
Deep Mutual Learning across Task Towers for
Effective Multi-Task Recommender Learning
Yi Ren1, Ying Du1, Bin Wang1 and Shenzheng Zhang1

1Tencent, Beijing, China

Abstract
Recommender systems usually leverage multi-task learning methods to simultaneously optimize several
objectives because of the multi-faceted user behavior data. The typical way of conducting multi-task
learning(MTL) is to establish appropriate parameter sharing across multiple tasks at lower layers while
reserving a separate task tower for each task at upper layers. With such design, the lower layers intend
to explore the structure of task relationships and mine valuable information to be used by the task towers
for accurate prediction.

Since the task towers exert direct impact on the prediction results, we argue that the architecture of
standalone task towers is sub-optimal for promoting positive knowledge sharing. First, for each task,
attending to the input information of other task towers is beneficial. For instance, the information useful
for predicting the "like" task is also valuable for the "buy" task. Furthermore, because different tasks
are inter-related, the training labels of multiple tasks should obey a joint distribution. It is undesirable
for the prediction results for these tasks to fall into the low density areas. Accordingly, we propose
the framework of Deep Mutual Learning across task towers(DML), which is compatible with various
backbone multi-task networks. At the entry layer of the task towers, the shared component of Cross
Task Feature Mining(CTFM) is introduced to transfer input information across the task towers while
still ensuring one task’s loss will not impact the inputs of other task towers. Moreover, for each task,
dedicated network component called Global Knowledge Distillation(GKD) are utilized to distill valuable
knowledge from the global results of the upper layer task towers to enhance the prediction consistency.
Extensive offline experiments and online A/B tests are conducted to evaluate and verify the proposed
approach’s effectiveness.

Keywords
Recommender Systems, Multi-Task Learning, Parameter Sharing

1. Introduction

Recently, we have seen the widespread application of recommender systems, which involve
different types of user feedback signals, such as clicking, rating, commenting, etc. Moreover, no
single feedback signal can accurately reflect user satisfaction. For example, over-concentrating
on clicking may aggravate the click-bait issue. Therefore, it is highly desirable to be able to
effectively learn and estimate multiple types of user behaviors at the same time. And Multi-Task
Learning is a promising technique to address this challenge. Given several related learning
tasks, the goal of multi-task learning is to enhance the overall performance of different tasks by

ORSUM@ACM RecSys 2023: 6th Workshop on Online Recommender Systems and User Modeling, jointly with the 17th
ACM Conference on Recommender Systems, September 19th, 2023, Singapore
$ yiren_bj@outlook.com (Y. Ren); yingdu@tencent.com (Y. Du); hillmwang@tencent.com (B. Wang);
qjzcyzhang@tencent.com (S. Zhang)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yiren_bj@outlook.com
mailto:yingdu@tencent.com
mailto:hillmwang@tencent.com
mailto:qjzcyzhang@tencent.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


leveraging knowledge transfer among tasks. With the Multi-Task Learning(MTL) paradigm[1, 2],
multiple tasks are learned simultaneously in a single model. Compared with single-task solutions,
MTL costs much fewer machine resources and improves learning efficiency since we just need to
train and deploy a single model. Moreover, MTL usually can warrant enhanced recommendation
performance through appropriate parameter sharing.

Most existing methods of Multi-Task Learning(MTL) appropriately share parameters across
multiple tasks at lower layers while keeping separate task towers at upper layers. These methods
can be roughly classified into four categories. The first category comprises the methods of
hard parameter sharing. Among them, embedding sharing is the most intuitive structure to
share information. For instance, the ESSM model [3] shares embedding parameters between
the tasks of CTR (Click-Through Rate) and CVR (Conversion Rate) for improving the prediction
performance of the sparse CVR task. In addition to the embedding parameters, the Shared-
Bottom structure[2] is introduced to share the parameters of lower-layer MLPs among tasks.
But these methods are severely plagued by the task conflicts and negative transfer issue. Second,
for the methods of soft parameter sharing, each task owns separate parameters, which are
regularized during training to minimize the differences between the shared parameters. L2-
constrained[4] is a typical algorithm belonging to this category. Third, for the methods of
customized routing, they learn customized routing weights for each task to combine and fuse
information from lower-layer networks to counteract the negative transfer issue. Cross-stitch
network[5] and sluice network[6] learn separate linear weights for each task to selectively
merge representations from different lower-level branches. SNR[7] modularizes the shared
low-level layers into parallel sub-networks and uses a transformation matrix multiplied by
a scalar coding variable to learn their connections to upper-level layers to alleviate the task
conflict and negative transfer issue. MSSM[8] learns differing combinations of feature fields for
each expert and designs finer-grained sharing patterns among tasks through a set of coding
variables that selectively choose which cells to route for a given task. But the learned routing
parameters of these methods are static for all the samples, which can hardly warrant optimal
performance. Finally, the methods of dynamic gating learn optimized weights for each task
based on the input sample to effectively combine the outputs of lower-level networks and
achieve success in industrial applications. The MMoE [9] model adapts the Mixture-of-Experts
(MoE)[10] structure to multi-task learning by sharing the expert sub-networks across all tasks,
while also maintaining separate gating network optimized for each task. And Zhao et al. [11]
extend the MMoE model [9] and apply it to learn multiple ranking objectives in Youtube
video recommender systems. Moreover, PLE [12] achieves superior performance for news
recommendation by assigning both shared expert sub-networks among tasks and dedicated
expert sub-networks for each task.

AITM [13] is the most similar method, which also augments the arcitecture of task towers.
Nevertheless, as a concrete implementation, it is not validated to enhance the performance of
various multi-task models. Moreover, it can only work for the tasks with sequential dependence
relations.

Admittedly, the aforementioned methods achieve impressive performance. However, as the
task towers exert a direct effect on the prediction results, the standalone task towers tend
not to be the most effective design for promoting positive knowledge transfer by exploiting
the task relationships. First, for each task, the information selected by the relevant tasks is



extremely valuable. Accordingly, we introduce the shared component of Cross Task Feature
Mining(CTFM), which utilizes delicate attention mechanisms to extract relevant information
from other tasks at the entry layer of the task tower. With the common attention mechanisms,
the explicit task-specific information distilled by lower-level networks are mingled together
and one task’s loss will undesirably affect the inputs of other task towers, which is the task
awareness missing problem and can hinder the learning of lower-level networks. In contrast
to the usual attention mechanisms, our design can ensure appropriate information separation.
We argue that reserving explicit task-specific knowledge has a positive effect on performance,
which is validated in the experimental section. Second, because the tasks for recommender
systems are related, the training labels of multiple tasks should obey a joint distribution. The
prediction results for these tasks should not densely fall into the low-density areas. Therefore,
a dedicated network named Global Knowledge Distillation(GKD) is introduced for each task
to distill valuable global knowledge from the results of the upper layer task towers. For each
task, the distilled global information helps to ensure consistent predictions with other tasks.
We summarize our main contributions below.

• We propose the framework of Deep Mutual Learning across task towers(DML), which is
compatible with various backbone multi-task models.

• The proposed novel sharing structure helps to enhance effective knowledge transfer across
different tasks.

• We conduct offline experiments and online A/B testing to evaluate and understand the
effectiveness of our method.

2. Methodology

In this section, we first introduce the problem of multi-objective ranking for recommender
systems. Second, we describe the general design of DML. Finally, we elaborate on the introduced
components.

2.1. Multi-Objective Ranking for Recsys

Given a set of candidates with 𝑁 items 𝒞 = {𝑖𝑛}1≤𝑛≤𝑁 , the ranking model for recommender
systems is to rank and recommend the top 𝑀 items 𝒮 = {𝑖𝑚}1≤𝑚≤𝑀 ⊆ 𝒞 for user 𝑢 so as to
optimize the overall utility and enhance user experience. First, for each pair of user 𝑢 and item
𝑖𝑛, the input feature 𝑥𝑛 is derived. Second, a multi-task learning model is utilized to estimate
𝐾 objectives corresponding to multiple user feedback signals. Furthermore, to compute the
overall reward, we need to merge the multiple predictions with a function Φ shown in equation
(2) to derive the item’s final reward score for greedy ranking.

𝑜1𝑛, 𝑜
2
𝑛, ..., 𝑜

𝐾
𝑛 = 𝑀𝑇𝐿𝑀𝑜𝑑𝑒𝑙(𝑥𝑛; 𝜃) (1)

𝑟𝑛 = Φ(𝑜1𝑛, 𝑜
2
𝑛, ..., 𝑜

𝐾
𝑛 ) (2)



where 𝜃 denotes the model parameters and Φ is usually a function manually tuned to reflect
the reward of recommending item 𝑖𝑛 to user 𝑢 based on the business goals. With the estimated
reward scores {𝑟𝑛}1≤𝑛≤𝑁 for the items in 𝒞, the ranking model can recommend the item
sequence 𝒮 consisting of the top 𝑀 items to the user 𝑢.

2.2. Overall Design of DML

With the existing MTL algorithms[1], the equation (1) can be further decomposed as below. For
simplicity, we omit the subscript 𝑛 in this section.

𝑙1, 𝑙2, ..., 𝑙𝐾 = 𝐺(𝑥; 𝜃𝑙) (3)

𝑜𝑘 = 𝐹 𝑘(𝑙𝑘; 𝜃𝑘ℎ) (4)

where 𝐺 represents the lower level networks that encodes 𝑥 to 𝐾 different latent spaces with
partially or fully shared parameters 𝜃𝑙. And 𝐹 𝑘 is the upper-level network for task 𝑘, which
accepts 𝑙𝑘 as input to model objective 𝑘 with task-specific higher level parameter 𝜃𝑘ℎ. Multiple
candidate models [3, 9, 12, 7, 11, 5, 8, 4, 6, 1] are proposed to enhance 𝐺 with different parameter
sharing designs.

In this research, rather than 𝐺, we focus on the enhancement of upper-level networks
for improved prediction performance. First, the shared component of CTFM is introduced,
which leverages the attention mechanism to extract relevant information from the inputs of
other task towers (the results of Equation (3)) as a complement to the target task. Please note
that this attention is well-designed to solve the task-awareness missing issue, for which the
excessive encouragement of knowledge sharing is not conducive to the extraction of task-
specific knowledge. With our design, the gradients computed from the target task’s loss will
not impact the inputs of other task towers.

�̂�
1
, �̂�

2
, ..., �̂�

𝐾
= 𝐶𝑇𝐹𝑀(𝑙1, 𝑙2, ..., 𝑙𝐾 ; 𝜃𝑠) (5)

where shared parameters 𝜃𝑠 is employed across different tasks.
Moreover, a separate multi-layer network is introduced for each task to process each element

of {�̂�𝑘}1≤𝑘≤𝐾 and generate the hidden representation, based on which accurate prediction can
be made.

ℎ𝑘 = 𝐻𝑘(�̂�
𝑘
; 𝜃𝑘𝑡0) (6)

where 𝐻𝑘 denotes the task-specific MLP for task 𝑘 with separate parameters 𝜃𝑘𝑡0 .
Finally, for each task, a dedicated component named GKD is utilized to distill information

from the hidden representations for both itself and other tasks to promote prediction consistency
across tasks and more precisely model the corresponding objective.

𝑜𝑘 = 𝐺𝐾𝐷𝑘(ℎ𝑘, {ℎ𝑗}1≤𝑗≤𝐾 ; 𝜃𝑘𝑡1) (7)

where 𝐺𝐾𝐷𝑘 is the dedicated component for task 𝑘. In contrast to 𝐶𝑇𝐹𝑀 at Equation (5),
we utilize task-specific parameters 𝜃𝑘𝑡1 here as specialization is usually helpful for upper layer
networks. Furthermore, proper operation is implemented to ensure the prediction error of one
task does not impact the hidden representations of other tasks.



(a) Cross Task Feature Mining (Shared) (b) Global Knowledge Distillation (for Task k)

Figure 1: Introduced Components of DML

2.3. Cross Task Feature Mining

Please refer to Figure 1(a) for the detailed process of CTFM. From the perspective of task towers,
the outputs from lower-level networks at Equation (3) can be recognized as the mined features
for them. First, for each task, the features mined for related tasks can be leveraged to enhance
its prediction performance. Thus, trainable task embeddings, namely {𝑡𝑘}1≤𝑘≤𝐾 , are derived
for the tasks to facilitate the learning of general task relations. Second, the importance of
features from related tasks can vary per sample. Accordingly, we stack together the items of
the set {𝑙𝑘 + 𝑡𝑘}1≤𝑘≤𝐾 to derive the matrix 𝑀𝑎𝑡𝑜 ∈ ℛ𝐾×𝑑0 where 𝑑0 is the size of 𝑙𝑘 and
𝑡𝑘. Third, we use the projection parameters 𝑊𝑞,𝑊𝑘,𝑊𝑣 ∈ ℛ𝑑0×𝑑0 to transform 𝑀𝑎𝑡𝑜 to the
query, key, and value matrix of 𝑀𝑎𝑡𝑞,𝑀𝑎𝑡𝑘,𝑀𝑎𝑡𝑣 ∈ ℛ𝐾×𝑑0 . And gradient backpropagation
from 𝑀𝑎𝑡𝑘 and 𝑀𝑎𝑡𝑣 to 𝑀𝑎𝑡𝑜 is forbidden. Moreover, the scaled dot-product attention [14] is
performed on 𝑀𝑎𝑡𝑞 , 𝑀𝑎𝑡𝑘, and 𝑀𝑎𝑡𝑣 to compute the result matrix 𝑀𝑎𝑡𝑟 ∈ ℛ𝐾×𝑑0 . Finally,
we add 𝑀𝑎𝑡𝑜 to 𝑀𝑎𝑡𝑟 for residual connection and further split based on the first axis to return

{�̂�𝑘}1≤𝑘≤𝐾 . Please note that the aforementioned networks are shared among the tasks to
encourage generalizable modeling with parameter sharing. The usual attention mechanisms
will cause the task awareness missing problem and can hinder the learning of lower-level
networks. Instead, our design can ensure appropriate information separation and reserve the
explicit task-specific knowledge by stopping the gradient backflow from 𝑀𝑎𝑡𝑘 and 𝑀𝑎𝑡𝑣 to
𝑀𝑎𝑡𝑜.

2.4. Global Knowledge Distillation

Please refer to Figure 1(b) for the detailed process of GKD. In contrast to CTFM, each task is
assigned dedicated parameters for global knowledge distillation. Acting as the last step, we
would like to facilitate more flexible modeling by promoting task specialization here. This
module accepts the hidden representations for both the corresponding task and other tasks
as input. First, a multilayer perceptron(MLP) is utilized to extract valuable global knowledge
(𝐺𝐾𝑘 ∈ ℛ𝑑1 ) for the target task 𝑘 from the concatenation of all these hidden representations
({ℎ𝑗}1≤𝑗≤𝐾 ). Since the design goal here is to train task-specific MLPs to distill relevant global
knowledge while not impacting the hidden representations, the gradient backpropagation from



Table 1
The overall performance. The bold-face font denotes the winner in that column. Moreover, the "*" symbol
denotes introducing DML achieves significant (p < 0.05 for one-tailed t-test) gain over the corresponding
baseline.

Model
ML-1M Electronics

𝐴𝑈𝐶 𝑀𝑆𝐸
Consistent

Ratio
𝐴𝑈𝐶𝑟𝑎𝑡𝑒 𝐴𝑈𝐶𝑝𝑜𝑠

Single Task 0.8066 0.7741 0.7154 0.7608 0.7334
SB 0.8100 0.7724 0.7530 0.7876 0.7608
SB+DML 0.8115* 0.7648* 0.7649* 0.7890* 0.7631*

MSSM 0.8128 0.7651 0.7519 0.7883 0.7627
MSSM+DML 0.8141* 0.7611* 0.7637* 0.7892* 0.7641*

MMOE 0.8105 0.7688 0.7507 0.7888 0.7628
MMOE+DML 0.8135* 0.7591* 0.7596* 0.7897* 0.7644*

PLE 0.8122 0.7606 0.7514 0.7885 0.7627
PLE+DML 0.8151* 0.7533* 0.7631* 0.7893* 0.7640*

𝐺𝐾𝑘 to the MLP’s input is prohibited. Second, we input 𝐺𝐾𝑘 and ℎ𝑘 to another MLP with
Sigmoid as its last activation function. Then, the weights of 𝐺𝐾𝑘’s different latent dimensions
can be dynamically adapted for each sample. The weights are denoted by 𝐺𝑊 𝑘 ∈ ℛ𝑑1 .
Moreover, the weighted global knowledge (𝑊𝐺𝐾𝑘 ∈ ℛ𝑑1 ) is computed with the hadamard
product of 𝐺𝐾𝑘 and 𝐺𝑊 𝑘. Finally, 𝑊𝐺𝐾𝑘 and ℎ𝑘 are concatenated together as the input for
the last MLP to make predictions for task 𝑘.

3. Experiments

In this section, we conduct extensive offline experiments1 and online A/B testing to prove
DML’s effectiveness.

3.1. Experimental Settings for Public Data

3.1.1. Datasets

We evaluate our methods on two public datasets.

• MovieLens-1M[15]: One of the currently released MovieLens datasets, which contains 1
million movie ratings from 6,040 users on 3,416 movies.

• Amazon[16]: A series of datasets consisting of product reviews from Amazon.com. We use
the sub-category of "Electronics" including 1.7 million reviews from 192,403 users on 63,001
items.

1The code can be found at: https://github.com/renyi533/mtl-consistency/tree/main.

https://github.com/renyi533/mtl-consistency/tree/main


For ML-1M, we introduce the binary classification task of positive rating prediction (>=4) and
the regression task of rating estimation. These two tasks are strictly correlated. For electronics,
following [17], we first augment the dataset by randomly sampling un-rated items for every
user. Moreover, we make sure the number of the un-rated items is the same as the number of
the rated items for each user. Furthermore, we introduce two binary classification tasks, namely
rating prediction (whether a rating exists) and positive rating prediction. Compared with the
tasks of ML-1M, the negative transfer is more likely to occur as the task relationship here is
more complex(The pearson correlation coefficient [18] of these two labels is around 0.7). Both
data are randomly split into the training set, validation set, and test set by the ratio of 8:1:1.

3.1.2. Evaluation Metrics

The merge function Φ in Equation (2) assumes that the model can estimate accurate interaction
probabilities for binary classification tasks (e.g. clicking) and absolute values for regression
tasks (e.g. watch time). Therefore, instead of the ranking metrics, such as NDCG [19] and MRR
[20], we use the metrics of AUC [21] for classification tasks and Mean Squared Error (MSE) [22]
for regression tasks. Please note that many other recommendation literature, such as [12, 11, 8],
also use similar metrics. For AUC, a bigger value indicates better performance. While, for MSE,
it is the smaller the better.

3.1.3. Models

As soft parameter sharing methods need resources to store and train multiple sets of parame-
ters, they are not widely applied in recommender systems. Thus, we select base models to cover
the other three categories. The models include Shared-Bottom(SB)[2], MSSM[8], MMOE[9],
and PLE[12]. MSSM is a recent method belonging to the Customized Routing category and
achieves better results than SNR[7] and Cross-Stitch[5]. Though with the same category of
Dynamic Gating, both MMOE and PLE are tested owing to their popularity. For each base
model, we will verify whether DML can achieve additional gains. For reference, we also provide
the performance of single task models.

3.1.4. Implementation Details

For each feature, we use the embedding size 8. As suggested by the original papers, we use 1 level
bottom sub-networks for MMOE, MSSM, and SB while 2 levels for PLE. For SB, a sub-network
of 1 layer structure with 128 output dimensions is shared by the tasks. For other multi-task
models, each bottom level includes three sub-networks, which have the same aforementioned
architecture. For MSSM and PLE, task-specific and shared sub-networks are designated. For
multi-task models, each task tower is of the three layers MLP structure (128,80,1) and each task
is assigned equal loss weight. For the single-task model, each task utilizes the four layers MLP
structure (128,128,80,1). For the first two MLPs at Figure 1(b), we utilize the one layer structure
with 80 as the output dimension. For the last MLP at Figure 1(b), a one layer structure with 1 as
the output size is used. If not explicitly specified, RELU [23] is used as the default activation
function. All models are implemented with tensorflow [24] and optimized using the Adam [25]



Table 2
Further Analysis Results

Model
ML-1M Electronics

𝐴𝑈𝐶 𝑀𝑆𝐸 𝐴𝑈𝐶𝑟𝑎𝑡𝑒 𝐴𝑈𝐶𝑝𝑜𝑠

𝑀𝑆𝑆𝑀 0.8128 0.7651 0.7883 0.7627
𝑀𝑆𝑆𝑀 + 𝐶𝑇𝐹𝑀 0.8134 0.7654 0.7891 0.7636
𝑀𝑆𝑆𝑀 +𝐺𝐾𝐷 0.8129 0.7636 0.7886 0.7633
𝑀𝑆𝑆𝑀 +𝐷𝑀𝐿𝑣0 0.8138 0.7625 0.7884 0.7631
𝑀𝑆𝑆𝑀 +𝐷𝑀𝐿 0.8141 0.7611 0.7892 0.7641
𝑃𝐿𝐸 0.8122 0.7606 0.7885 0.7627
𝑃𝐿𝐸 + 𝐶𝑇𝐹𝑀 0.8133 0.7603 0.7890 0.7633
𝑃𝐿𝐸 +𝐺𝐾𝐷 0.8137 0.7574 0.7887 0.7634
𝑃𝐿𝐸 +𝐷𝑀𝐿𝑣0 0.8141 0.7536 0.7886 0.7629
𝑃𝐿𝐸 +𝐷𝑀𝐿 0.8151 0.7533 0.7893 0.7640

optimizer with learning rate 0.001 and mini-batch size 512. We run 20 times for each test to
report the results.

3.2. Overall Performance for Public Data

Please refer to Table 1 for the overall results. First, DML achieves significant gains across all these
tested multi-task models on the two public datasets, which shows DML’s wide compatibility.
Second, DML-enhanced PLE and MMOE get the best performance for MovieLens and Electronics
respectively. Considering their wide application in recommender systems, the results are as
expected. Third, the multi-task models perform better than the single task models thanks to the
knowledge transfer between tasks.

Besides AUC and MSE, DML should help to foster task consistency with CTFM and GKD. As
the tasks of MovieLens are rigorously correlated, we verify whether DML really enhances task
consistency on this data. First, we construct pairs of samples with different rating scores and
count the pair numbers. Second, we count the number of pairs, for which the prediction scores
of both tasks are in the same pair order as the rating score. The enhancement of the pair order
consistency among the two prediction scores and rating score should positively contribute to
the performance. Then, we can compute the metric of ’Consistency Ratio’. The listed data
in Table 1 agree with our anticipation. (For Shared-Bottom, we also observe more pairs, for
which predictions of both tasks are in rating score’s reverse order. This can explain its worse
performance in spite of the better consistency ratio.)

3.3. Further Analysis on Public Data

We select the two latest algorithms of PLE[12] and MSSM[8] to appraise the value of 𝐷𝑀𝐿’s
components, namely 𝐶𝑇𝐹𝑀 and 𝐺𝐾𝐷. Without the stop gradient operation, 𝐶𝑇𝐹𝑀 will be
very similar to the common attention mechanism. To prove the benefit of 𝐶𝑇𝐹𝑀 ’s design,
we also add the assessment for 𝐷𝑀𝐿𝑣0, which reserve the design of 𝐺𝐾𝐷 while remove the



gradient blocking operation of 𝐶𝑇𝐹𝑀 . Please refer to Table 2 for the evaluation results. First,
𝐶𝑇𝐹𝑀 and 𝐺𝐾𝐷 both contribute considerable gains over the base model. Second, as the
integrated model, 𝐷𝑀𝐿 enhances the performance further. Third, 𝐷𝑀𝐿𝑣0 is consistently
worse than 𝐷𝑀𝐿, which corroborates the value of reserving task-awareness. Compared with
𝐶𝑇𝐹𝑀 and 𝐺𝐾𝐷, 𝐷𝑀𝐿𝑣0 performs better on MovieLens while much worse on Electronics.
The task relationship of Electronics is more complex and negative transfer across tasks usually
exhibits more severe impact due to task conflicts. In this case, compared with vanilla attention,
𝐶𝑇𝐹𝑀 obtains substantial gains.

3.4. Online A/B Testing

DML is applied to the ranking stage[26] of an industrial large-scale news recommender system.
PLE [12] is utilized as the base model. And the main prediction tasks are the binary classification
task of Click Through Rate (CTR) and the regression task of item watch time. First, after the
model converge by training with billions of samples, the AUC metric for CTR consistently
increases 0.12% and the MSE metric for watch time decreases 0.14%. Moreover, the most
important online metrics include effective PV(count of Page Views with watch time exceeding
a threshold) and total watch time. We randomly distributed online users to two buckets with
the base PLE model or PLE+DML model and evaluated the performance for two weeks. DML
achieves significant (p<0.05) gains over the base model by 1.22% for effective PV and 0.61% for
total watch time. DML has been deployed to our online environment based on the results.

4. Conclusion

In this papaer, we propose the framework of Deep Mutual Learning across task towers(DML),
which is compatible with various backbone multi-task networks. Extensive offline experiments
help to verify DML’s effectiveness on multiple real-world datasets and across various base
models. Moreover, thorough ablation studies are carried out to verify and understand the value
of each newly introduced module. Finally, DML achieves significant online gains and has already
been deployed to the online platform.

References

[1] Y. Zhang, Q. Yang, A survey on multi-task learning, IEEE Transactions on Knowledge and
Data Engineering (2021).

[2] R. Caruana, Multitask learning, Machine learning 28 (1997) 41–75.
[3] X. Ma, L. Zhao, G. Huang, Z. Wang, Z. Hu, X. Zhu, K. Gai, Entire space multi-task model:

An effective approach for estimating post-click conversion rate, in: The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, 2018, pp.
1137–1140.

[4] L. Duong, T. Cohn, S. Bird, P. Cook, Low resource dependency parsing: Cross-lingual
parameter sharing in a neural network parser, in: Proceedings of the 53rd annual meeting



of the Association for Computational Linguistics and the 7th international joint conference
on natural language processing (volume 2: short papers), 2015, pp. 845–850.

[5] I. Misra, A. Shrivastava, A. Gupta, M. Hebert, Cross-stitch networks for multi-task learning,
in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 3994–4003.

[6] S. Ruder, J. Bingel, I. Augenstein, A. Søgaard, Latent multi-task architecture learning,
in: Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, 2019, pp.
4822–4829.

[7] J. Ma, Z. Zhao, J. Chen, A. Li, L. Hong, E. H. Chi, Snr: Sub-network routing for flexible
parameter sharing in multi-task learning, in: Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 2019, pp. 216–223.

[8] K. Ding, X. Dong, Y. He, L. Cheng, C. Fu, Z. Huan, H. Li, T. Yan, L. Zhang, X. Zhang, et al.,
Mssm: a multiple-level sparse sharing model for efficient multi-task learning, in: Proceed-
ings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2021, pp. 2237–2241.

[9] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, E. H. Chi, Modeling task relationships in multi-task
learning with multi-gate mixture-of-experts, in: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2018, pp. 1930–1939.

[10] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton, Adaptive mixtures of local experts,
Neural computation 3 (1991) 79–87.

[11] Z. Zhao, L. Hong, L. Wei, J. Chen, A. Nath, S. Andrews, A. Kumthekar, M. Sathiamoorthy,
X. Yi, E. Chi, Recommending what video to watch next: a multitask ranking system, in:
Proceedings of the 13th ACM Conference on Recommender Systems, 2019, pp. 43–51.

[12] H. Tang, J. Liu, M. Zhao, X. Gong, Progressive layered extraction (ple): A novel multi-task
learning (mtl) model for personalized recommendations, in: Fourteenth ACM Conference
on Recommender Systems, 2020, pp. 269–278.

[13] D. Xi, Z. Chen, P. Yan, Y. Zhang, Y. Zhu, F. Zhuang, Y. Chen, Modeling the sequential
dependence among audience multi-step conversions with multi-task learning in targeted
display advertising, in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 3745–3755.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polo-
sukhin, Attention is all you need, Advances in neural information processing systems 30
(2017).

[15] F. M. Harper, J. A. Konstan, The movielens datasets: History and context, Acm transactions
on interactive intelligent systems (tiis) 5 (2015) 1–19.

[16] J. McAuley, C. Targett, Q. Shi, A. Van Den Hengel, Image-based recommendations on
styles and substitutes, in: Proceedings of the 38th international ACM SIGIR conference on
research and development in information retrieval, 2015, pp. 43–52.

[17] Y. Wang, Z. Zhao, B. Dai, C. Fifty, D. Lin, L. Hong, L. Wei, E. H. Chi, Can small heads help?
understanding and improving multi-task generalization, in: Proceedings of the ACM Web
Conference 2022, 2022, pp. 3009–3019.

[18] Wikipedia, Pearson correlation coefficient — Wikipedia, the free encyclopedia,
http://en.wikipedia.org/w/index.php?title=Pearson%20correlation%20coefficient&oldid=
1146097966, 2023. [Online; accessed 15-April-2023].

http://en.wikipedia.org/w/index.php?title=Pearson%20correlation%20coefficient&oldid=1146097966
http://en.wikipedia.org/w/index.php?title=Pearson%20correlation%20coefficient&oldid=1146097966


[19] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, T.-Y. Liu, A theoretical analysis of ndcg ranking
measures, in: Proceedings of the 26th annual conference on learning theory (COLT 2013),
volume 8, 2013, p. 6.

[20] Wikipedia contributors, Evaluation measures (information retrieval) — Wikipedia,
the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Evaluation_measures_
(information_retrieval)&oldid=1095286224, 2022. [Online; accessed 9-January-2023].

[21] P. A. Flach, J. Hernández-Orallo, C. F. Ramirez, A coherent interpretation of auc as a
measure of aggregated classification performance, in: ICML, 2011.

[22] Wikipedia contributors, Mean squared error — Wikipedia, the free encyclopedia, https://en.
wikipedia.org/w/index.php?title=Mean_squared_error&oldid=1127519968, 2022. [Online;
accessed 31-January-2023].

[23] R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding deep neural networks with
rectified linear units, in: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
OpenReview.net, 2018. URL: https://openreview.net/forum?id=B1J_rgWRW.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., Tensorflow: a system for large-scale machine learning., in: Osdi, volume 16,
Savannah, GA, USA, 2016, pp. 265–283.

[25] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y. Bengio, Y. LeCun
(Eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL: http://arxiv.org/abs/
1412.6980.

[26] P. Covington, J. Adams, E. Sargin, Deep neural networks for youtube recommendations,
in: Proceedings of the 10th ACM conference on recommender systems, 2016, pp. 191–198.

https://en.wikipedia.org/w/index.php?title=Evaluation_measures_(information_retrieval)&oldid=1095286224
https://en.wikipedia.org/w/index.php?title=Evaluation_measures_(information_retrieval)&oldid=1095286224
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=1127519968
https://en.wikipedia.org/w/index.php?title=Mean_squared_error&oldid=1127519968
https://openreview.net/forum?id=B1J_rgWRW
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	1 Introduction
	2 Methodology
	2.1 Multi-Objective Ranking for Recsys
	2.2 Overall Design of DML
	2.3 Cross Task Feature Mining
	2.4 Global Knowledge Distillation

	3 Experiments
	3.1 Experimental Settings for Public Data
	3.1.1 Datasets
	3.1.2 Evaluation Metrics
	3.1.3 Models
	3.1.4 Implementation Details

	3.2 Overall Performance for Public Data
	3.3 Further Analysis on Public Data
	3.4 Online A/B Testing

	4 Conclusion

