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Abstract
This paper extends previous work on rational agents and epistemic causation in the situation calculus
to devise an explanatory framework. It incorporates agents’ prioritized goals and intentions, utilizes
a black-box goal recognition module, and accommodates causal analysis of observed effects involving
knowledge and intentions, caused by knowledge-producing and intention-altering actions, respectively.
Leveraging an action theory and mental state formalization, it then illustrates –through a theory of
mind-grounded model of explanation– that, in contrast to purely machine learning-based systems,
knowledge representation-based systems might indeed be more suitable for generating explanations of
observed behaviour.
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1. Introduction

In recent years, researchers have become increasingly interested in developing transparent AI
systems whose behaviour can be easily understood. To this end, numerous studies have explored
how decisions produced by otherwise opaque sub-symbolic approaches can be explained. This
has also led to a renewed interest in the study of explainability in knowledge representation
(KR), as advocates of KR argue that its declarative nature makes it cognitively more suited for
explanation purpose.
Over the years, there has been some work on formalizing explanations in KR [1, 2, 3, 4,

5, 6]. Motivated by this, in this paper we also investigate the explanatory potential of KR-
based systems, although from an entirely novel perspective. In particular, we use causal
analysis of mental states to sketch one such system that demonstrates and reinforces that these
systems might indeed be more understandable as they allow for commonsensical and intuitive
formalization of explanations.
Our framework is based on the situation calculus (SC) [7, 8], a model of knowledge [9, 10]

and intentions [11] in the SC, and a formalization of actual causation [12] and causal knowledge
[13] therein. We extend the framework to include goal change due to request communication
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actions and to support causal analysis of conative effects (i.e. effects involving agent motivation).
We also utilize a black-box module for recognizing agents’ intentions. Using these, we propose a
definition of explanation of agent behaviour relative to observed effects, one that is grounded in
theory of mind. Our proposal here is informal, and we mostly focus on an example to illustrate
the idea; a full-fledged formal version is available in [14].

2. Actions, Mental States, and their Dynamics

Our base framework for this is the Situation Calculus (SC), which is a second-order (SO) language
for modeling and reasoning about dynamic systems where all changes are result of named
actions. Here, a possible state of the domain is represented by a situation. The initial situation 𝑆0
denotes the empty sequence of actions and 𝑑𝑜(𝑎, 𝑠) denotes the successor situation to 𝑠 resulting
from performing the action 𝑎. Thus the domain of situations can be viewed as a tree, where the
root of the tree is the initial situation 𝑆0 and the arcs represent actions. Properties whose truth
values vary from situation to situation, are called fluents. We will use the complex situation
term 𝑑𝑜([𝛼1, ⋯ , 𝛼𝑛], 𝑆0) to represent the situation obtained by consecutively performing 𝛼1, ⋯ , 𝛼𝑛
starting from 𝑆0.

In the SC, a dynamic domain is formalized using an action theory𝒟 that includes the following
set of axioms: (1) first-order (FO) action precondition axioms (APA), one per action, (2) (FO)
successor-state axioms (SSA), one per fluent, that succinctly encode both effect and frame
axioms and specify exactly when the fluent changes, (3) (FO) initial state axioms describing
what is true initially, (4) (FO) unique names axioms for actions, and (5) (SO) domain-independent
foundational axioms describing the structure of situations [15].
Following [9, 10], we model knowledge using a possible worlds account adapted to the SC.

There can now be multiple initial situations. Using an accessibility relation 𝐾, the knowledge
of an agent 𝑑 is defined as a necessity operator over 𝐾. 𝐾 is constrained to be reflexive and
Euclidean (and thus transitive) in the initial situations to capture the fact that the agent’s
knowledge is true, and that it has positive and negative introspection.
In our framework, the dynamics of knowledge is specified using a SSA for 𝐾 that supports

knowledge expansion as a result of sensing actions as well as “inform” communication actions.
As shown in [10], the constraints on 𝐾 then continue to hold after any sequence of actions since
they are preserved by the SSA for 𝐾.

Thus to model knowledge, we will use a theory that is similar to 𝒟 above, but with modified
foundational axioms to allow for multiple initial epistemic states. Also, action preconditions can
now include knowledge preconditions and initial state axioms can now include axioms describing
the epistemic states of the agents. Finally, the preconditions of inform and aforementioned
axioms for 𝐾 are included. See [8] and [16] for details of these.

Following Khan and Lespérance (KL) [17], we will utilize the sort of paths in the SC, which are
essentially infinite sequences of executable situations. KL [18] showed how one can interpret
arbitrary computational tree logic (CTL∗) [19] formulae within SC with paths. Paths are useful
for formalizing future-oriented concepts such as goals, intentions, and other motivational states.
We assume that our theory 𝒟 includes the axiomatization for paths.

In [11], KL proposed a formalization of prioritized goals (p-goals), intentions, and their



dynamics in the SC. The account supports a rich specification of the goals of an agent. In
their agent theory, an agent can have multiple goals/desires at different priority levels, possibly
inconsistent with each other. They assume that goals are totally ordered with respect to the
priority ordering. Each goal is specified using its own goal-accessibility relation𝐺, parameterized
by the priority level. KL defined intentions/chosen goals, i.e. the goals that the agent is actively
pursuing, as the maximal set of highest priority goals that are consistent with each other and
with the agent’s knowledge; semantically, this is handled by taking a prioritized intersection of
goal-accessibility relations. Their model of goals supports the specification of general temporally
extended goals (represented by CTL∗ formulae), not just achievement goals. They also specified
how these goals evolve when actions/events occur, when the agent’s knowledge changes, or
when the agent adopts or drops a goal. This is specified via the SSA for 𝐺. Their formalization
of prioritized goal dynamics ensures that the agent always optimizes their intentions. They
will abandon a chosen goal 𝜙 if an opportunity to commit to a higher priority goal, that is
inconsistent with 𝜙, arises. As such their model displays an idealized form of rationality.

We propose to adopt and modify KL’s framework to accommodate multiple agents, by adding
an agent argument to the hierarchy of goal-accessibility relations. We also modify goal dynamics
by introducing a request action req(𝑑, 𝑑′, 𝜙), that can be used by an agent 𝑑 to request another
agent 𝑑′ to adopt a p-goal 𝜙, simplifying the model to only include extremely cooperative agents
that always adopts the requested goal as their intentions (even if it is inconsistent with their
current intentions; note, the requestee’s intentions do remain consistent). For this we propose
the APA for this req action and update the SSA for 𝐺; see [14] for the formal details.

3. Causation and Explanation

Given a history of actions/events (often called a scenario) and an observed effect, actual causation
involves figuring out which of these actions are responsible for bringing about this effect. When
the effect is assumed to be false before the execution of the actions in the scenario and true
afterwards, the notion is referred to as achievement (actual) causation. Based on Batusov and
Soutchanski’s original proposal [12], KL recently offered a definition of achievement cause in
the SC [13]. Both of these frameworks assume that the scenario is a linear sequence of actions,
i.e. no concurrent actions are allowed. KL’s proposal can deal with epistemic causes and effects;
e.g., an agent may analyze the cause of some newly acquired knowledge, and the cause may
include some knowledge-producing action, e.g. inform. They showed that an agent may or may
not know all the causes of an effect, and can even know some causes while not being sure about
others.
In this framework, causes are computed relative to a causal setting consisting of a domain

theory 𝒟, a scenario 𝜎 (which, again, is a linear sequence of actions), and an effect 𝜑. Since all
changes in the SC result from actions, they identified the potential causes with a set of ground
action terms occurring in 𝜎. However, since 𝜎 might include multiple occurrences of the same
action, one also needs to identify the situations where these actions were executed; for brevity,
we will ignore this component here. The underlying idea of computing causes is as follows.
If some action 𝛼 of the action sequence in 𝜎 triggers the formula 𝜑 to change its truth value
from false to true relative to𝒟, and if there are no actions in 𝜎 after 𝛼 that change the value of 𝜑



back to false, then 𝛼 is an actual cause of achieving 𝜑 in 𝜎. Moreover, note that 𝛼 might have
been non-executable initially; so other preceding actions that contributed to ensuring that its
preconditions are brought about must also be considered as (indirect) cause of 𝜑. Similarly, 𝛼
might have only brought about 𝜑 conditionally, and other preceding actions that achieved those
conditions must be considered as (indirect) cause of 𝜑. Using this reasoning, in addition to the
single action that brings about the effect of interest, one can also capture the chain of actions
that build up to it.
We propose to extend KL’s framework in [13] to include intentions in effect formulae; see

[14] for how this can be done. With this extension, we can now analyze the causes of an agent
having some intention 𝜓 in some scenario. In our framework, such effects are usually caused by
request actions by others.
To propose a model of explanation on top of this framework, we need one last component,

which for this work is considered to be a black-box module. Given an agent 𝑑, an action 𝛼, and a
scenario 𝑠, the component under consideration is a goal recognition module, which recognizes
the intention of 𝑑 behind performing 𝛼 in 𝑠. With this, we are now ready to give a definition
of explanation. Just like causes, explanations in our framework are simply actions from the
scenario. However, as we will see, they are not simply causes.

Explanation We say that the behaviour of a group of agents captured by a scenario 𝑠 relative
to the observation that 𝜑 can be explained by the action 𝑎 if and only if 𝑎 is a cause of 𝜑 in 𝑠; or 𝑎
causes the intention behind some explanation of 𝜑 in 𝑠, i.e. some other action 𝑎′ explains 𝜑 in 𝑠,
the agent of 𝑎′ is 𝑑′, 𝑑′ is recognized to have the intention that 𝜓 behind performing 𝑎′ in s, and
𝑎 was the cause of this intention in 𝑠′.

4. Reasoning Example

We consider a domain where we have two rescue drone agents, 𝐷1 and 𝐷2, navigating through
four locations, 𝐿𝑠, 𝐿𝑑, 𝐿1, and 𝐿′1, and managed by a controller agent 𝐷𝑐. We have a non-fluent
relation, Route(𝑙, 𝑙′), that represents a flight path from location 𝑙 to 𝑙′. The routes are defined
as: from 𝐿𝑠 to 𝐿1, from 𝐿𝑠 to 𝐿′1, from 𝐿1 to 𝐿𝑑, and from 𝐿′1 to 𝐿𝑑. In this domain, there are four
self-explanatory actions (given 𝑑 and 𝑙 are drones and locations, resp.): takeOff (𝑑, 𝑙), flyTo(𝑑, 𝑙, 𝑙′),
land(𝑑, 𝑙), and the aforementioned communicative action inform. The fluents in this domain
are At(𝑑, 𝑙, 𝑠), Flying(𝑑, 𝑠), Vis(𝑑, 𝑙, 𝑠) (i.e. 𝑑 has visited 𝑙 in 𝑠), and TStorm(𝑙, 𝑠) (i.e. there is a
thunderstorm at 𝑙 in 𝑠).
The preconditions for the above actions are as follows. Agent 𝑑 can takeoff at location 𝑙 in

situation 𝑠 iff it is at 𝑙 in 𝑠 and it is not flying in 𝑠. 𝑑 can fly to 𝑙′ from 𝑙 in 𝑠 iff it is at 𝑙 in 𝑠, it is
flying in 𝑠, there is a route from 𝑙 to 𝑙′, and 𝑑 does not know that there is a thunderstorm at 𝑙′ in
𝑠. 𝑑 can land at 𝑙 in 𝑠 iff it is at 𝑙 in 𝑠 and it is flying in 𝑠. Finally, 𝑑 can inform 𝑑′ that Φ in 𝑠 iff 𝑑
knows in 𝑠 that Φ and it does not know in 𝑠 that 𝑑′ knows that Φ.
The SSA for the above fluents are as follows. 𝑑 is at location 𝑙 after executing action 𝑎 in

situation 𝑠 iff 𝑎 refers to 𝑑’s action of flying from some location 𝑙′ to 𝑙, or 𝑑 was already at 𝑙 in 𝑠
and 𝑎 is not its action of flying to a different location 𝑙′. 𝑑 is flying in 𝑑𝑜(𝑎, 𝑠) iff 𝑎 is 𝑑’s action of
taking off at some location 𝑙, or it was already flying in 𝑠 and 𝑎 is not its action of landing at



some location. 𝑑 has visited 𝑙 in 𝑑𝑜(𝑎, 𝑠) iff 𝑎 refers to its action of flying to 𝑙 from some other
location, or it has already visited 𝑙 in 𝑠. Finally, there is a thunderstorm at 𝑙 in 𝑑𝑜(𝑎, 𝑠) iff this is
the case in 𝑠 (for simplicity, we treat this as a non-fluent).

The Knowledge of agents initially are as follows. Drone 𝐷1 knows that it is at location 𝐿𝑠, that
it is not flying, and that it has only visited 𝐿𝑠. Moreover, it does not know that there is a storm
at location 𝐿1, but knows that there are no storms at 𝐿′1 and 𝐿𝑑. There is indeed a thunderstorm
at location 𝐿1 and the controller agent 𝐷𝑐 knows this. Finally, 𝐷𝑐 does not know however that
the other agents know this fact.
Assume that, initially our drone agent 𝐷1 has the following two p-goals: 𝜙0 = ◇At(𝐷1, 𝐿𝑑),

i.e. that it is eventually at 𝐿𝑑, at the highest priority level, and 𝜙1 = Vis(𝐷1, 𝐿1) ℬ Vis(𝐷1, 𝐿𝑑),
i.e. that it visits 𝐿1 before it visits 𝐿𝑑, at a lower priority level, respectively. Also, 𝐷𝑐 does not
have any initial p-goals.
To see an example of intention dynamics, note that in our example, we can show that the

agent 𝐷1 will have the intention that◇Vis(𝐷1, 𝐿′1) after 𝐷1 takes off from 𝐿𝑠, 𝐷𝑐 informs 𝐷1 that
there is a thunderstorm at 𝐿1, and 𝐷𝑐 requests 𝐷1 to eventually visit 𝐿′1, starting in the initial
situation; thus we can show that 𝐷1 intends to eventually visit 𝐿′1 afterwards. But 𝐷1 will not
have the intention that 𝜙1 afterwards as it has become impossible for 𝐷1 to visit 𝐿1 due to its
knowledge of the thunderstorm at 𝐿1.
Next, let us consider an example of causation relative to conative effects. Assume that

𝜎 = do([takeOff (𝐷1, 𝐿𝑠), inform(𝐷𝑐, 𝐷1, TStorm(𝐿1)), req(𝐷𝑐, 𝐷1,◇Vis(𝐷1, 𝐿′1)), inform(𝐷𝑐,
𝐷2, TStorm(𝐿1)), req(𝐷𝑐, 𝐷2,◇Vis(𝐷1, 𝐿′1)), flyTo(𝐷1, 𝐿𝑠, 𝐿′1), flyTo(𝐷1, 𝐿′1, 𝐿𝑑)], 𝑆0). There are
7 actions in this scenario. For convenience, we will use 𝛼𝑖 to denote the first 𝑖 actions in this
trace, and so 𝑑𝑜([𝛼5], 𝑆0) is the situation obtained from executing the first 5 actions starting in 𝑆0.
Now assume that we want to reason about the causes of the effect 𝜑1 = Int(𝐷1,◇Vis(𝐷1, 𝐿′1))
in scenario 𝜎1 = 𝑑𝑜([𝛼5], 𝑆0).We can show that 𝐷𝑐’s request to 𝐷1 to eventually visit 𝐿′1 is the
only cause of 𝐷1’s intention that ◇Vis(𝐷1, 𝐿′1) in 𝜎1. Thus, e.g., req(𝐷𝑐, 𝐷2,◇Vis(𝐷1, 𝐿′1)) is not
a cause.

Finally, we would like to explain the behaviour of drones as modeled by situation/scenario 𝜎
above relative to the effect that 𝜑2 = Vis(𝐷1, 𝐿′1), i.e. we want to understand why 𝐷1 visited 𝐿′1
(rather than the usual path of 𝐿1). As expected, we can show that agent behaviour in 𝜎 w.r.t.
visiting 𝐿′1 can be explained by 𝐷1’s action flyTo(𝐷1, 𝐿𝑠, 𝐿′1). But perhaps more interestingly,
assuming that the intention behind 𝐷1’s action of flyTo(𝐷1, 𝐿𝑠, 𝐿′1) in 𝜎 was recognized to be
◇Vis(𝐷1, 𝐿′1), we can further explain agent behaviour via the causes of having this intention.
This will in turn reveal that 𝐷1 had this intention due to 𝐷𝑐’s request to 𝐷1 to eventually visit 𝐿′1,
and thus agent behaviour w.r.t. 𝐷1 visiting 𝐿′1 can be explained by this request action as well.

5. Discussion and Conclusion

In this paper, we sketched an account of causal reasoning about motivations. Using this, we
offered a novel take on explainable AI that is grounded in theory of mind: agent behaviour in
our framework can be explained via the causal analysis of observed effects, which in turn can
trigger the analysis of their mental states.

As mentioned, there has been some work on formalizing explanation in KR. For instance, in



his early work, Shanahan [3] proposed a deductive and an abductive approach to explanation
in the situation calculus, both of which are based on default reasoning. More recently, Shvo et
al. [4] proposed a belief revision-based account of explanation. In their framework, a formula 𝜙
explains another formula 𝜓 if revising by 𝜙 makes the agent believe 𝜓 and the agent’s beliefs
are still consistent afterwards. In [6], Dennis and Oren used dialogue between the user and a
Belief-Desire-Intention (BDI) agent system to explain why the agent has chosen a particular
action. Their approach aims to identify any divergence of views that exist between the user and
the BDI agent relative to the latter’s behaviour and allows for an interactive and user-friendly
explanation process. Miller [5] proposed a contrastive explanation model based on structural
causal models to enhance understanding and trust in AI decision-making. Finally, Sridharan et
al. [20, 21] proposed an explainable robotic architecture by integrating step-wise refinement,
non-monotonic reasoning, probabilistic planning, and interactive learning. However, none
of these proposals perform causal analysis of agent motivation or employ such reasoning for
explaining agent behaviour. In fact to the best of our knowledge, our proposal is the first and
the only attempt to this end.

Our current formalization is limited in many ways. For instance, we only allow deterministic
and fully observable actions. Scenarios in our framework are linear, i.e. we assume that the order
of action occurrence is known. When dealing with causation and explanations, we computed
achievement causes only. Incorporating other types of causes, e.g. maintenance causes [22],
would have allowed us to explain effects further and in finer details. We leave these for future
work.
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