
On Using Materialized Views for Query Execution in
Distributed Real-Time Database Management Systems

© Alexander Zharkov

Penza State University
zharkov@sura.ru

Abstract

This paper describes how materialized views
could be used in distributed Real-Time
Database Management System. We provide
algorithm for dynamic materialized views
building and cost evaluation. The main
difference of provided method is that we take
into account temporal properties of base
relations and data manipulation operations.
Experimental part provides algorithm which
builds materialized view for given subset of
physical query execution plans.

1 Preface

Real-time database management systems are the
database management systems which can provide
reliable queries execution in predictable time. Real-time
databases use timing constraints to provide valid query
results. Inability of conventional databases to work in
such circumstances is the main reason to use real-time
databases in a wide range of modern industrial
applications.

The main are of our interests is the process control
applications and using real-time database .management
systems to store data for SCADA systems and they
components. Modern real-time system should be able to
store temporal data, handle time-critical queries,
support priority scheduling and interact in dynamic
environment. Our previous work was devoted to the
scheduling policies in real-time database management
systems. In this work we have concentrated on effective
queries processing in distributed environment with
some restrictions. The restrictions to the testing
environment reflect some features of the commonly
used computational system in the domain area we are
interested in – process control.

Let us review the main features of the computational
system which we are using in test environment:

 computational system is heterogeneous – hosts
have different workload and different functions.
There are 3 type of nodes – “server”, “sensor”
and “user”;

 transactions generated by “user” node have are
mostly user SQL queries;

 most part of user queries belongs to the limited
subset of SQL query templates;

 lifecycle of the system is divided into two parts
design-time (when system could be tuned or
pre-optimized) and work-time (when
optimization tasks should not use mush time);

 user transactions usually take much longer time
then sensor or system ones.

These features exert influence on transaction
handling and queries processing of the Real-Time
Database Management System (RT DBMS).
Transaction handling methods for such systems were
described in our earlier work [10]. Current work is
based on transaction policies handling methods used in
[10] and DBMS prototype described in [9]. Transaction
handling methods proposed in [10] helps to decrease
critical transactions miss ratio but increases user
transactions miss ratio. One of the ways to find the
balance between user and system transactions is using
the distributed database instead of the client-server
architecture to provide clients with more information.
To implement such approach we have used DBMS
engine with materialized views support on client side
(“user” nodes). This work describes set-theory model in
which our prototype is based on

Related Works

Our research area is placed in the intersection of
different areas such as transactions processing, queries
optimization, real-time databases, active and temporal
database management systems. Common transaction
handling aspects in Real-Time DBMS were considered
in [1, 2, and 4]. Issues with Timing constraints were
described in [3]. Work [5] describes commonly use
optimization techniques. We have used some of these
techniques in implementation of our query subsystem.
Modern line of investigations in multi-query
optimizations which used in materialized views support
subsystem represented in [6]. Works [7] and [8] are
concerned with queries processing which uses both
conventional relations and materialized views to
produce query result. Our work [9] and [10] describes
real-time database management system prototype and
transaction handling policies used in our experiments.

 Proceedings of the Spring Young Researcher's
Colloquium On Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2008

In materialized views support system we have used
elements of the lattice theory [11] to describe some
properties of the materialized views support subsystem.

2 Query Execution Plan Representation

The materialized views management subsystem uses
the following input information:

 query plans batch;
 source database structure;
 statistical information provided by main

server database;
During subsystem initialization materialized views

management subsystem transforms input query batch to
internal format which helps to minimize execution and
update costs. We use lattice representation based query
batch as optimal structure for update traces. Internal
representation contains mapping from physical query
plan items to materialized data items and update support
structure.

One of tasks is transformation from physical query
plan to internal representation. Usually query execution
plan represented by Directed Acyclic Graph (DAG).
Formally query execution plan used in our experiments
could be represented as follows:

pppopp RDOTG ,,, , (1)

where opT – set of supported operations;

pO – operational nodes set;

pD – data nodes set;

pR – arcs set which represents relations between

nodes;
This model has the following restrictions:

 Operational nodes could be connected only with
data nodes and data nodes could be connected only
with operational nodes;

 Operational nodes have only one upcoming arc and
one ore more incoming arcs (for conventional
relation operations no more then 2 arcs)

 Data nodes can have no more then one upcoming
and one incoming arc;

 Data nodes can represent not only conventional
relations but also other data nodes like indexes or
hashes;

Figure 1— Query Execution plan
Input query plan example represented in figure 1.

Here To ={Join, Union, Projection, Selection},
O = {Join(A,B), Join(AB,C)},
D = {A, B, C, AB, ABC},
R = {(A, Join(A,B)), (B, Join(A,B)), (Join(A,B),

AB), (AB, Join(AB, C)), (C, Join(AB, C)), (Join(AB,
C), ABC)}

A, B, С – source database relations and AB, ABC –
results of the join operation.

Physical query execution plan in our subsystem is
represented as

RT
p

RT
p

RT
p

RT
p

RT
p RDOTG ,,, , (2)

where RT
pT ={ScanSelect, ScanSelectID,

ScanIndex, ScanSort, NestedLoopsJoin,

NestedLoopsIndexJoin, HashJoin}, a set of operational
nodes types;

  RT
OBJ

RT
p

RT
p XxDlljxjdD  ,,,1:,

(3) — data nodes set which represents the pair: data

node index j and data object x which belongs to RT
OBJX

all database objects;

 

   
























RT
OBJiioo

RT
p

RT
po

RT
p

XxxAaA

Tm

OnniAmio

O

|

,

,,,1:,,

 (4)

— operational nodes set. Each node consists of node
identifier, transaction type and set of attributes used in
transaction execution;

  
  RT

pj
RT
piij

RT
pj

RT
piji

RT
p

DdOoodr

DdOodorR





,:,

,:,

(5) — set of relations between operational and data
nodes. These relations are relations of consequence. Set

RT
pR represents ordering relationship and the RT

pG
model itself is partially ordered on consequence
relation.

Query execution batch
Query execution batch is represented as

QPqueriesplansqueries RQGP ,, , (6)

where queriesQ — a set of the parameterized queries

which are used for quick access to the materialized
results;

plansG — set of query execution plans generated

for each query. Each query plan is represent as pG ,(2);

  planspqueriespQPQPQP GGQqGqrrR  ,,,:
— set of relations which represents mapping between

initial query and appropriate subset of query execution
plans.

3 Internal materialized views
representation

During materialized views management system
initialization query execution plans batch is transformed
to the internal representation suitable for regular update
in real-time mode. For this purpose query plan elements
are sorted in and combined into single batch where
elements are ordered by inclusion relation to minimize
updates count. In our system materialized views batch is
represented as lattice which is defined as:

),(* RVL  , (6)

where *V – lattice nodes set which corresponds to

pG query execution graphs;

R – model signature which specifies ordering
relationship on lattice nodes set.

This model should satisfy to the following
restrictions [11]:
 model should have antireflexiveness property–

RaaVa  ,,* (7);

 model should have asymmetric property –
 RabRbaVba  ,,,, (8);

 model should have transitivity property –

 
 



Rca

RcbRbaVcba





,

,and,,,,
 (9);

Every node
** Vv  represents object which

could be materialized. Each lattice node is based on
query execution plan node and could be defined as
follows:

datatV XCAvv ,,,' cos
*  , (10)

where
RT
P

RT
P ODv ' – operational or data

node from plansp GG  graph nodes set. This

dependency between lattice node and query execution
plan node is used during query evaluation.

  










RT
P

RT
OBJVV

RT
Po

V
DvXxxAaa

OvA
A

',,|

',
–

database relation attributes set from the attributes to be

materialized. Here oA – set of attributes used in

operational node for cases when this lattice node is

based on operational nodes set.  xA – x relation

schema, which is base relation for data node for cases
when lattice node is based on data node of the query
execution plan;

 retrieveupdatereuset CCCC ,,cos  – set of cost

estimates for this materialized view node, where reuseC
– cost of materialized view node reuse in cases if node

will be materialized, updateC – data update cost for

cases when node is materialized, retrieveC – data

retrieving cost for cases when node is not materialized
and appropriate query is executed on main database
server. These estimates could be enhanced but it was
enough for our prototype;

 








RT
OBJ

data
Xxx

X
|

–data relations set

created for data materialization in this node. This set is
empty for cases when data should not be materialized in
current node. If this set is not empty it contains set of
data objects which contains base operational nodes
result.

Figure 2 represents internal materialized views
representation generated by visualisation part of our
lattice building test application

4 Query execution plans batch
transformation method

This part describes method used for transformation
query execution plans batch to the internal materialized
views representation. This method is based on building
lattice using transitive closure for identifying base
nodes.

Figure 2 Internal representation of the materialized views batch

Algorithm contains three main parts:
 Building generating sets. Each potential node has

corresponding generating set which contains set of
attributes used in operational or data node.

 Building lattice which corresponds to rules (7), (8)
and (9)

 Cost evaluation for each node and identifying
nodes to be materialized.

Generative sets building algorithm

Let *V materialized view set to be filled. At the

first step this set is empty. Let plansG – query

execution plans set from queriesP then, for each query

execution plan plansP GG  we should perform the

following steps:

1. For each data node RT
PDxid ),(

1.1 Build attributes set RT
OBJd XxxAA ),(, which

is subset of the base relation schema.

1.2 Create node datatV XCAvv ,,,' cos
*  where

dv ' , dV AA  , dataX

1.3 Add node *v to the *V set

2. For each operational node   RT
Po OAmio  ,,

2.1 Create node datatV XCAvv ,,,' cos
*  , where

ov ' , oV AA  , dataX

2.2 Add node *v to the *V set

3. Create node v , which has  
*,1

*

Vi

iVV vAA


 ,

dataX . This node represents structural unit –

superset of all attributes.

4. Add node v to the *V set

As the result we have *V set, which is the basis for
lattice building.

Lattice signature building algorithm

Second step goal is to build lattice signature R
which represents inclusion relation defined on *V set.
This step contains consecutive pair wise intersection for

  **** ,,1,, VnniVvvA iiV  sets. If

intersection result is not empty set then new set is used
as new node in lattice. And this new node is added as
base for two nodes used in intersection.

This algorithm could be divided into two parts:
 Subroutine which adds relation to the relation set

and checks new relations to satisfy (7), (8) and (9)
restrictions;

 Main iterative part where *V set elements are
looked through.

Let us review add subroutine:

Subroutine Add (VA , *
VA)

1. 0i , Rn 
2. If ni  , then move to the step 3, else move to

the step 8

3. If   Vi Axyxrr  :, , then move to the step 4,

else move to the step 7

4. If *
VAy  , then move to the step 9, else move to

the step 5

5. yAz V  *

6. If *
VAz  , then move to the step 9, else move to

the step 7
7. 1 ii , move to the step 2

8. Add relation  *, VV AAr to the R signature

9. Exit
Let us review main iterative algorithm

1. 0i , *Vn 
2. If ni  , then move to the step 3, else move to

the step 12
3. 0j
4. If nj  , then move to the step 5, else move to

the step 11

5. VjViV AAA *

6. If *
VA , then move to the step 7, else move

to the step 10

7. If ** : VAAA VkVVk  , then move to the step

8, else move to the step 10

8. Call Add(ViA , VkA)

9. Call Add(VjA , VkA)

10. 1 jj , move to the step 4

11. 1 ii , move to the step 2
12. Exit
This algorithm is used to find the most frequently

used nodes. But sometimes (for example in cases when
there are not so much candidates to the materialization)
we can use method less strict method. This enhances
base set for cost estimation and could give us more
efficient result for small lattice.

The algorithm for building additional nodes

1. ** VVcurrent 

2. If 0* currentV , then move to the step 3, else

move to the step 17

3. 0i , *
currentVn 

4. If ni  , then move to the step 5, else move to
the step 16

5. 0j
6. If nj  , then move to the step 7, else move to

the step 15

7. VjViV AAA *

8. If *
VA , then move to the step 9, else move

to the step 14

9. If ** : currentVkVVk VAAA  , the move to the

step 12, else move to the step 10

10. Add *
VA to the *V set

11. Add *
VA to the *

nextV set for the next iteration

12. Call Add(ViA , VkA)

13. Call Add(VjA , VkA)

14. 1 jj , move to the step 6

15. 1 ii , move to the step 4

16. **
nextcurrent VV  , move to the step 2

17. Exit
This algorithm uses the same subroutine Add as

previous algorithm.

Cost estimation for lattice nodes

We use iterative cost estimation method which
evaluates cost for each node using optimal cost
evaluation for base nodes. The criterion function is

defined as   



queryq Vv

useq TvCostF ,'min (11)

Cost’ is subsequent query execution estimation and
is defined as:

 
   
  















datausedataretrieve

datausedataupdatedatareuse

use

XTXC

XTXCXC

TvCost

,,

,,,
min

,'

(12)
Retrieve cost is defined as

  



''

,'min
Vv

useretrieve TvCostC , (13)

where   RrvvrrvVVV  ,',:'',' * –

is set of node which are base nodes for current node.

5. Implementation results

Proposed materialized views model was used in
distributed real-time database management system
prototype for client transactions performance
evaluation. For debugging and visual representation of
the materialized views special demonstration program
was developed which uses algorithms described in
section 4 and builds picture represented in figure 2.
Algorithms from section 4 were implemented both in
real-time DBMS prototype and in test application.

In experimental investigation we plan to focus on 3
main directions:

 experiments with the test application which can
visualize internal materialized views
representation – this part needed to investigate
various combinations of the query batches;

 set of experiments with transaction handling
policies to verify what parameters should be
used in “user” nodes and “server” nodes;

 set of experiments with different objects to be
materialized – the main idea of this part is to
investigate how temporary objects (such as
temporary indexes and hashes) could be used to
increase query processing effectiveness.

For now we have completed first part of
experiments – building visual representation of the
materialized views based on the user queries (you can
see example picture in Figure 2).

6. Further Work

As further work we consider performing
experiments on rest two directions using implemented
algorithms as part of the distributed database
management system prototype. For now we have
prepared test database which schema corresponds to the
typical database used in process control.

Another direction of the further work is integration
of the proposed algorithms to the commercial system
which will provide database-like access to the OPC-
server data with ability to transfer data to the
mainstream database management systems.

References

[1] K. Ramamritham. Time for Real-Time Temporal
Databases. Dept. of Computer Sc., Univ. of
Massachusetts, 1995

[2] J. R. Haritsa, K. Ramamritham. Real-Time
Database Systems in the New Millennium. Dept. of
Computer Sc., Univ. of Massachusetts, 1999

[3] Chanjung Park, Seog Park, Sang H. Son.
Multiversion Locking Protocol with Freezing for
Secure Real-Time Database Systems. IEEE
transactions on knowledge and data engineering,
vol. 14, no. 5, september/october 2002

[4] John A Stankovic, Marco Spuri, Marco Di Natale,
Giorgio Buttazzoy. Implications of Classical
Scheduling Results For Real-Time Systems. June
23 1994

[5] Joseph M. Hellerstein. Optimization and Execution
Techniques for Queries with Expensive Methods.
Doctor of Philosophy dissertation. University of
Wisconsin-Madison, 1995

[6] Prasan Roy. Multy-Query Optimization and
Applications. Doctor Of Philosophy degree thesis,
Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay, 2000

[7] Hoshi Mistry, Prasan Roy, S. Sudarshan, Krithi
Ramamritham. Materialized View Selection and
Maintenance Using Multi Query Optimization.
ACM SIGMOD Conference Proceedings, 2001

[8] Jiratta Phuboonob, and Raweewan
Auepanwiriyakul. Selecting Materialized Views
Using Two-Phase Optimization with Multiple View
Processing Plan. International Journal of Computer

and Information Science and Engineering. Volume
1, Number 2, 2007

[9] A. V. Zharkov. Distributed Real-Time Database
Management System Prototype for Transaction
Handling Methods Simulation. In Proceedings of
scientific and technical conference "Microsoft
Technologies in Programming Theory and
Practice". N. Novgorod, 2007

[10] Zharkov A. Performance Evaluation of Transaction
Handling Policies on Real-Time DBMS Prototype.
Proceedings of the Fourth Spring Young
Researcher's Colloquium on Database and
Information Systems (SYRCoDIS'2007). Institute
for System Programming of the Russian Academy
of Sciences. Moscow, 2007. http://CEUR-
WS.org/Vol-256/

[11] Birkhoff G. Lattice theory. Providence. Rhode
Island. 1967

