

14

Model of a Subsystem for Securing E-Mail Against Loss
using Mail Transport Agents based on Containerized
Environments

Bohdan Leshchenko1, Tetiana Vakaliuk2,3,4, Andrii Yefimenko2, Viacheslav Osadchyi5,
and Dmytro Antoniuk2

1 Sana Commerce Ukraine, 20 Capitulnyi lane, Zhytomyr, 10003, Ukraine
2 Zhytomyr Polytechnic State University, 103 Chudnivsyka str., Zhytomyr, 10005, Ukraine
3 Institute for Digitalisation of Education of the NAES of Ukraine, 9M. Berlynskoho str., Kyiv, 04060, Ukraine
4 Kryvyi Rih State Pedagogical University, 54 Gagarin ave., Kryvyi Rih, 50086, Ukraine
5 Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska str., Kyiv, 04053, Ukraine

Abstract
The article describes the development of a functional model and the application of an
enterprise email system security subsystem. This addresses the problem of email
delivery and ensures the prevention of email loss. The article presents the results of a
case study on a company’s infrastructure, identifying gaps in the existing system. It
discusses the selection of an infrastructure and cloud provider, considering the benefits
of containerization and cloud computing. The process of selecting a mail authorization
server tailored to the organization’s unique email requirements is explored. The article’s
conclusion underlines the usefulness and significance of the developed method for
guarding against email loss in businesses that rely largely on email to effectively
communicate with clients and partners.

Keywords 1
Email security; email reliability; containerized environments; cloud-based email
services.

1. Introduction

Email is an important communication tool in
today’s digital world, and reliable email delivery
is essential for the efficient functioning of
businesses and organizations. However,
periodic outages of Internet DNS services and
interruptions in the operation of email service
providers emphasize the need for organizations
to have their email delivery infrastructure [1, 2].

The loss of emails while they are being sent
from containerized environments is a serious
problem that can significantly impact
communication efficiency and business
processes [3, 4]. Despite the growing
popularity of containerization, email providers
are not completely reliable, and this can lead to

CPITS-2023-II: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2023, Kyiv, Ukraine

EMAIL: zogyyy1@gmail.com (B. Leshchenko); tetianavakaliuk@gmail.com (T. Vakaliuk); yefimenko.andrii@gmail.com (A. Yefimenko);

v.osadchyi@kubg.edu.ua (V. Osadchyi); dmitry_antonyuk@yahoo.com (D. Antoniuk)
ORCID: 0009-0001-5781-3518 (B. Leshchenko); 0000-0001-6825-4697 (T. Vakaliuk); 0000-0003-2128-4797 (A. Yefimenko); 0000-0001-

5659-4774 (V. Osadchyi); 0000-0001-7496-3553 (D. Antoniuk)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

the loss of emails on the way from the
application to the email provider.

This problem has important implications for
many organizations that rely on email to
communicate with customers, partners, and
internal departments. Losing emails can lead to
data loss, missed deadlines, poor stakeholder
communication, and ultimately financial loss [5].

However, the solution to this problem is not
so simple. Developing a mechanism for
creating a mail queue in an application is not
cheap and involves certain technical
challenges. In addition, containerized
environments may contain applications whose
source code is not accessible, which
complicates the process of identifying the
causes of lost emails.

mailto:zogyyy1@gmail.com
mailto:v.osadchyi@kubg.edu.ua
mailto:dmitry_antonyuk@yahoo.com

15

The goal of this study is to come up with a
method to stop emails from being lost when
sent from containerized environments and to
address this issue. We propose to conduct
research aimed at developing an effective
mechanism that will reduce the risk of email
loss. The study will analyze the existing
problems of email delivery, technologies, and
methods of preventing email loss, taking into
account the technical limitations of
containerization.

1.1. Theoretical Background

Emails have become an effective initial vector
of infection because virtually every company
uses email, and employees receive a large
volume of emails every day. Because of the
overwhelming volume of emails, employees
have very little time to review and analyze each
one, which might give them a false sense of
security. Cybercriminals are effectively
exploiting this situation by organizing phishing
attacks, which are becoming even more
widespread and sophisticated with the advent
of cloud-based email services. Consequently,
email security is becoming a critical task for
businesses and employees to avoid the
consequences of these evolving threats.

Simple Mail Transfer Protocol (SMTP) [6] is
the most used protocol for sending and
receiving email messages on websites today.
While Sendmail has traditionally been a
popular choice for SMTP servers, it has faced
various issues over the years. The monolithic
architecture of Sendmail has been a major
contributor to security vulnerabilities, making
it challenging to configure and maintain.

In response to these shortcomings, Postfix
was developed as an alternative to Sendmail.
Postfix is designed to address many of the
security concerns associated with Sendmail.
Additionally, Postfix simplifies the
management of email server installations by
employing a straightforward approach.
Administrators can conveniently handle
Postfix through two configuration files,
reducing complexity.

One of the standout features of Postfix is its
ability to function effectively even in
demanding situations. It is not uncommon for
software systems, including email servers, to
face unexpected conditions such as running

out of memory or disk space. Postfix, however,
excels at detecting and handling such
conditions without worsening the problem.
This robustness ensures stable and reliable
email operations, even during challenging
circumstances.

Of course, like any system that started a
long time ago, the email system has evolved
alongside and in parallel with the development
of the entire Internet.

So, just as the infrastructure of enterprises
has been changing first towards hydride and
then towards fully cloud-based, the
infrastructure also needs to evolve. As of today,
more and more applications are migrating to
Kubernetes clusters hosted in different cloud
environments, which means that not only the
applications themselves have to be redesigned
for such a containerized environment, but also
all the accompanying software.

1.1.1. Principles of Organizing E-mail
Exchange

The main purpose of e-mail is to exchange
messages (information that is delivered
asynchronously). The main messaging
protocol is SMTP, which aims to ensure reliable
and efficient exchange of letters.

The SMTP protocol is used to send all email
in the world. According to official
documentation [7], the process of transferring
information using this protocol is quite simple.
A visual representation of the protocol’s
scheme is provided in Fig. 1.

Figure 1: Operation of the SMTP protocol
diagram

16

The network on which SMTP is implemented
consists of hosts that communicate using the
TCP protocol and operate on the public
Internet, an isolated internal TCP/IP network,
or other local or wide area networks using
another transport layer protocol other than
TCP. With SMTP, a process can transmit
electronic messages to another process on the
same network or a different network using a
relay or gateway that is accessible to both
networks.

Thus, an electronic message can pass
through several intermediate relays or
gateways on its way from the sender to the
final recipient. This ensures efficient routing
and delivery of emails to their destination [7].

Computer programs that allow you to
create, send, receive, and view emails are
called email clients. Users can access email
using an interface made by an email client.
Both locally on a user’s device and remotely on
a web server are capable of running email
clients. For the first case, examples include
Microsoft Outlook, Apple Mail, and Mozilla
Thunderbird—these programs are installed
directly on the user’s computer or mobile
device and provide the ability to manage email
without a direct connection to the Internet.

In the case of web servers, examples of
email clients are Google Gmail and Yahoo!
Mail—these services are provided in the cloud
and are accessible to users through a web
browser. In particular, a user can access his or
her email from any device with an Internet
connection without having to install separate
software on each device.

The Simple Messaging Protocol system
consists of many different elements, the main
elements of the system are shown in Fig. 2.

Figure 2: The basic architecture of email [8]

Separate operations that are in charge of
sending and receiving mail are necessary for
an exchange system to function successfully.
The incoming mail agent and the outbound

mail agent must typically run on separate
servers in large commercial enterprises.

To send messages to recipients and to
receive new messages from the user’s mailbox,
the mail client creates two connections: one to
the outgoing mail server and one to the
incoming mail server.

The email client connects to the incoming
mail server and the outgoing mail server using
various interfaces. For communicating with
particular mail agents that are used to process
incoming and outgoing emails, these can be
distinct protocols and ports.

This separation of functionality between
servers and different interfaces allows for
efficient and reliable email management and
ensures optimal interaction with email clients.

Figure 3: The recipient’s mail client
establishes a connection with the incoming
mail server using a distinct port and protocol
compared to the outgoing mail server [8]

The outgoing mail server serves several
important functions:

1. Message Queue: It receives messages
from mail clients and places them in a
queue for further delivery.

2. Routing: The outgoing mail server
determines the appropriate incoming
mail server for each recipient and
transfers the messages to that server for
final delivery.

3. Client-Server Interaction: Acting as a
server, it interacts with mail clients
when receiving messages, but functions
as a client when relaying messages to
incoming mail servers.

4. Connection Initiation: The outgoing mail
server ensures that connections are
always initiated by email clients.

5. Bounce Messages: If the outgoing mail
server is unable to deliver a message, it
sends a bounce message back to the user
who sent the original message.

17

6. Sender Information: It adds information
about the sender, but does not alter the
content of the message.

7. Authentication: Before accepting a
message, the outgoing mail server
typically authenticates the user, often
requiring a username and password [9].

An incoming mail server operates by
listening for connections from outgoing mail
servers. When an outgoing mail server
connects to send a message, the incoming mail
server records the message and session details,
including the sender’s IP address [10].

Incoming messages can be rejected by an
email server for various reasons, such as:

• Non-existent email recipient.
• Full mailbox of the recipient.
• Message size exceeding the server’s limit.
• Unreliable or inauthentic sender.

In case of rejection, the incoming mail
server may try to resend the message later or
notify the user of the failed delivery.

Once the incoming mail server receives a
message, it takes charge of its subsequent
delivery. If there are any issues with delivery,
such as the need for forwarding, the incoming
mail server informs the message sender.

After concluding the session with the
outgoing mail server, the incoming mail server
includes the gathered session details in the
received message. It then assesses the message
to determine if it is spam or legitimate.
Depending on this assessment, the message
may be:

• Delivered to the recipient’s inbox if it is
deemed legitimate and does not contain
any spam indicators.

• Moved to the recipient’s spam folder if it
is detected as unsolicited content.

• Deleted without notification to the
sender if the inbound mail server is
convinced that it is spam and should not
be delivered.

• The use of filters helps to identify spam
and other unwanted messages, as well as
generate automatic responses in certain
situations [10].

For authorization, the email client provides
identification data, such as an email address
and password. The inbound mail server
verifies this information to ensure that it
corresponds to a valid user and matches the
data in the database correctly.

In some cases, the inbound mail server may
support an alternative authentication method
such as OAuth. This allows the email client to
obtain a special access token that allows access
to only certain functions or messages within a
limited scope. This approach gives users more
control over which applications or services
have access to their mailboxes [11].

After studying the principles of exchange,
we move on to study the problems of secure
mail sending.

1.1.2. Researching the Problems
of Secure Mail Sending

Classifying messages as spam based on their
content and origin is an important task in spam
filtering systems. Probabilistic classifiers, such
as naive Bayesian spam filtering [12], use
statistical models to calculate the probability
that an incoming message is spam.

To make a classification decision, it is
necessary to convert the continuous
probability into a binary value. If the
probability exceeds a certain threshold, the
message is rejected as spam. This approach
allows you to divide messages into two
categories: spam and non-spam (legitimate
messages).

When classifying spam, it is important to
ensure that the false positive rate (classifying
legitimate messages as spam) is close to zero.
This helps to avoid users missing important
messages. On the other hand, the false negative
rate (classifying spam as legitimate messages)
can be somewhat higher to prevent spam from
getting into the inbox [13].

To determine a message’s authenticity and
potential delivery to the recipient’s inbox, the
message’s origin holds significant importance.
When sender domain authentication is
unavailable, the message’s delivery is reliant
on the IP address’s reputation.

Social engineering based on exploiting
people’s gullibility has become a common
technique. In addition, phishing attacks often
use spoofed sender addresses, including
sending emails to victims that look like they
came from their addresses. Also, spoofed email
addresses can be misused in the context of
email authentication, for example, when trying
to unsubscribe from mailing lists [14]. Thus,
spoofing emails makes it possible to bypass

18

restrictions and spam mailing lists. Preventing
such attacks and protecting emails are
becoming important tasks to ensure the safety
and reliability of users.

Modern email protocols are designed to
ensure confidentiality, authenticity, and
integrity during message transmission without
the need for user intervention. The use of
Transport Layer Security (TLS) in IMAP, POP,
and SMTP protocols allows you to ensure the
confidentiality of messages even when an
attacker acts in the middle, trying to capture
information. Additionally, the DomainKeys
Identified Mail (DKIM) mechanism along with
domain name system security extensions
guarantees the authenticity and integrity of
messages [15].

Support for TLS is common, but certificate
validation is not always used, which can
compromise protection against active attacks
by an attacker [15]. However, the use of Sender
Policy Framework (SPF) and DKIM is also
common, which helps reduce the risk of
receiving spam and fake messages. These
technologies help improve email security, but
you need to make sure they are properly
configured and used to maximize user
protection.

2. Results
2.1. Description of the Company’s
Infrastructure and Identification
of Gaps in the Existing System

The case study enterprise, from the very
beginning of its application development, had
a distributed infrastructure, and applications
were hosted on physical servers in various
data centers. With the development of cloud
computing, application orchestration, and
containerization technologies, the company
began moving its infrastructure to containers
hosted by cloud providers.

At present, the company has not
implemented a mechanism for storing and
processing e-mail, which in turn leads to its
loss and potential interception by a third party.

In this case, the loss or transfer of
information or the contents of the emails is
critical, as the emails contain information
about orders placed and other sensitive
information.

We have a situation in which the main
applications have already been moved to the
cloud, but emails are sent directly to recipients
without proper protection and minimal
operations to hide the content of emails. The
main problem, of course, is the loss of emails in
the chain between the application and the
recipient. The main task is to develop a cluster-
embedded solution that combines encryption,
message queuing, and logging of the number of
sent and unsent messages.

Since there are a large number of
applications in the infrastructure, auditing
how many users have sent emails is also a
critical factor. At the moment, an end user who
sends only a few emails and a user who sends
hundreds of thousands of emails pay the same
because there is currently no control
mechanism.

2.2. Selecting an Infrastructure
and Cloud Provider

A container is a standardized unit of software
that stores code along with all its dependencies
and allows it to be easily ported and run in
different environments standardization by
including dependencies means that you will get
the same behavior wherever you run it [16].

Transform your monolithic code into
lightweight modules to enhance manageability
and connectivity. By doing so, you can avoid
the risk of one small module breaking your
entire program. This approach grants you
more precise control over your code, but it
does introduce multiple moving parts to your
platform.

However, managing numerous moving
parts can be challenging. When one container
connects to another, it becomes essential to
remember to update each one for platform
stability. With dozens of containers, this can
lead to code management complexities.

Kubernetes greatly simplifies the process of
deploying containers and helps to reduce a
large number of costs associated with it.
Thanks to it, deployment periods can be
reduced from a full day to a much shorter time,
as Kubernetes automates code compilation,
testing, and checking for updates to all
services. Previously, there were several
automation tools to help with the deployment
process, but they were mostly designed for

19

monolithic architectures, while Kubernetes
provides more efficient and scalable container
management. Orchestration and automation
offer solutions to the challenges encountered
when deploying infrastructure manually. With
these processes, you can eliminate the risk of
forgetting files, ensure updates are applied
across all servers, and easily undo changes as
needed [17].

One distinguishing factor between
Kubernetes and other deployment options is
the continuous nature of container
deployment. There’s no need to wait for
sequential compilation and deployment of
binaries. Instead, Kubernetes constantly
incorporates new changes into containers and
deploys them in the background. This enables
swift code deployment without disrupting
performance during specific periods. With
Kubernetes and containers, there’s no need for
developer intervention to manage services
that require frequent updates.

Kubernetes and containers are well-suited
for cloud environments due to their portability
and lightweight nature. They can be deployed
on cloud platforms as well as local servers,
making them versatile for a multi-cloud
strategy across various service providers.
Containers offer an attractive option for
reducing risk when implementing a
microservice architecture in cloud computing.

When considering the best cloud hosting
service out of the three options (AWS, Azure,
GCP), it is important to analyze the benefits
and drawbacks of each. AWS, being the leader
in the cloud hosting market, should be given
priority.

AWS offers three container environments:
ECS, EKS, and Fargate. If developers have
limited experience with containers and already
use AWS to host their services, ECS is the
recommended option. This “containers-as-a-
service” solution automates deployments
directly in the cloud using Amazon AWS
CloudFormation, making it a great starting
point to determine if containers are suitable
for an organization.

For a more comprehensive use of
Kubernetes and containers, Amazon EKS is a
suitable choice. EKS can move an existing on-
premises Kubernetes deployment to the cloud.
Advantages and surveys show that EKS is
positioned to become the most popular
container management method, with 63% of

container users surveyed by Kubernetes
preferring AWS.

AWS Fargate, Amazon’s latest release for
container users, enables container deployment
without the need to manage servers or
clusters. Fargate also works with AWS EKS,
providing multiple options and combinations
based on individual needs.

Hosted Kubernetes with AWS is particularly
attractive for developers who are new to the
container environment. It serves as an
excellent starting point to experiment with
containers and gauge their compatibility with
the development environment. However, EKS
is considered difficult to set up and requires
technical experience with containers. On the
plus side, it offers full scalability and
configurability, empowering companies to
control Kubernetes and its integration with
local development processes [18].

Let’s now analyze the advantages and
disadvantages of Microsoft Azure. IT
professionals primarily working with the
Windows software environment will find
deploying to Azure intuitive and
straightforward. Although Azure is a relatively
new container service, launched in 2015,
Microsoft continues to enhance its offerings.

While Microsoft is known for its Windows
operating system, Azure can also work with
various Linux and Unix distributions. This
means that it is not limited to Windows-only
applications, but it does have limitations
regarding hybrid container support, unlike
AWS, which does support hybrid deployments.

Azure introduced Azure Kubernetes Service
(AKS) in October 2017, a service similar to
AWS EKS. Deploying AKS on an Azure virtual
machine has the added advantage of being free,
with payment only required for the resources
used on Azure’s virtual machines.

The main disadvantage of Azure is that
while AKS was introduced before AWS EKS,
Kubernetes is more adapted to AWS and GCP.
As a result, Azure lags behind both AWS and
Google’s Kubernetes engine when it comes to
updating to the latest versions of Kubernetes.
However, if Azure is already a part of your
existing architecture and you need to
implement containers, it simplifies
deployment and provides detailed analytics to
assess if the platform meets your needs.
Additionally, Azure offers a competing service

20

to AWS ECS called Service Fabric, which is also
worth considering.

Now, let’s analyze the advantages and
disadvantages of Google Cloud Platform (GCP).
Given that Google is the original creator of
Kubernetes, working with GCP provides
several advantages. Any new versions and
deployments are immediately available, while
other platforms may have a time lag. Moreover,
GCP offers excellent opportunities for working
with big data, machine learning, and Artificial
Intelligence (AI) technologies.

However, GCP faces challenges as it is not as
popular as AWS or Azure in terms of
infrastructure as a service solution. GCP lacks
the small business cloud offerings that make
AWS and Azure more appealing for corporate
integration into internal networks.
Additionally, GCP does not have features like
Active Directory integration (Azure) or
Identity and Access Management (AWS).

Google promotes its platform as the ideal
choice for working with the DevOps
methodology. DevOps teams consist of
specialists who simultaneously work on
automating deployment and application
development tasks. For such teams, GCP offers
advantages for automating deployments.

Comparing costs becomes difficult due to
the pay-as-you-go pricing policies of these
platforms. The price an individual developer
experimenting with Kubernetes and
containers pays will not be the same as what an
enterprise requires for powerful computing
resources. Costs also depend on the resources
utilized, with each platform having a minimum
cluster allocation [19].

Ultimately, there is no clear-cut answer
regarding the best service to use with
Kubernetes. The choice depends on the specific
project requirements. If you are already
experienced with Azure or AWS, it is advisable
to stick with the same platform. However, if
you need to work with AI and machine
learning, GCP offers an attractive and cost-
effective solution.

2.3. Selecting a Mail Authorization
Server

Organizations have different email needs.
While some businesses only need a way to
send straightforward marketing newsletters,

others need a more sophisticated email
infrastructure for high-volume and
transactional uses.

Let’s now examine the technical details of
SendGrid and Mailgun, the two top email
platforms. Both systems provide great ways to
communicate large amounts of data, complete
transactions, and guarantee first-rate delivery
quality.

Being the “Email Service for Developers,”
Mailgun offers robust APIs that make sending,
receiving, and tracking emails simple. Mailgun
provides a sophisticated API, Mailjet for
marketing, email verification, bulk sending,
delivery issue prediction, and other services to
over 200,000 enterprises with a 99.99%
uptime guarantee.

Let’s now evaluate SendGrid’s advantages
and disadvantages. SendGrid, one of the top
transactional email systems on the market,
also provides email marketing capabilities
including user-friendly registration forms and
design templates. SendGrid, which has more
than 80,000 customers’ trust, enables the safe
delivery of more than 70 billion emails each
month.

Since its founding in 2009, SendGrid has
maintained an advantage in transactional
email services. They stand out from the
competition because of their emphasis on
availability, scalability, and considerable email
experience. Clients that use SendGrid’s
services enjoy an average delivery rate of 97%,
exceeding the sector average of 85%,
according to the company’s data [20]. This
reflects their service’s high level of
effectiveness and dependability in assuring
successful email delivery.

To counter phishing and spoofing attempts,
SendGrid provides sophisticated authentication
with SPF and DKIM. Furthermore, they include
AI-based technologies like their adaptive
communication engine, which makes use of AI
to improve availability and react to changing ISP
requirements.

In addition, Mailgun offers proactive email
monitoring, continuing advising, managed
delivery services with API support, and
management of IP and domain reputation.

A 97% average delivery success rate is what
Mailgun advertises. Additionally, they tout an
industry-lower bounce rate of 0.4% on average,
compared to the industry standard of 2%.

21

2.4. Researching Email Security
Mechanisms

Email security helps protect organizations and
recipients from data breaches and other
threats.

Use secure login authentication methods.
The traditional use of just a password and

login to authenticate a user is considered
outdated, but many people still use it. Modern
authentication methods require two or more
factors to verify a user’s identity.

To use Two-Factor Authentication (2FA),
users must combine three different types of
authentication factors: knowledge (something
you know, like a PIN or password), possession
(something you have, like a debit card or cell
phone), and physical uniqueness (something
that only you have, like a fingerprint). For
instance, you have to show your debit card and
enter your PIN to use an ATM (possession
factor and knowledge component,
respectively). Temporary one-time passwords
or SMS are frequently used for this kind of
authentication.

Users can access numerous applications
using Single Sign-On (SSO) after authenticating
their identities with an identity provider. SSO
and 2FA are frequently coupled. Centralized
access with SSO lessens the possibility of
account intrusion, streamlines the login
procedure, and aids in enforcing strong
passwords [20].

Application Programming Interfaces (APIs)
are unique codes that identify and authenticate
users. They provide a more secure alternative
to logging in with a username and password.
Developers commonly use APIs to control
access to services like email APIs.

When configuring API keys, different
permission levels can be assigned to restrict
access to specific parts of an account.

Sender authentication protocols are
essential for proving the authenticity of the
sender and preventing spam or spoofing. The
following authentication protocols should be
used:

• SPF: Identifies mail servers allowed to
send emails from a specific domain.

• DKIM: Verifies that the sender is
responsible for the email’s content and
domain.

• Domain-based Message Authentication,
Reporting & Conformance (DMARC):
Specifies how to handle emails not
authenticated by SPF or DKIM.

Using an SMTP server is crucial for email
delivery. The SMTP server processes and sends
emails to the recipient’s inbox. It also verifies
the email’s origin and protects recipients from
illegitimate senders.

SMTP authentication enhances email
security by requiring a login using a supported
authentication mechanism.

Data protection is vital, especially for
sensitive information. Encryption, such as TLS,
safeguards email content during transmission.
Mail providers prioritize TLS-encrypted
connections when delivering emails,
preventing unauthorized access to email
content [21–23].

To enhance data security, it is important to
restrict access to data, especially recipient
data, to only those employees who require it.
This minimizes the risk of email leaks
becoming more serious if the data is
compromised. Here are some ways to achieve
this:

• Limit the number of users to only those
employees who regularly need access to
your ESP. Regularly review the user list
to ensure there are no inactive users.

• Implement different levels of
permissions based on each user’s role.
This allows team members to access the
necessary features for their functions
while safeguarding sensitive customer
data.

Sender Policy Framework
SPF is an email authentication method that

verifies which mail servers are authorized to
send emails from a specific domain [24]. This
helps ISPs identify when spammers try to send
malicious emails from a domain they don’t
own. With SPF, email recipients can trust that
emails are coming from the sender they expect,
and senders can be confident that their brand
is not being used to send phishing emails. SPF
records are short lines of text added to a
domain’s TXT record in the DNS and are
checked early in the SMTP conversation to
establish a TCP connection between the sender
and the receiving server. The SPF record
specifies the IP addresses that are authorized
to send emails to that domain. To confirm that

22

an SPF record is configured correctly, one can
use various tools such as Scott Kitterman’s SPF
Testing Tools, OpenSPF.org, SPF Record Check,
or SPF Wizard.

DomainKeys Identified Mail
Cisco and Yahoo jointly created the

encryption method known as DKIM. Its
function is to give senders the option to “sign”
their messages, enabling receivers to confirm
the legitimacy and authorization of the domain
that sent the email [24]. Popular email service
providers like Gmail and Microsoft might
restrict or prevent the delivery of such
messages in the absence of a DKIM signature.

DKIM is a straightforward method for email
authentication that confirms the sender is in
control of the domain and responsible for the
email’s content. There are two stages to the
DKIM process:

• A private key is added by the sender to
their email servers, and this key is used
to sign the email.

• The receiving server verifies the
sender’s signature using the public key
that is kept in the text record
dkimselector._domainkey.domain.com.

DKIM is essential for establishing the
sender’s legitimacy, promoting confidence,
and lowering the dangers of spam and phishing
assaults. Inbox providers may block emails if
DKIM is not appropriately implemented,
preventing them from getting to the intended
recipients. While a few blocked messages
might not seem like much, they can have a big
impact on businesses.

There are numerous internet resources for
checking DKIM. A DKIM analyzer or DKIM
validation tool can assist in making sure that
your DKIM record has been published
correctly. Before putting any modifications to
SPF or DKIM data into effect, they must be
verified.

Domain-based Message Authentication,
Reporting & Conformance

SPF and DKIM are two methods used by the
DMARC protocol to confirm the legitimacy of
an email message.

Internet Service Providers (ISPs) can
successfully resist fraudulent email tactics like
domain spoofing, which try to trick recipients
and steal their personal information, by using
DMARC records.

DMARC enables email senders to declare what
to do with messages that are unable to
authenticate with SPF or DKIM. Senders can
either direct these emails to a garbage folder or
completely block them. With fewer false
positives because of this proactive method,
carriers may more precisely detect spammers
and safeguard customers’ inboxes. Additionally,
it produces thorough authentication reports for
increased market transparency.

Implementing DMARC is highly
recommended for the following reasons:

Reputation: By stopping unauthorized
parties from sending emails from a domain
that is not their own, publishing a DMARC
record protects your brand. Sometimes,
improving your reputation simply by releasing
a DMARC record is enough.

Visibility: By identifying the senders who
are using your domain to send emails, DMARC
reports give you important information about
your email program.

Security: DMARC aids in establishing a
uniform protocol for processing
unauthenticated emails across the email
community. The entire email ecosystem’s
security and dependability are strengthened
by this group effort.

A crucial addition to email authentication,
DMARC data show how email senders and ISPs
work together to secure the email channel.

Transport Layer Security
A technology called TLS protects digital

communications between two parties. It
makes sure that no communication may be
intercepted, eavesdropped on, or altered while
data is transmitted between a server and a
client [25]. TLS configuration can be difficult to
get right, and a bad configuration can give
users a false impression of security.

The Secure Sockets Layer (SSL) protocol
was replaced by the TLS protocol, which is now
officially deprecated and regarded as insecure.
It is strongly advised against using any SSL
version. Additionally, the IETF declared in RFC
8996 that TLS versions 1.1 and 1.0 are no
longer supported and should not be utilized.
The NCSC advises upgrading TLS 1.1 or 1.0-
based government systems to either TLS 1.3 or
1.2.

To improve data security, TLS provides
three main services:

23

Authentication: This enables each side to verify
the other party’s identity throughout the
communication.

Data between the user agent and the server
is transmitted encrypted to prevent reading or
decryption by unauthorized parties.

Integrity: TLS protects data against loss,
damage, manipulation, or fabrication by
ensuring that it is unchanged and unaltered
throughout encryption, transmission, and
decryption.

The handshake phase of a TLS connection is
where the client and server create a shared
secret and talk about crucial factors, including
cipher settings, to ensure a secure
communication channel.

2.5. Development of a Functional
Model and Application of the Enterprise
Email System Security Subsystem

According to the study of the requirements for
the design of the security subsystem, we have
a problem with email delivery.

Figure 4: Illustration of the situation with the
place where letters were lost

It has been determined that emails may not
reach the final recipient for the following
reasons:

• SendGrid may become unavailable.
• The SendGrid API key may expire or be

incorrectly configured.
• IP address restrictions may be

configured incorrectly.

That’s why it was decided to add a mail
intermediary to this scheme, which will make a
mail queue and prevent mail loss.

Figure 5: Simplified diagram of the new
infrastructure configuration

Since we have a multi-cluster environment, we
need to take care of working in this scenario.

Figure 6: Simplified scheme of mail queue
operation in a multi-cluster environment

So, each cluster has two redundant Postfix
applications running synchronously and on
different feeds. On each cluster, Postfix will
have separate settings and its own SendGrid
API key.

After researching the available software,
the following resources were selected:

• Azure cluster (AKS).
• Postfix as a mail transfer agent.
• Fluent-bit for collecting logs from other

containers.
• Grafana-Loki-SQL database for logging

processing.
• Azure managed disks for persistent

storage to keep the mail queue even
when something happens to the
deployment.

Develop a system that will store the mail
sent by the application, check if the mail is
possible, and only then send the mail. You also
need to develop a system for monitoring the
number of sent emails.

Figure 7: Detailed scheme of applications in
the cluster according to the previously defined
requirements

We develop Helm configuration files for
deploying infrastructure in cluster
environments.

24

Figure 8: The structure of the Helm chart

So, in one cluster we have:
• Two Postfix pods that include two

containers with Fluent-bit and Postfix.
• Two PersistentVolumeClaim.
• Two ReplicaSets.
• One ConfigMap for FluentBit.
• One ConfigMap for Postfix.
• One ServiceAccount.
• One Service.
• One Secret.

The Postfix application was chosen as the
basis of the email system for the project. The
main problem with Postfix, in our case, is that
its development began a long time ago and was
not designed for the modern infrastructure of
Internet technologies. Postfix has proven to be
a simple and reliable system for sending and
queuing mail, but it was not designed for
containerized environments and has a log
system that is quite difficult to work with. For
optimal work with logs and system monitoring
in general, it was decided to create an
application for parsing and transforming logs].

As an alternative to syslog (which is still the
default), Postfix has its logging system. Postfix
version 3.4 or later supports this. When Postfix
is operating in a container, logging to stdout is
advantageous since it removes the syslogd
dependence.

Python, a general-purpose high-level
programming language, was used to create the
solution. Its design philosophy places a strong
emphasis on the readability of the code by
using substantial indentation.

The most recent Alpine base container with
the parser and Postfix was chosen as the
foundation for the container with the parser.
Alpine is currently the standard for using it as
the basis for your applications. It is constantly
updated, constantly receives modern solutions
to security problems, has basic functionality,
and, despite all of the above, has a fairly small
size of ~5Mb.

However, for Postfix to work properly and use
all the parser’s functions, you need to install
the software. For the parser to work, you must
first install Python from the repository, the
pyodbc library, msodbcsql, mssql-tool. For
Postfix to work with secure authorization, you
need to install Postfix and the packages postfix-
pcre, libsasl, cyrus-sasl. In addition to all these
packages, you need to install some additional
ones.

For Postfix authorization to work properly,
you need to create a system user and add
information about it to the Postfix configuration
files.

The final step in the Dockerfile is to run the
script for initial setup and start the parser.

The functions of the initial startup script are
to configure Postfix parameters and then start
the parser. The shell used is ash, which is a
simplified version of the shell from the Alpine
Linux developers. The parameters used for
configuration are taken from environment
variables, which is a safe approach.

We have also implemented functionality
when it is necessary to transfer non-standard
settings when deploying a solution. For this
purpose, there is a separate environment
variable POSTFIX_CUSTOM_CONFIG, to which
non-standard parameters are passed through
the “;” symbol.

Today, many cloud service providers
provide services for renting their computing
capabilities and using Kubernetes clusters
based on their equipment. In this case, the
architecture of the solution is based on the AKS
from Microsoft. Despite this, the development
of automated templates based on Helm Charts
is not dependent on service providers in most
cases and is universal, that is, it can be used on
almost any environment, including a local
computer.

Helm is a Kubernetes package manager.
Helm is used to build “charts”, which are
packages of Kubernetes resources used to
deploy applications to a cluster. There are
different types of storage and distribution of
these packages: they can be stored in archives
or just directories with files, distributed
through private or public repositories.

The main part of any Helm chart is the
Deployment type, which describes what the
Pod will consist of, what containers should be
included in it, what files should be attached to

25

it, and what environment variables should be
in the containers.

In this case, the Deployment consists of a
Pod that includes two containers: Fluent-Bit of
the latest version and the container with the
parser and Postfix. The container with Fluent-
Bit contains log storage and a configuration
file.

Figure 9: An example of mounting storage to a
container

A persistent memory disk is attached to the
container with Postfix to store logs in case of a
cluster or container reboot. In Deployment,
checks are additionally configured to see if the
container has been successfully powered on
and if it is still available.

If you need to have multiple copies of
Postfix on different host machines for greater
reliability, Deployment is configured to
prevent the installation of two copies on one
host.

Figure 10: An example of mounting storage to
a container

Also, environment variables that are stored in
the ConfigMap are passed to the container. The
ConfigMap.yaml file describes two ConfigMap
resources: the first one stores environment
variables that are passed to the container from
Postfix and the parser, and the second one
contains configuration files for Fluent-Bit.

The FluentBit settings describe where to get
the information, how to process it, how to filter
only the necessary data, and where to send the
generated output information. It also contains
information on how to work with the
information we receive from the developed
parser.

To store passwords, certificates, etc., the Secret
type is used, which stores information in a
hashed form. It’s worth noting that it’s exactly
hashed, not encrypted. In the Secret of our
Helm Chart, we store the password to the
MSSQL database and the key to the SMTP
service provider. This is to ensure that other
services in the cluster, namely applications
that send mail, have a network connection to
Postfix, you need to create a Service dash
resource. It specifies the port-forwarding
parameters.

Figure 11: ConfigMap that contains
environment variables

The name, version, and version of the program,
as well as a brief description of the Helm Chart,
are all included in the Chart.yaml file, which
also contains some basic information about the
Helm Chart itself.

Variables can be passed to Helm Chart using
various methods, but the best practice is to
store them in a YAML file and keep them in a
version-controlled git repository to prevent
configuration drift.

It is recommended to deploy one Postfix
Deployment per cluster but with a different
number of Postfix replicas, at least two.

At this point, the development of the
template for automatic deployment of the
solution can be considered completed. Further,
the received files will be automatically
processed by the helm utility, which is part of
the Azure DevOps Pipelines portal plugins.

26

After the system has been successfully
developed, and the operability of several
systems has been constructed, it is necessary
to have complete information about the
operation of these systems, error visualization,
and complete statistics on successfully
delivered mail.

There are many systems for monitoring, but
the choice was made to use free open-source
solutions—Grafana and Grafana Loki.

Grafana Loki is an aggregator of log records,
in this case, received from FluentBit.

Grafana is a modern data visualizer that can
work with almost any data source. We need to
visualize data from Grafana Loki and MSSQL.

Several deployment options are

available for Grafana and Grafana Loki,
including installation as a service, operation in
a container, and deployment in Kubernetes.
We chose to use Kubernetes since it is
currently the most cutting-edge method of
deploying Grafana.

With the help of the IDE for Kubernetes—
Lens, we will deploy the above services with
standard settings, but add a certificate for
secure connection to web resources.

In the Grafana data sources settings, we
configure Grafana Loki and MSSQL.

Grafana has a fairly wide range of tools for
displaying information, which means that
operators will be able to get all the necessary
data in the form they need.

Figure 12: An example of displaying information about sent emails using Grafana

Monitoring systems are installed on the cluster
environment and dashboards are developed
for easy access to the necessary information.

3. Conclusion

The created system to prevent the loss of
emails is relevant and important for
organizations that rely on email for effective
communication with customers and partners.

The efficiency of communication operations
can be greatly increased and the risk of email
loss can be dramatically decreased by
implementing the security subsystem that has
been created for a corporate email system
based on containerized environments.

Taking into account the technical
limitations of containerization and choosing
the best technologies (for example, using
Postfix, SendGrid, Microsoft Azure, and AKS)

helps ensure the stability and reliability of the
system.

The deployed data monitoring and
visualization system allows us to quickly track
mail-sending processes and respond to
unforeseen events promptly.

The design of the email security subsystem
demonstrates an increased level of reliability
and visibility of email services in the
enterprise, which can help improve business
processes and mutual understanding with
stakeholders.

Research and development of an email
delivery system is a complex task, but given the
importance of electronic communication in the
modern world, investments in the
development of such a system can be justified
and bring positive results for organizations.

In general, the development and
implementation of an email security
subsystem for an enterprise is a step forward
in ensuring reliable and efficient

27

communication, which will help improve
interaction with customers and partners and
reduce the risks of financial losses associated
with data loss and delays in communication
processes.

References

[1] V. Grechaninov, et al., Formation of
Dependability and Cyber Protection
Model in Information Systems of
Situational Center, in: Workshop on
Emerging Technology Trends on the
Smart Industry and the Internet of
Things, vol. 3149 (2022) 107–117.

[2] V. Grechaninov, et al., Decentralized
Access Demarcation System
Construction in Situational Center
Network, in: Workshop on Cybersecurity
Providing in Information and
Telecommunication Systems II, vol.
3188, no. 2 (2022) 197–206.

[3] F. Kipchuk, et al., Assessing Approaches
of IT Infrastructure Audit, in: IEEE 8th
International Conference on Problems of
Infocommunications, Science and
Technology (2021). doi:
10.1109/picst54195.2021.9772181

[4] V. Buriachok, V. Sokolov, P. Skladannyi,
Security Rating Metrics for Distributed
Wireless Systems, in: Workshop of the
8th International Conference on
"Mathematics. Information Techno-
logies. Education": Modern Machine
Learning Technologies and Data Science,
vol. 2386 (2019) 222–233.

[5] Y. Sadykov, et al., Technology of Location
Hiding by Spoofing the Mobile Operator
IP Address, in: IEEE International
Conference on Information and
Telecommunication Technologies and
Radio Electronics (2021) 22–25. doi:
10.1109/UkrMiCo52950.2021.9716700

[6] G. Howser, Simple Mail Transfer
Protocol: Email, Comput. Netw. Internet
(2020) 385–417. doi: 10.1007/978-3-
030-34496-2_22.

[7] J. Klensin, Simple Mail Transfer Protocol,
RFC (2001). doi:10.17487/rfc2821.

[8] Explained from First Principles, Email.
URL:https://explained-from-first-
principles.com/email/

[9] L. Enciso, et al., E-Mail Client
Multiplatform for the Transfer of
Information Using the SMTP Java
Protocol Without Access to a Browser,
Trends Adv. Inf. Syst. Technol. 745
(2018) 1124–1130. doi:10.1007/978-3-
319-77 703-0_109.

[10] J. Klensin, Simple Mail Transfer Protocol,
RFC (2008). doi:10.17487/rfc5321.

[11] K. Dilip, Review on SMTP Protocol for E-
Mail Systems, Int. J. Res. Anal. Rev. 5(1)
(2018) 127–132.

[12] M.B. Krishna, E-Mail Spam Classification
using Naive Bayesian Classifier, Int. J.
Res. Appl. Sci. Eng. Technol. 9(VI) (2021)
5209–5214. doi:10.22214/ijraset.2021.
36153.

[13] R. Sureswaran, et al., Active E-mail
System SMTP Protocol Monitoring
Algorithm, 2nd IEEE International
Conference on Broadband Network &
Multimedia Technology (2009) 257–
260, doi:10.1109/ICBNMT.2009.53484
90.

[14] F. Mouton, L. Leenen, H. Venter, Social
Engineering Attack Examples, Templates
and Scenarios, Comput. Secur. 59 (2016)
186–209.
doi:10.1016/j.cose.2016.03.004.

[15] I. Foster et al., Security by Any Other
Name: On the Effectiveness of Provider
Based Email Security, Proceedings of the
22nd ACM SIGSAC Conference on
Computer and Communications Security
(2015). doi:10.1145/2810103.2813607.

[16] Kubernetes, Kubernetes Documentation.
URL:https://kubernetes.io/docs/home/

[17] S. Buchanan, J. Rangama, N. Bellavance,
Helm Charts for Azure Kubernetes
Service, Introd. Azure Kubernetes Serv.
(2020) 151–189. doi:10.1007/978-1-
4842-5519-3_8.

[18] B. Beach, et al., AWS Architecture
Overview, Pro PowerShell for Amazon
Web Services (2019) 1–8.
doi:10.1007/978-1-4842-4850-8_1.

[19] K. Jangla, Containers, Accelerating
Development Velocity Using Docker,
(2018) 1–8. doi:10.1007/978-1-4842-
3936-0_1.

[20] SendGrid, Email Delivery. URL:
https://sendgrid.com/email-delivery/

[21] V. Jain, Analyzing Layer 2 and Layer 3
Traffic, Wireshark Fundamentals,

28

(2022) 79–134. doi:10.1007/978-1-
4842-8002-7_3.

[22] P. Martin, Security, Kubernetes, Apress
(2021) 115–156. doi:10.1007/978-1-
4842-6494-2_11.

[23] K. Relan, V. Singhal, Pentest Ninja: XSS
And SQLi Takeover Tool, Proceeding of
the Second International Conference on
Information and Communication
Technology for Competitive Strategies
37 (2016) 1–2. doi:10.1145/2905055.
2905243.

[24] S. Nightingale, Email authentication
mechanisms: DMARC, SPF and DKIM
(2017). doi:10.6028/nist.tn.1945.

[25] E. Rescorla, The Transport Layer
Security (TLS) Protocol Version 1.3, RFC
(2018). doi:10.17487/rfc8446.

