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Abstract
Recommendation systems are widely used in e-commerce setting to help users find the most relevant
items. However, what is relevant for a user changes dynamically. For next-item recommendation,
similarity to recently interacted items is desirable in some cases but not others: consider for example
the behavior during comparison shopping in contrast to after a purchase. Such shifting user preference
regarding exploration is not well captured by existing concepts, much less taken into account in rec-
ommendations. In this paper, we offer definitions to quantify user exploration preference and how it
trends over time, based on spread of recently interacted items in embedding space. The soundness of the
concepts are illustrated with mathematical properties as well as analysis of platform data. We further
demonstrate flexibility and potential by attaching simple modules to well-known baseline algorithms
in two separate use cases, comparing performances for three e-commerce datasets. Source code can be
found at https://github.com/bz275/DispPred.

Keywords
sequential recommendation, dynamic preference, user profiling, embedding model, adaptive module,
evaluation metric

1. Introduction

It is well recognized that user satisfaction with next-item recommendation depends on far more
than similarity to past interactions [1, 2, 3]. User preferences shift dynamically with context
and intent, making accounting for such changes important for relevant recommendations.

One aspect of this preference is with regard to the preference for exploration. Consider the
example stream of user activity illustrated by Figure 1, where the user exhibited a change in
attitude towards unfamiliar items. It is intuitive to suppose a user engaging in comparison
shopping is interested in seeing similar alternatives to previous visited items, but prefers novelty
after the purchase is complete. However there lacks quantitative measure that can reflect such
trends, so the focus of this work is to quantify a user’s exploration preference in a dynamic
fashion.

Specifically, we consider the context of sequential recommendation in e-commerce, and
quantify the affinity to variation a user demonstrates at a given time based on the spread of
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their recent activities. With access to item embeddings that reflect item similarity/ relation,
the "variance" of the past 𝐿 items quantifies the 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 at that timestep for look-back
window 𝐿. A smaller value indicates that the vectors are more concentrated, suggesting focused
activities, while a larger value indicates greater dispersion, implying more scattered browsing.
As the look-back window slides forward with each additional interaction, the relative change,
𝐷𝑖𝑠𝑝𝐴𝑑𝑑, reflects the direction and magnitude of how the affinity is trending. A positive value
suggests a trend towards increased variation, and the magnitude against the bounded scale
indicates the strength of this trend.

Figure 1: Item images corresponding to a sequence of interactions for a e-commerce customer, which
starts with narrow focus leading to a purchase, expands to more categories, then narrows again for a
second purchase.

To show how the proposed concepts provide valuable insights into user preference changes
in a real-world setting, we use both publicly available e-commerce datasets and data collected
from live traffic on Etsy, a two-sided online marketplace notable for unique items. We offer data
analysis results to illustrate conceptually, and also provide proof-of-concept experiments for
two separate tasks, next-item recommendation and purchase prediction. Specifically, we show
that incorporating 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 improves accuracy (Hit Rate and NDCG) in the former (with lower
𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 deviation), boosts both ROC-AUC and Precision-Recall AUC in the latter, even with
the module added using the most basic structure. The embeddings we use are generated using
the Universal Sentence Encoder [4], which is more general, as well as SASRec [5], which is task
specific. All experiments are conducted with SASRec as the base engine; while later methods (e.g.
[6], [7]) have competitive performances, SASRec has shown robust SOTA performance and is
representative of the basic transformer infrastructure most commonly used in practical systems.
The adaptive module is added using the most basic structure, demonstrating the potential of
simply quantifying and accounting for changing user intent for extending existing systems. Note
also that the discussions are easily extendable to other contexts with sequential interactions,
such as music or news recommendations, in line with the central goal of adaptability.

While we do propose a related evaluation metric through this new lens of relevance, by
comparing the counter-factual 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 from the recommended next item to the ground truth,
this work differs in spirit from the broader study of diversification in recommender systems
([8, 9, 10]). Rather than making a prescriptive claim on a proposed metric and proposing an
algorithm that improves performance with respect to the metric, e.g. novelty, our focus is more
descriptive and aims at dynamic user profiling.

The paper is organized as follows. We discuss comparisons with existing literature in Section
2. In Section 3, we present the detailed definitions and properties of our proposed concepts,
illustrated through analysis of data collected from Etsy. Then in Section 5, we show proof-of-
concept experimental results using three e-commerce datasets for next-item recommendation
and purchase prediction. Finally, we conclude with Section 6.



To summarize, our main contributions are as follows:

• We quantify affinity to variation in sequential recommendation to capture dynamic user
exploration preferences, offering intuitive ingredient for adaptive approaches.

• We establish soundness and usability of the proposed concepts through analysis both
mathematically and based on real-world e-commerce data.

• We demonstrate flexibility and potential by enhancing baseline algorithms with proposed
concepts for two separate use cases, showing improved performance in three datasets.

2. Related Work

The dynamic nature of recommender systems has long been recognized. Sequential recom-
mender models that make personalized next-item predictions based on interaction histories rose
rapidly in popularity, and form the context of the discussion here. Well-known models include
GRU4REC [11], Caser [12], SASRec [5], NextIt[13], BERT4Rec [6], S3-Rec [7]; see surveys
[14, 15, 16].

The discussion of exploration preference in this work is based on the fundamental recognition
that similarity to past interactions alone does not warrant user satisfaction. Empirical evidence
supporting this notion [17] in part spurred development of the field of diversification in rec-
ommender systems, concerned with evaluation metrics beyond accuracy. Most common ones
include diversity [1, 18], novelty [19, 20], and serendipity/ unexpectedness [21, 22, 23]; we defer
reader to surveys for details [24, 25, 26, 27, 28]. This work share similar motivations but focuses
more on describing user behavior, compared to the more prescriptive nature of studies that
centers around promoting alternative objectives that are important for recommender quality.

Nevertheless, many recent works take a personalized approach that bear relevance to this
work or could be inspiration for future directions. Some approaches balance the tradeoff between
accuracy and alternative objectives based on user behavior [8, 29, 30, 31, 32]. User demonstrated
preference is sometimes considered explicitly, in a similar spirit to our work. Kapoor et al.
[33] propose the concept of novelty preference which changes based on user and session, and
is predicted with the help of behavioral psychology insights. Li et al. [34] use multi-cluster
modeling of user interests in the latent space to personalize unexpectedness using self-attention.
Mehrotra et al. [35] log user behavioral response to divergent recommendations to predict
future receptivity. Qian et al. [36] disentangle user intent into popularity conformity and
personal preference to introduce intrinsic novelty for long-tail items.

Another aspect of our proposed quantification involves the dependency on context that
changes over time. While it is mostly implicit here through user behavior, many recent works
explicitly model these temporal context and effects [37, 38, 39, 40, 41, 42, 43]. Of particular
interest is the concept of temporal diversity proposed by Lathia et al. [44] that similarly explores
the dissimilarity between sets of top-N recommendations temporally, though they concern
mainly with the same items repeating over time.

Lastly, we highlight some studies on the particular effect of user intent on preference drift
[45, 46, 47]. Intuitively, the exploration preference of an user is linked to how strongly they
intend to purchase, and indeed we use purchase prediction as one of the example use cases.



However, the central focus of this work is not on determining what governs user intent but
rather on representing and adapting to exhibited behavior.

3. Affinity to Variation

We now provide formal definitions of the concepts described thus far, offering design justifica-
tions and useful properties.

Recall again that we are interested in a given user’s affinity to variation given their recent
interactions, based on how concentrated the items when embedded on a vector space. We
assume access to the sequential interaction history of each user, where each interaction consists
of an item and an action. Furthermore, we assume access to a reasonable embedding space, as
detailed later.

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 For a fixed user, consider a sequence of interactions,
{(𝑥1, 𝑎1), (𝑥2, 𝑎2), ..., (𝑥𝑇 , 𝑎𝑇 )}, where 𝑥𝑡 is the item the user interested with at time 𝑡
and 𝑎𝑡 is the action taken. Denote this sequence of items in the embedding space as
{𝑋1, 𝑋2, ..., 𝑋𝑇 }.

Let 𝐿 be the size of the look-back window, where we consider the last 𝐿 interactions to be a
snapshot of a user’s current attention space. To assess the concentration level of this attention
space, we measure the spread of these items on the embedding space using high-dimensional
analogue of variance, known in some contexts as the squared standard distance deviation.

We define the 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 of the 𝐿-step sub-sequence ending at time step 𝑡 as

𝜎2(𝑡;𝐿) :=
1

𝐿

𝑡∑︁
𝑖=𝑡−𝐿

‖𝑋𝑖 − 𝜇(𝑡;𝐿)‖2,

where 𝜇(𝑡;𝐿) = 1
𝐿(

∑︀𝑡
𝑗=𝑡−𝐿𝑋𝑗) and ‖ · ‖ is the Euclidean norm. In other words, 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

measures the average squared Euclidean distance of the points in the set from the mean of the
set. We omit 𝐿 when it is clear from the context.

This is meant to be a simple and convenient definition, aiming towards our ambitions of
usability in practice and adaptability for future research. The simplicity of the definition, along
with its resemblance to variance, helps with intuition and interpretation. Moreover, similar to
the standard definition of variance, 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 can be updated incrementally as the sequence
rolls forward, without having to store every embedding in the sequence and thereby reducing
memory demands. Having a simple construct also help the concepts to be well-behaved, and
thus conducive to future adaptations. Specifically, the standard components of 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
lead to well-understood properties that allow easy incorporation into deep neural networks,
while the problem-agnostic range of 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 makes it viable for settings such as weighting or
hypothesis testing.

𝐷𝑖𝑠𝑝𝐴𝑑𝑑 With this basic quantification of how spread out the user’s interactions are over a
fixed window, we examine the dynamics of how the spread changes with each new interaction.



With each subsequent item that the user interacts with, the window of 𝐿 most recent items
is shifted forward to include this new item. Because the window size is fixed, how the relative
distance from the set to the new item compares to that to the least recent item is reflected in
the change in 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛.

While direction of change is the most important for detecting trends, we would also want to
understand the strength of the trend through magnitude of change. However, note that the scale
of 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 depends in general on the distribution of the items on the embedding space, and
specifically on which regions the recent set of interaction items are mapped to, so the difference
in 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 could vary greatly in scale. This implies concerns in interpretability not only
from simple difference but also from percentage change, since the resulting 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 could
be orders of magnitude larger than the preceding one, especially for embedding space that is
normalized.

To capture this change while being scale invariant, we define 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 as the relative
difference resulting from shifting the window, comparing the difference to the average:

𝐷𝑖𝑠𝑝𝐴𝑑𝑑(𝑡) :=
𝜎2(𝑡)− 𝜎2(𝑡− 1)

1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))
. (1)

A positive value of 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 indicates an increase in 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛, reflective of increased
affinity to variation; the reverse is true of a negative value.

Note that the risk of division by zero is reduced, but not eliminated, in which case the
definition becomes ill-posed. This only happens in the special case that 𝜎2(𝑡) = 𝜎2(𝑡− 1) = 0;
there defining 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 to be 0 seems reasonable. However, for the purpose of our discussions,
we will in fact disregard this case. A 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 value of 0 implies that all items interacted in
the look-back window are at the same point on the embedding space, or identical from the view
of the vector representation. While this could be possible, it could also indicate an embedding
space without enough representation power, unintended system behavior or even malicious bot
activity. It is more informative for raising concerns than our purpose of understanding user
behavior patterns.

Putting aside the above technicality, the range of 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 is bounded independent of the
embedding space, as stated below.

Lemma 3.1. 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 has value bounded between -2 and 2.

The proof is in the appendix. This is a theoretical range to certify the bounded behavior of the
definition, while in practice the real range could be much narrower as shown in the experiments,
depending on the characteristics of the embedding space.

𝐴𝐷𝐴𝐷 We treat 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 as a dimension of user intent, and evaluate a sequential recom-
mender system in its ability to correctly capture it. We argue that recommended items that
result in similar 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 as the true next-item better match the user’s intended behavior,
reflecting an alternative aspect of relevance.

The time indices are less important for evaluating a recommender system, as recommender
outputs to predefined test trajectories are compared to the ground truths. Thus we instead
index trajectories to simplify notation. Specifically, let 𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 denote the relative change to



𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 from the true next item following trajectory 𝑗. Then replace the ground truth by
the next-item predicted by the recommender, and denote the hypothetical 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 as 𝜎𝑗2,
and hypothetical relative change using 𝜎𝑗

2 as 𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 . The absolute difference between the
two values represents the error in capturing the user’s true change in affinity to variation.

To evaluate on the recommender level, we average the above difference over all trajectories
in the test set T, and call it Average DispAdd Deviation (𝐴𝐷𝐴𝐷):

𝐴𝐷𝐴𝐷 :=
1

|T|
∑︁
𝑗∈T

(︀
|𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 −𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 |

)︀
.

In the ideal case that the correct 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 is perfectly captured and the error is 0, (such as is
the case if the predicted item is the true next item), then 𝜎2(𝑗) = 𝜎2(𝑗).

In fact, we show this two way relation is true in general:

Lemma 3.2. |𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 −𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 | = 0 iff 𝜎2(𝑗) = 𝜎2(𝑗).

Consequently, we will explicitly model 𝜎2(𝑗) and 𝜎2(𝑗) instead of the respective relative
differences in the next section, for simplicity and numerical stability.

Embeddings The above definitions rest on the assumption that there is an embedding that
can sufficiently capture the relation among items, specifically that pairwise distances between
item embeddings have reasonable correspondence to the similarities between the items. How to
encode rich item information appropriately into embedding vectors is an actively research area
in itself, with no universally agreed upon best practice. On the other hand, many recommender
systems train their own embedding mappings in the process of learning item relevance, where
the performance of the system lends credibility to the quality of the embeddings. Our proposed
definitions work with embedding either trained separately or from a base recommender engine.

4. Analysis of platform data

We now explore our definitions of 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 and 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 on real-world data. We draw
samples from Etsy user interaction data, and calculate embedding vectors using the Universal
Sentence Encoder [4]. We present results from moderately active users, specifically those who
made between 2 and 6 purchases in the past year, to avoid any potential idiosyncrasies of the
extremes. Results from highly active users in fact show similar patterns. We sample a percentage
from the candidate pool, roughly 3,000 users, and collect their interactions from the first six
months of 2021. There are 4 types of actions: view, favorite, cart, and buy. Users with less than
20 interactions and 3 purchases are filtered, and consecutive interactions within 4 hours of each
other that are identical are removed. The resulting dataset contains 799 users, with an average
of 164 interactions per user.

First, we illustrate the definitions with example trajectories to provide a concrete understand-
ing, and to check for consistency with our intuition. We calculate 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 for a window of
six items, displayed on the top row in each figure, then calculate the 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 for each of the
four items that follow, shown on the bottom row.



Figure 2: Example trajectory 1 with 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 over a 6-item window and subsequent 𝐷𝑖𝑠𝑝𝐴𝑑𝑑
displayed.

Figure 3: Example trajectory 2 with 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 over a 6-item window and subsequent 𝐷𝑖𝑠𝑝𝐴𝑑𝑑
displayed.

In Figure 2, we can see that the user starts by interacting with sewing patterns of similar
styles; this is corroborated by a small 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 value of 0.172. The first item that follows is
again similar, confirmed by a near-zero 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 that reflects little change. However, each of
the next two items belongs to a different category, showing an expanding affinity to variation;
indeed, we see large positive 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 values for both steps. The last item is less of a departure
from the item prior, showing a slow in the exploration, which the small positive 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 value
again confirms.

The opposite pattern can be seen in Figure 3. Here the user begins with a diverse selection
including various kitchen items and notebooks, captured by a relatively large 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 value
of 0.507. The spread then shrinks as the user focuses in on notebooks of a particular style, during
which process we see increasingly negative 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 values. Then, when the user interacts
with an item from a different category, there is a slight expansion in the affinity to variation
again, reflected by a small positive 𝐷𝑖𝑠𝑝𝐴𝑑𝑑.

Now, we attempt to verify intuitive hypotheses about user behavior patterns using 𝐷𝑖𝑠𝑝𝐴𝑑𝑑.
Specifically, it seems reasonable to expect that before a user makes a purchase, they have a



higher tendency to look at items that are highly similar to each other to compare. After the
purchase is complete, on the other hand, we might expect them to be more interested in items
that are meaningfully different, as their previous need has been met. To extract supporting
evidence, we look at each time a purchase is made, and take the last five interacted items prior to
it as well as the five following it. We compute the 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 resulting from each interaction, and
average them according to the number of interactions from the purchase (negative corresponds
to before purchase and positive corresponds to after); we plot the results in Figure 4 for four
different window sizes. We see that there is a clear distinction between items interacted with
prior to purchase, which produced negative 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 on average, and items interacted with
after a purchase, whose resulting 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 increased noticeably. The trends are consistent for
the window sizes presented. Note that smaller window sizes result in less smoothness and vice
versa, so we choose sizes which are sufficiently large but not so much to cause overly muted
dynamics.

Figure 4: Average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 for items interacted with immediately before and after a purchase, plotted
for different window sizes.

We repeat a similar analysis, but divide the behaviour relative to the start of a new session,
which is an interaction that is at least 4 hours apart from the previous one. We again take five
items from the end of the previous session and five items from the start of the new session,
and average the 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 from each interaction. We observe a similar trend, though of a
reduced scale. In Figure 5, we again plot the average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 against the distance, defined
similar to above. The plots reflect a tendency for users to look over items very similar to recent
interactions right before the end of a session, and interact with items further removed from the
average of recent interactions at the start of a new session. Compared to the behavior after a
purchase, this exploration seems to end much sooner on average, indicated by a quick drop of



the average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 towards 0. This aligns with user interviews conducted by the platform,
where users report themselves typically returning via the home page, where they may engage
briefly with prompts for exploratory contents, then go back to where they left off.

Figure 5: Average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 for items interacted with near the end of a session and at the start of a
new one, plotted for different window sizes.

We now examine patterns on the taxonomy level. Etsy categorizes products with 15 top-level
taxonomies; for each interaction, we average its 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 into the taxonomy the item belongs
to, and present the resulting bar plot on the bottom of Figure 6. To contrast with alternative
quantification without the new concepts, we plot on the top of Figure 6 the average number
of consecutive interactions in the same taxonomy (blue solid line) and the total number of
purchases of this taxonomy(red dashed line).

When a taxonomy has negative average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑, it suggests that users overall spend more
time in narrowing behavior when interacting with items in the category. In other words, the
plot shows listings under the categories of Jewelry and Wedding, for example, are more likely
to be visited following interactions with similar items. This largely aligns with our intuitive
understanding of user behaviors. For jewelry, one typically moves through many iterations of
products that have increasing number of desirable features, easily resulting in long trajectories
of increasingly similar items. This is consistent with the alternative statistics, with largest
number of consecutive interactions of all taxonomies. For wedding supplies, it is reasonable to
imagine that most users engaging with the category have persistent interest over a prolonged
period of planning, and have generally static style preferences. The prolonged planning is
confirmed by the low total purchases, and the short average consecutive interactions may be
due to interactions with other categories in-between.

On the other hand, when a taxonomy has positive average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑, it reflects that users visit
the category more frequently as part of exploratory behavior rather than focused engagements.



Figure 6: Etsy dataset statistics broken down by the top level taxonomies. (TOP): average consecutive
interactions (blue solid line) and total purchases (red dashed line) in the taxonomy; (BOTTOM): average
𝐷𝑖𝑠𝑝𝐴𝑑𝑑 of items belonging to the taxonomy.

This usually mean less purchasing, as confirmed by the overall lower total purchases for
taxonomies with more positive 𝐷𝑖𝑠𝑝𝐴𝑑𝑑. There is one category, Home and Living, that stands
out as having relative a high purchase number despite the positive average 𝐷𝑖𝑠𝑝𝐴𝑑𝑑. One
potential interpretation might be that highly similar items are less common in the category,
or that many items serve some specific functionalities, so there is less incentive to re-visit the
same or a similar item once a user is satisfied with a discovery.

In both cases, we see that alternative statistics are able to help interpret patterns uncovered



Table 1
Dataset statistics (after pre-processing)

Dataset # users # items avg actions / user # actions

Retail-Rocket 35,423 29,437 11.99 495,400
Tmall 8,133 497,022 694.41 5,663,878
Etsy 23,441 2,008,696 163.13 3,870,776

by affinity to variation, but not reflect these patterns themselves. Our proposed concepts, in
reflecting this dynamic form of intent otherwise hard to capture, enables a novel angle for
gaining insights into user behavior.

5. Numerical Evidence

The ability to quantify a user’s affinity to variation opens up a range of application opportunities.
For proof-of-concept, we incorporate the proposed concepts in two common applications: next-
item recommendation and purchase prediction.

5.1. Datasets

We investigate the performance on three different e-commerce datasets, two publicly available
and one proprietary. In general we remove users and actions with too few interactions to ensure
a base level of density. Moreover, since we aim to capture changing user behavior patterns, we
only preserve users with a minimum number of purchases. The data cleaning procedures are
detailed below, and the resulting summary statistics are in Table 1.
Retail-Rocket: An e-commerce dataset publicly available on Kaggle 1 that contains 4.5

months of user interaction data. Actions include click, add-to-cart, and transaction. We set
minimum number of interactions to 5, but no minimum purchase due to data size.

Tmall:. A publicly available dataset provided by Alibaba 2 that contains around 10,000 user
records and 12 million actions of user activities on Taobao app from Nov 18, 2014 to Dec 18,
2014. Each action is one of click, add-to-favorite, add-to-cart and purchase. We set interaction
minimum to 5, and purchase minimum to 2.

Etsy: A proprietary dataset collected from user activity logs between Aug 1, 2021 to Aug 31,
2021. A random sample is drawn from the most active users on the platform, containing the
user id, item id, and interaction type, which include view, cart, favorite and purchase. Minimum
number of interactions is set to 20, and minimum purchase is set to 3.

For each user trajectory, the second to last item is used for validation and the last for testing.
All remaining interactions with at least 𝐿 steps of history are used for training. Hyperparameters
are tuned on the validation sets, then results on the test sets are reported. For more efficient
evaluation, for each target item we sample 99 negative examples to create the candidate set,

1https://www.kaggle.com/retailrocket/ecommerce-dataset/home
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=46



and evaluate on a sample of 10,000 users when applicable. When an identical action is repeated,
only the first is preserved to reduce noise.

5.2. Embeddings and Base Engine

We opt to use embeddings trained with a base recommendation engine to demonstrate the
flexibility of our construct. This is particularly convenient for recommendation tasks such as
our first example, since 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 can simply be incorporated in an additional module on top
of the base model.

For clarity and consistency, we choose to use one base engine for both experiments, varying
the size and sparsity of the datasets instead. This of course raises the concern of generalizability.
Our ideal candidate is a base engine with verified performance to ensure the informativeness
of our defined concepts, but not overly optimized or specialized, in order that the outcomes
of the experiments can be reflective of similar engines. We examined the performance of two
popular baseline methods, SASRec ([5]) and GRU4Rec ([11]), both applicable to general settings
with no requirements on data density or context information. We found that the characteristics
of 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 differed more among the datasets of varying size and sparsity using the same
embedding mapping than between the embedding mappings, supporting the choice to prioritize
varying the datasets in the experiments.

SASRec is what we present here since it is a representative sequential recommendation
approach. It is used as baseline in numerous studies with consistent performance (e.g., [13, 41])
and extended upon in later works (e.g., [6, 46]). In fact, the attention mechanism it uses from
the Transformer structure ([48]) is actively studied and extended upon both in and outside
of recommender systems ([49, 50]), proving to be a adaptable method with the potential to
persist as a component in a subclass of future state-of-the-art methods. This in turn hopefully
lends more relevance to the demonstrated performance boosts from incorporating our proposed
concepts.

5.3. Application 1: Next-item Recommendation

As affinity to variation is defined in the context of sequential interactions, next-item recommen-
dation is the most natural application.

From the exploratory analysis, we see that the pattern of a user’s engagement is not static
across time. For example, one might engage with items similar to the previous one for some
period of time while opting for entirely different categories during others. While many sophisti-
cated sequential models have been proposed to account for various short-term and long-term
trends (e.g. [51, 52]), 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 provides direct information on the change in the user’s affin-
ity to variation. Thus, we aim to augment existing sequential recommender systems by also
considering the 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 signal.

Specifically, in order to choose the most relevant item to recommend next, we predict
𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 at the next time step and assign a score to each candidate item based on how
closely their inclusion would match this predicted level of 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛. In particular, to recom-
mend a next-item at time 𝑇 , we use item embeddings from the base model to compute 𝜎2(𝑡)
for 𝑡 ≤ 𝑇 , and predict �̂�2(𝑇 + 1). Then, a relevance score for each of the candidate items



is computed based on the closeness to generating �̂�2(𝑇 + 1). Here we do so by computing
𝜎2(𝑇 + 1) induced by each candidate item and then using the negative of the L1 distance to
�̂�2(𝑇 + 1) as logits. We perform the prediction with a simple two-layer network, as illustrated
in Figure 7 (LEFT), but any prediction model (and qualifying base engine) can be swapped into
the general framework, indicated by the dashed box(es) in Figure 7 (RIGHT).

Figure 7: (LEFT) Structure of a simple two-layer feedforward network; "Add" refers to residual connection.
(RIGHT) General framework for incorporating 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 in next-item recommendation.

In general, a base engine qualifies if it (1) is a sequential recommendation model, (2) uses
embedding vector representations for items, and (3) generates recommended next items from a
set of candidates by computing their relevance scores. These are common to some of the most
popular models for sequential recommendations, ensuring that the structure is generalizable
and expandable.

Note that a possible alternative is to implement a secondary prediction algorithm for the
desirable item embedding that would generate 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 of value �̂�2(𝑇 + 1), then compute
the relevance with inner product, which might be more efficient for large systems.

With the new relevance scores based on affinity to variation, we can obtain a different ranking
of the candidate items by adding them to the original scores produced by the base engine. To
ensure the relative magnitude of the two is appropriate, we scale the new scores to match
the mean of the original scores, then weigh by a changeable hyperparameter 𝛽. We rank the
candidate items using this combined score.

We adopt the hyperparameters and initialization strategies suggested by the author for
SASRec. We use learning rate 0.001, latent dimension 50, l2 regularization parameter 1e-6, and
maximum sequence length roughly proportional to the average action length: Retail-Rocket at



Table 2
Next-Item Recommendation

Dataset Method HR@1 HR@5 NDCG@5 ADAD (↓)

R-R base 0.6838 0.8393 0.7700 0.2052
combined 0.6928 0.8397 0.7737 0.2028

Tmall base 0.7519 0.8436 0.8033 0.1018
combined 0.7584 0.8437 0.8057 0.1010

Etsy base 0.4387 0.5089 0.4785 0.2025
combined 0.4626 0.5088 0.4877 0.1996

30, Tmall at 300 and Etsy at 100. We tuned the hyperparameters for the 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 prediction
module on the validation set. We set the learning rate to 0.001 after performing a grid search from
{0.1, 0.01, 0.001, 0.0001}, and the weight in the combined score to 0.8. We set the window/kernel
size to 6/4, 8/5, 7/3 for Retail-Rocket, Tmall, and Etsy respectively, from {6,7,8,9,10} for window
and {1,2,3,4,5,6} for kernel. The reported results are based on outputs for the test set using
the combined score between the tuned 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 module and SASRec. However, note that
improvements are observed consistently for other hyperparameter choices as well, without
discernible trends.

To evaluate the performance, we compare the ranking resulting from the combined scores to
the ranking using only the base scores. Table 2 contains the results, reported as the average
over 5 repeated runs; results that are statistically better, with p-value less than 0.05, are in bold.
Retail-Rocket is listed as "R-R".

For accuracy, we report popular measures HitRate@5, NDCG@5 and HitRate@1. Across
all datasets, we see that the combined score produced rankings with higher NDCG@5 and
HitRate@1 compared to the base model alone, showing a boost from incorporating 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
information even in this simplest form. We also report the 𝐴𝐷𝐴𝐷 values, which are lower for
rankings using the combined score. Since we argue a recommendation that better matches the
𝐷𝑖𝑠𝑝𝐴𝑑𝑑 of the true next-item is more relevant to the user, it suggests additional reduction in
user disatifaction not captured by the improved accuracy.

Note that for comparison, we also compute 𝐴𝐷𝐴𝐷 for a randomly selected item to follow
each trajectory, which is generally larger but never exceeds 0.6. It seems that the embedding
space generally produces small differences in 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 for the item sets. Furthermore, this
indicates the results of the base recommender on average matches the users’ demonstrated
𝐷𝑖𝑠𝑝𝐴𝑑𝑑 much better than random, which is as we expect with the accuracy performance.

5.4. Application 2: Predicting Purchases

A second example application we explore is the connection between affinity to variation
dynamics and purchase behaviors. Analysis presented before shows an overall narrowing
trend in interest sets prior to purchases, so a natural question is whether modeling 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
might help forecast whether a purchase will occur.

Answering this question is meaningful for e-commerce platforms, as it could help understand
user intents and better cater to real time needs. This would be especially the case if a reliable
purchase forecast could be obtained a period of time in advance (e.g. at the start of a session).



Table 3
Purchase Prediction

Retail-Rocket Tmall Etsy

AUC PR-A AUC PR-A AUC PR-A

action 0.9232 0.4010 0.6472 0.0781 0.7270 0.4279
+ disp 0.9295 0.4213 0.6560 0.0866 0.7289 0.4304

As a first step, we focus on a simple sequential setting, and aim to predict whether the next
interaction will be a purchase using information up to the current time.

The most basic way to attempt this is to perform a time series forecast using actions up
to the current time as features. This is the approach we compare against as the baseline. To
investigate the value from information of affinity to variation, we simply include 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
as an additional feature at each time step. In other words, now there are two covariates for the
timeseries forecast. Note that 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 is used as the feature instead of 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 because
it preserves the magnitude information, while the key signal from 𝐷𝑖𝑠𝑝𝐴𝑑𝑑, the sign, can be
derived from the first difference.

We use the same two-layer network as shown in Figure 7, changing only the input and
output dimensions in addition to tuneable hyperparameters. For fairness of comparison, we
tune the hyperparameters based on the baseline model using only action signals, then keep
the same model configuration when adding the 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 signal. For each, the model with
the best performance on the validation set during training is selected and the performance
on the test set reported. Because the number of purchases is much lower than the number
of non-purchases, we report not only the AUC (area-under-the-curve) value of the Receiver
Operating Characteristic (ROC) curve, which shows the general diagnostic ability of the binary
classifier, but also the AUC value for the Precision-Recall (PR) curve, which shows the trade-off
between precision and recall of only the positive class.

The results for the three datasets are shown in Table 3, with ROC-AUC reported as "AUC"
and Precision-Recall AUC reported as "PR-A". The learning rate used for Retail-Rocket and Etsy
is 0.01, and for Tmall is 0.1, after performing a grid search from {0.1, 0.01, 0.001, 0.0001}. The
same window and kernel sizes are used, and the number of hidden units in the feedforward
network is set to 16 for Retail-Rocket and 32 for the remaining two datasets, after searching
{2, 4, 8, 16, 32}. We observe that the prediction accuracy for the purchase action is higher for
all three datasets. While the improvements seem marginal for ROC-AUCs, the percentage
improvements for PR-AUCs are much higher, reflecting stronger performance in precision and
recall for positive instances of purchase actions despite their rare occurrence. Note that the
predictive ability for Tmall is poor overall due to an extremely small number of purchase signals
in the test set, only 1.1% at 91 purchases.

5.5. Future Directions

Our research highlights the importance of understanding users’ exploration preference dynami-
cally, and establishes a foundation for new approaches in adaptive systems. One could envision
an ensemble recommender system with specialized context dependent modules, modulated



based on the user’s current affinity to variation. This could help open up possibilities on more
creative approaches to recommendations, such as a style based exploration module. If a large
increase in affinity to variation is anticipated, the module is activated to offer recommendations
that match recent interactions in style but not necessarily category, providing more opportu-
nities for serendipitous discoveries. As a further potential for interplay with diversification
work, our derived metric could help ground the appropriate balance between accuracy and
diversification objectives. By demonstrating user demonstrated preference, it takes away the
burden of arguing for diversification to be added at the "cost" of accuracy, and introduces an
additional dimension to the inherently multi-faceted concept of relevance.

Other future directions include alternative constructs for user’s exploration preference, such
as using determinant of embedding matrix, or more dynamic treatment of the lookback window
size. It may also be worth examining the confounding effect of existing recommender policies
on observed user behavior regarding exploration preferences, which could yield behavioral
insights and present opportunity for further studies on how to remove such bias.

6. Conclusion

In this paper, we introduced novel concepts to quantify and analyze user exploration preference
in the context of sequential interactions. We propose affinity to variation measure at each
time step, 𝐷𝑖𝑠𝑝𝐴𝑑𝑑 to measure the relative change, and a derived metric to evaluate whether
results from a recommender system matches the true 𝐷𝑖𝑠𝑝𝐴𝑑𝑑. These definitions with their
mathematical properties establish a foundation for building adaptive recommendation systems
that account for the dynamic nature of user preferences, demonstrated through promising
results in proof-of-concepts experiments. The insights and methodologies presented in this
paper open up simple and implementable avenues to enhance recommendation algorithms for
more relevant item suggestions to users. With potential to connect ongoing research, we believe
that our approach opens exciting new directions for progress in more adaptive and effective
recommendation systems in the future.
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A. Proofs

Proof of Lemma 3.1 If 𝜎2(𝑡) ≥ 𝜎2(𝑡− 1) ≥ 0,

𝜎2(𝑡)− 𝜎2(𝑡− 1)
1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))
≤ 𝜎2(𝑡)

1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))

≤ 𝜎2(𝑡)
1
2𝜎

2(𝑡)
= 2

If instead 𝜎2(𝑡)− 𝜎2(𝑡− 1) ≤ 0,

𝜎2(𝑡)− 𝜎2(𝑡− 1)
1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))
≥− 𝜎2(𝑡− 1)

1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))

≥− 𝜎2(𝑡− 1)
1
2𝜎

2(𝑡− 1)
= −2

The two extreme values are in fact achieved by 𝜎2(𝑡) = 0 and 𝜎2(𝑡− 1) = 0 respectively; as
we discard any such cases as outliers, the range is strictly speaking (−2, 2). □
Proof of Lemma 3.2

If 𝜎2
𝑗 = 𝜎2

𝑗 , 𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 = 𝐷𝑖𝑠𝑝𝐴𝑑𝑑𝑗 by construction.
In the reverse direction, if |𝐷𝑖𝑠𝑝𝐴𝑑𝑑(𝑡)−𝐷𝑖𝑠𝑝𝐴𝑑𝑑(𝑡)| = 0,

0 =
𝜎2(𝑡)− 𝜎2(𝑡− 1)

1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))
− 𝜎2(𝑡)− 𝜎2(𝑡− 1)

1
2(𝜎

2(𝑡) + 𝜎2(𝑡− 1))

=
2(𝜎2(𝑡)− 𝜎2(𝑡))𝜎2(𝑡− 1)

(𝜎2(𝑡) + 𝜎2(𝑡− 1))(𝜎2(𝑡) + 𝜎2(𝑡− 1))

Note that 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 is nonnegative by construction. Then if the denominator is nonzero, the
numerator is zero only if 𝜎2(𝑡)− 𝜎2(𝑡) = 0 given 𝜎2(𝑡− 1) ̸= 0. □
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