
Search request routing in Bittorrent and other P2P based
file sharing networks

© Scherbakov Konstantin

Saint-Petersburg State University
deflector@gmail.com

Abstract

Existing p2p file sharing networks doesn’t
always give their users abilities to make an
effective and fast searches for particular data. In
this paper we introduce some improvements for
main subset of these networks, especially for
bittorrent and descript some well known methods
of search query routing, used in other networks
that may be useful for our purposes too. We
describe some ideas of modification source of
engines, used by usual and super peers of
bittorrent network and illustrate some possibly
useful changes in bittorrent dht structure.

1 Introduction

The utilization of internet bandwidth by p2p

traffic grows very fast in the past years. The pure p2p
system is presented by some number of nodes with
absolutely identical functionality and connected
between each other. Such type of distributed systems
is a base of many file sharing networks like
kademlia,1gnutella2, etc. But there are a number of
file sharing networks with not pure p2p structure,
which are also called p2p networks. One of the most
popular of them is bittorrent [1]. All these networks
give their users abilities to share some files between
each other and to find them and their source nodes in
the network. Effective speed of file downloading in
such type of networks depends on different factors
including number of simultaneously running data
search queries.

Many of p2p systems (especially file sharing) are
unstructured: their nodes with shared data on it
appear and disappear constantly, network topology
changes in time. So, success of particular data search
request depends on this feature.

There are some known and successfully
implemented search algorithms in p2p networks.
They can be united in some classes: blind and
informed [19].

0Proceedings of the Spring Young Researcher's
Colloquium On Database and Information
Systems SYRCoDIS, St.-Petersburg, Russia, 2008

1.1 Blind search methods:

- original gnutella algorithm (FS/BFS): one

node contacts each other accessible nodes within
TTL hop; produces huge overhead [4]

- Modified BFS (MBFS): each node send
request to a random subset of other nodes, connected
to it; number of requests reduced in comparison with
FS [6]

- Iterative Deeping (ID): rather similar to
previous two methods, but realizes a special feature –
user defined termination condition; ID is
implemented in ed2k/kademlia [8, 20]

- Random Walks (RW) [8]: initial node sends
some number of search requests to different neighbor
nodes, each other node processes this request (also
known as walker) by itself and then resends it to only
one neighbor; walkers terminates by success or
failure (based on TTL or other walkers results)

1.2 Informed search methods:

- Super Peer (SP): initial (leaf) node contacts

a special super peer (hub) node, when sending a
search request; hub node processes this request and
send it to relevant leaves and neighbor hubs [14];
implemented in gnutella2

- Intelligent BFS (IBFS): each node stores a
special local index - pairs (query, neighbor_id) for
recently processed queries; when a new request
arrives, node checks its similarity to stored requests
and then extracts target nodes, which returned
maximum number of results to this requests and at
least redirects new request to them, waiting for
feedback with number of hits to update its local index
[6]

- APS: each node stores a special local index
– (neighbor_id, last_requested_object, successes-
failures value), where success-failures value updated
by walkers; this algorithm produces very small
overhead [18]

- GIA: each node sends request to subset of its
neighbors, based on it’s announced capacity; this
algorithm provides ability to make rather bandwidth-
efficient searches

- Routing indices (RI): nodes builds thematic
indices for stored documents (only documents, not
files), and stores some type of “goodness value” for
neighbors; this algorithm is bandwidth-effective for

searches, but not for indices and “goodness values”
building, updating and calculating [2, 10]

- Distributed Resource Location Protocol
(DRLP): if current node has no data matching the
query, it forwards query to its neighbors waiting for
feedback about number of hits; all subsequent queries
are forwarded directly to the neighbors with non zero
hits [9]

- Gnutella with shortcuts (GS): original
gnutella FS algorithm is extended by making
shortcuts to nodes, which are useful to answering
queries (returns more results, than others) – so further
queries are sending to these nodes [19]; this
algorithm is also simple, but it makes network less
load-balanced.

2 Related work

There are a number of P2P file sharing systems

with implemented informed and blind search
methods. For example Gnutella/Gnutella2 uses FS
method, so their each node’s query flood some part of
entire network resulting in rather robust and simple,
but bandwidth costly approach. SoulSeek uses
centralized indices, so it has bad load balancing and
vulnerable for technical failures or attacks (like
Distributed Denial of Service by generating too many
queries by leaf nodes to central indexing node). There
are also a number of research systems, developed
especially for searching documents: CHORD [13],
CAN [11], CRI/ERI/HRI [2], Oceanstore [7], Pastry
[12], Tapestry [21]. But the greatest part of them
(except *RI) expects for specific network structure
and applicable only for document searching.

Search request routing in P2P is also similar to
traditional routing algorithms [15]. But while those
algorithms are designed to send a packet from one
node to another specific one using the shortest way,
request routing algorithms in P2P should transmit
request packet from one concrete node to non
predefined set of other nodes with the goal of
returning some number of answers and sources of
object being searched.

3 Current P2P file sharing leader
networks and their features

As it was noticed in the introduction of this

article, utilization of internet bandwidth by p2p traffic
grows very fast in the past years.

As we can see on the diagram presented below
(made by IDG News Service in 11.2007), p2p traffic
can utilize up to 70% of total internet bandwidth and
main part of this traffic is used by bittorrent/dht [1]
and ed2k/kademlia [5].

These networks were designed for effective
sharing of huge data amounts (files of different types:
video, music, software, etc). So their high popularity
may be expected.

Fig. 1. Internet bandwidth utilization by different
types of traffic – 11.2007, IDG

Kademlia and bittorrent dht uses a special

distributed hash table like structures to store
information about shared data and its source nodes.
When new node wants to connect to network, it
calculates a special hash value that will be used as
unique id (node_id) of this node, and than announces
it to some other subset (usually random) of known
nodes - his immediate neighbors. While process of
sharing new files in network, the new node calculates
the hashes of these files content, using the same hash
function and than announces these file hashes to
nodes with the most similar node_id. So when other
node wants to send search request to find sources of
files with known content hashes, it send this request
to most similar node_id neighbors. They forward this
query to their neighbors with node_id most similar to
hash, specified in query, etc. Usual termination
condition is TTL hops or number of sources already
found. But this is only file sources search method. In
bittorrent dht nodes haven’t ability to search files by
their name or other criteria. Kademlia allows using
file search by their names using previously described
ID method. As main terminate condition it uses
number of unique file hashes, found during the query
processing.

4 Bittorrent improvements

As we noticed before, bittorrent and bittorrent

dht are the most popular networks nowadays. One of
the key advantages of these networks is fast file-
transfer protocol and descriptions for every file or
group of files in the network. But they also have a big
disadvantage: distributed file search by names or
descriptions is not suggested and implemented for
this network. There was a small Exeem project [3],
which allows its users to search files by names in
bittorrent using simple FS method for requesting
other nodes with Exeem clients, but it wasn’t fast,
stable and user friendly, so its development has been
stopped in 2005.

So we want to suggest some new improvements
to bittorrent, based on building thematic indices [10]
of descriptions of files. These descriptions are stored
on super peer nodes (also called bittorrent trackers)
[1]. When some information is being announced by
usual leaf node using the tracker, it creates a special

file, consists of md5 hashes of each currently
announced file in one group. This file should be
uploaded to tracker using http protocol with full
description of current file group. There are two main
tracker engines, most often used as trackers base:
tbsource [16] and torrentpier [17], both are free to use
and modify. So it’s possible to make some
modifications to these engines, adding them ability to
create thematic indices of uploaded file group’s
descriptions. Trackers are usually running on high
speed hardware, so we can say that load balancing of
the network will not be critically decreased. While
creating thematic indices we’ll use the second main
bittorrent feature: all groups of files are united in
some big classes, most of them are similar for all
trackers. With this feature we can create some set of
thematic indexes on every tracker and then using a
dht like structure for trackers (not peers) we can share
these indices to some neighbor trackers. In this case
we expect that every tracker should have multiple
id’s, according to its different thematic index type
hashes. So when client node will send a search
request to one tracker, it will be processed, one of the
local tracker’s thematic indices will be chosen and if
number of results and their sources on local tracker is
low, this query will be redirected on neighbor
trackers with similar local thematic indices. The
similarity of thematic index will be chosen by its
type, language and main set of index keywords,
stored on tracker for all neighbor trackers. These sets
of keywords will contain some fixed number of
words with maximum hits in each neighbor local
thematic index. It should be updated only from time
to time – not for every local index update on neighbor
trackers. The simple scheme of this idea is shown
below.

Fig. 2. Improved bittorrent/dht structure

Here we can see one peer, sending request (a
special type of thin dotted link) to tracker I. Tracker I
returns a number of different file group hashes if it
can and then forwards this request for some
neighbors – for example tracker III, because it have a
similar local thematic index and then receives some
results from this tracker and a number or sources for
this results. At the last stage, Tracker I sends to the
initial leaf node merged results, sorted by the number
of peers or relevance to the search query. These
results include only names of file groups, number of
sources and hashes of this file groups. Than initial
node can chose one or more of presented results and
start download them, finding sources ip addresses
and ports by hash in usual way (it can send new
request for tracker I for these sources or find them
using DHT). The main problem in implementing this
feature is special private trackers and a client ratio
system on it: every client node reports its uploaded
and downloaded amount of data to such tracker and
then receives sources for downloading files. This
ratio system can prevent clients from downloading
huge amounts of data without any uploading to other
nodes. When DHT is used in sources searching
process, these values can’t be checked by tracker for
each group of files, so there is a way to fake them.
The simple solution for this issue can be made with
creating a special hash id for each peer, connected to
particular tracker. These ids can be used in reports to
private trackers by peers to prevent calculating
upload/download statistics for alien nodes. So a node
can upload and download data from a large set of
nodes and report to tracker all of them, but in their
responses, trackers can inform peers, that particular
values in statistics are rejected, so these peers can
exclude nodes with some ids from further statistic
reports to trackers.

But it’s clear enough that only subset of tracker’s
owners will accept and introduce new specification
updates listed above. So another way of improving
search routing methods in bittorrent/bittorrent dht
network is modifying functionality only of usual
nodes, not trackers. We took source code of
bittornado torrent client and now applying the
following modifications to it.

First way of client routing features improving is
to give it ability to make its local thematic indices of
downloaded files descriptions. These descriptions can
be simply grubbed from tbsource or torrentpier based
trackers (may be with the help of client’s user,
providing his trackers login/password, needed to
access descriptions via web interface). This
improvement gives bittorrent nodes an ability to
search files in dht with standard methods (FS/BFS,
ID, etc) and also can become a base for further
improvement of entire bittorrent dht with adding it
functionality to store hashes of local thematic index
keywords in the same way, as file content hashes are
stored in it or in kademlia network. This will allow
applying search queries via bittorrent dht in a native
sources search way, used before and using now. The

one disadvantage, which can decrease effectiveness
of using this method, is different keywords
frequency. It can critically increase the number of
requests to particular nodes, which have “too
popular” hashes as their ids. This problem is not
solved yet, but we have some ideas about it, which
need some experiments to be done in real bittorrent
network segment and with a set of real trackers and
clients.

4.1. Plan of experiments.

We will use our own bittorrent tracker with the

current number or different nodes of about 8600 and
some of the other trackers with similar material
shared and some equal nodes between them that use
the bittornado bittorrent client or original open source
bittorrent or mainline clients. Our main goal is to test
bittorrent dht network improvements with a set of
criterias, which including

- query search time for data, which exists in the
network

- query search time for data, which doesn’t exists
in the network at the moment, where search request is
performed

- number of peers and super-peers involved in
random search query processing

- number of unique results returned on successful
queries

- number of sources of unique results returned
These parameters will be compared with the

same ones for usual bittorrent-dht network, including
approximately the same set of nodes (not exactly the
same set because of the permanently changing
structure of the network) and not using any stored
data about nodes content anywhere except one super-
node per usual node.

5 Conclusion

This paper describes some well known methods

of search query routing in p2p file sharing networks
like FS/BFS, ID, IW, etc. In this paper we also
introduce some methods that can help to improve
search request routing methods in widely using p2p
file sharing networks, especially bittorrent. No
experimental results were given, because our work is
not completed yet, but we believe that our approach
should be useful for entire bittorrent network and it
users and will give it some important features or
search queries routing and information sources node
discovery.

References

[1] BitTorrent full specification (version 1.0).

http://wiki.theory.org/BitTorrentSpecification
[2] A. Crespo and H. Garcia-Molina. Routing

Indices for Peer-to-Peer Systems. In ICDCS,
July 2002.

[3] Exeem project website. http://www.exeem.it.

[4] Gnutella project official website.
http://www.gnutella.com.

[5] Kademlia: A Design Specification.
http://xlattice.sourceforge.net/components/prot
ocol/kademlia/specs.html

[6] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-
Yazti. A Local Search Mechanism for Peer-to-
Peer Networks. In CIKM, 2002.

[7] J. Kubiatowicz, D. Bindel, Y. Chen. Ocean-
store: An architecture for global-scale
persistent storage. In ASPLOS, 2000.

[8] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and Replication in Unstructured Peer-
to-Peer Networks. In ICS, 2002.

[9] D. Menasce and L. Kanchanapalli. Probabilistic
Scalable P2P Resource Location Services.
SIGMETRICS Perf. Eval. Review, 2002.

[10] I.Nekrestyanov. Distributed search in topic-
oriented document collections. In SCI'99,
volume 4, pages 377-383, Orlando, Florida,
USA, August 1999.

[11] S. Ratnasamy, P. Francis, M. Handley. A
scalable content-addressable network. In ACM
SIGCOMM, August 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for
large-scale peer-to-peer systems. In
Middleware, 2001.

[13] I. Stoica, R. Morris, D. Karger. Chord: A
scalable peer-to-peer lookup service for
internet applications. In Proc. ACM
SIGCOMM, 2001.

[14] M. Stokes. Gnutella2 Specifications Part One.
http://gnutella2.com/gnutella2_search.htm.

[15] A. S. Tanenbaum. Computer Networks. Pren-
tice Hall, 1996.

[16] TBSource website. http://www.tb-source.info
[17] TorrentPier website. http://torrentpier.info
[18] D. Tsoumakos and N. Roussopoulos. Adaptive

Probabilistic Search for Peer-to-Peer
Networks. In 3rd IEEE Int-l Conference on
P2P Computing, 2003.

[19] D. Tsoumakos, N. Roussopoulos. Analysis and
comparison of P2P search methods.
Proceedings of the 1st international conference
on Scalable information systems, Hong Kong,
2006

[20] B. Yang and H. Garcia-Molina. Improving
Search in Peer-to-Peer Networks. In ICDCS,
2002.

[21] B. Zhao, J. Kubiatowicz, and A. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location androuting. Technical
Report UCB/CSD-01-1141, Computer Science
Division, U. C. Berkeley, April 2001

