn~ Algorithms~ Applications > . Colorblind mode

Practice with argumentation exercises

What would you like to practice?

List all preferred extensions v

Explanation
A preferred extension is a maximal complete extensions (w.r.t. set inclusion).

Generate exercise

Exercise
Consider an abstract argumentation framework AF = (A, R) with A = {A,

B, C, D}and R ={(A, D), (D, A), (B, D), (C, A), (B, A)}. List all preferred ®)
extensions. Use a new line for each set, and represent a set with ad .
arguments X, Y and Z as {X, Y, Z}. ‘ \
X > B~
Vad N
. ®

Figure 2: One of the learning pages, where a user can practice identifying preferred extensions.

palette. For abstract argumentation and ASPIC™, the user can additionally request explanations
for (non-)accepted arguments and formulas [13, 14].

The learning environment is intended for anyone interested in learning computational
argumentation. In this functionality in the web interface, a learner can choose between various
exercises. As the learner starts an exercise, PyArg generates a random abstract AF using its
generators (see Figure 2). The learner then gives the extensions, and PyArg uses its semantics
algorithms for validating the learner’s solutions.

The algorithms pages showcase research on realisability, see Figure 3. The user can input
sets of extensions in the text field. PyArg then computes and displays properties of these
extensions [17]. Depending on these properties and the semantics, it may be possible to
generate a canonical AF with exactly these semantics. If that is the case, the corresponding
semantics button becomes active and the user can generate the canonical AF.

The chat interface (Figure 4) is an application for the algorithms for stability and relevance in
inquiry dialogue. First, the user chooses an ASPIC™ argumentation system, a set of queryables
(e.g. formulas that can be asked in a dialogue), a topic formula for the chat and an initial
knowledge base. PyArg then uses the stability algorithm to find out if it makes sense to ask for
more information - if so, it uses the relevance algorithm for identifying relevant questions.

Generate~ Visualise~ Learn~ Algorithms~ Applications~ . Colorblind mode

Create canonical AFs based on sets of extensions

Enter your set of extensions here

&
{A
{A B}

Properties and semantics

Canonical argumentation framework
AF = (A, D) where A= {A, B, B_{A}} and D = {(B_{A}, B_{A}): (B_{A}, B):
(A BL{AN}.

N

Conflr | g0 -)
Free =
Jem

Admissible @

x o

o % x

Neive x

sage X x

Figure 3: One of the algorithms pages showcasing research on realisability.

Generate~ Visualise~ Learn~ Algorithms~ Applications ~ . Colorblind mode

Argumentation-based inquiry dialogue system

Argumentation system
Try fraud example
Queryables
x| citizen_tried_to_buy
* | citizen_sent_product
x| citizen_received_money

x| screenshot_payment

Upload argumentation system

x| citizen_sent_money

*_citizen_received_product

x_suspicious_url

* | trusted_web_shop

Topic stability status or next question
The topic is not stable yet. Do you know something about
citizen_received_money?

Topic
fraud X v

Knowledge base

[* | citizen_received_product |

Figure 4: The chat interface on the applications page.

5. Conclusion and future work

PyArg combines algorithms for argumentation problems with a web interface, aiming to improve
the connections between theoretical and practical work on argumentation on the one hand,
and inside and outside the community on the other hand. The contributions of this version of
PyArg are mainly focused on the front-end. We are currently working on improving the back-
end performance by calling more efficient algorithms, collaborating with authors of existing
solvers. In addition, we aim to add support for more formalisms. On a final note, we are open
to collaborations and suggestions for additional functionalities, algorithms or other feedback,
which we hope to incorporate in future releases of PyArg.

Acknowledgments

The authors acknowledge the financial support by the Federal Ministry of Education and
Research of Germany and by the Sichsische Staatsministerium fiir Wissenschaft Kultur und
Tourismus in the program Center of Excellence for Al-research "Center for Scalable Data

Analytics and Artificial Intelligence Dresden/Leipzig”, project identification number: ScaDS.AL

References

(1]
(2]
(3]

[17]

(18]

A. Borg, D. Odekerken, PyArg for solving and explaining argumentation in Python:
Demonstration, in: Proceedings of (COMMA-22), 2022, pp. 349-350.

D. Odekerken, A. Borg, M. Berthold, Accessible algorithms for applied argumentation, in:
Proceedings of (Arg&App-23), 2023, pp. 92-98.

F. Cerutti, S. A. Gaggl, M. Thimm, J. Wallner, Foundations of implementations for formal
argumentation, IfCoLog Journal of Logics and their Applications 4 (2017) 2623-2705.

M. Thimm, The formal argumentation libraries of Tweety, in: Proceedings of (TAFA-17),
Springer, 2018, pp. 137-142.

M. Snaith, C. Reed, TOAST: Online ASPIC+ implementation, in: Proceedings of (COMMA-
12), IOS Press, 2012, pp. 509-510.

N. I. Spanoudakis, G. Gligoris, A. Koumi, A. C. Kakas, Explainable argumentation as a
service, Journal of Web Semantics (2023) 100772.

R. Dachselt, S. Gaggl, M. Krétzsch, J. Méndez, D. Rusovac, M. Yang, Nexas: A visual tool for
navigating and exploring argumentation solution spaces, in: Proceedings of (COMMA-22),
volume 353, IOS Press, 2022, pp. 116—127.

P. M. Dung, On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games, Artificial Intelligence 77 (1995)
321-357.

H. Prakken, An abstract framework for argumentation with structured arguments, Argu-
ment & Computation 1 (2010) 93-124.

A. Bondarenko, F. Toni, R. A. Kowalski, An assumption-based framework for non-
monotonic reasoning, in: Proceedings of (LPNMR-93), 1993, pp. 171-189.

K. Cyras, X. Fan, C. Schulz, F. Toni, Assumption-based argumentation: Disputes, ex-
planations, preferences, in: Handbook of Formal Argumentation, volume 1, 2018, pp.
365-408.

P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, The
Knowledge Engineering Review 26 (2011) 365-410.

A. Borg, F. Bex, A basic framework for explanations in argumentation, IEEE Intelligent
Systems 36 (2021) 25-35.

A.Borg, F. Bex, Necessary and sufficient explanations for argumentation-based conclusions,
in: Proceedings of (ECSQARU-21), Springer, 2021, pp. 45-58.

D. Odekerken, F. Bex, A. Borg, B. Testerink, Approximating stability for applied argument-
based inquiry, Intelligent Systems with Applications 16 (2022) 200110.

D. Odekerken, T. Lehtonen, A. Borg, J. P. Wallner, M. Jarvisalo, Argumentative reasoning
in ASPIC+ under incomplete information, in: Proceedings of (KR-23), 2023, pp. 531-541.
P. E. Dunne, W. Dvorék, T. Linsbichler, S. Woltran, Characteristics of multiple viewpoints
in abstract argumentation, Artificial Intelligence 228 (2015) 153-178.

M. Berthold, A. Rapberger, M. Ulbricht, On the expressive power of assumption-based
argumentation, in: Proceedings of (JELIA-23), 2023.

	1 Introduction
	2 Related work
	3 Back-end functionalities
	4 Web interface
	5 Conclusion and future work

