
81

Comparative Analysis of Cryptographic Hash Functions
in Blockchain Systems

Oleksandr Kuznetsov1,2, Oleksandr Peliukh2, Nikolay Poluyanenko2, Serhii Bohucharskyi2,
and Ievgeniia Kolovanova2

1 Department of Political Sciences, Communication and International Relations, University of Macerata, 30/32
Via Crescimbeni, 62100 Macerata, Italy
2 Department of Information and Communication Systems Security, School of Computer Sciences, V. N. Karazin
Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine

Abstract
In the burgeoning realm of digital technologies, blockchain has emerged as a
revolutionary force, underpinned by the intricate fabric of cryptographic hash functions.
This study provides a comprehensive evaluation of various hash functions, delineating
their processing efficacies across a spectrum of input block sizes. Through rigorous
empirical analysis, our research juxtaposes the performance metrics of ten distinct
algorithms, thereby offering invaluable insights into their respective computational
robustness. Notably, our findings underscore the complexities inherent in the selection of
an appropriate hash function for blockchain applications. Beyond mere processing
speeds, the selection process requires a nuanced understanding of cryptographic
resilience, adaptability to emerging threats, and seamless integration with prevailing
infrastructures. While our results furnish a contemporaneous benchmark, they also
accentuate the imperative for incessant research and adaptation in an ever-evolving
digital landscape. This investigation serves both as a reference point for current
blockchain applications and a clarion call for sustained innovation in the quest for
optimized cryptographic solutions. The overarching aim is to fortify the blockchain’s
promise by ensuring its security and performance through the judicious application of
cryptographic hash functions, thereby catalyzing a more decentralized, efficient, and
secure digital future.

Keywords 1
Blockchain, cryptographic hash functions, processing efficiency, digital evolution,
decentralized systems.

1. Introduction

In the contemporary era of digital
communication and data exchange,
cryptographic hash functions play an
indispensable role in ensuring data integrity,
authentication, and security [1]. A
cryptographic hash function is a mathematical
algorithm that takes an input (or “message”)
and produces a fixed-size string of characters,
which is typically a sequence of numbers and
letters [2–3]. These functions are designed

CPITS-2023-II: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2023, Kyiv, Ukraine

EMAIL: kuznetsov@karazin.ua (O. Kuznetsov); oleksandrpelyukh@gmail.com (O. Peliukh); nlfsr01@gmail.com (N. Poluyanenko);

sbogucharskiy@karazin.ua (S. Bohucharskyi); e.kolovanova@karazin.ua (I. Kolovanova)
ORCID: 0000-0003-2331-6326 (O. Kuznetsov); 0000-0003-0507-0262 (O. Peliukh); 0000-0001-9386-2547 (N. Poluyanenko); 0000-0003-

4971-4314 (S. Bohucharskyi); 0000-0002-0326-2394 (I. Kolovanova)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

such that even a minute change in the input
will produce a drastically different output,
making them fundamental tools in the fields of
cryptography, cyber-security, and, notably,
blockchain technology [4].

Blockchain, a decentralized and distributed
ledger system, relies heavily on cryptographic
hash functions for its operation [5]. The core
principle behind blockchain’s security and
integrity is the continuous chaining of blocks
using cryptographic hashes [6–7]. Given the
growing significance of blockchain in various
applications, ranging from financial

mailto:oleksandrpelyukh@gmail.com

82

transactions to supply chain management, the
efficiency, security, and performance of the
hashing algorithms employed are of
paramount importance [8].

Among the myriad of hash functions, SHA2
[9–10], SHABAL [11–12], SHAVITE [12–13],
Keccak [14–15], and Blake [12, 16] have
emerged as frontrunners in contemporary
blockchain projects. Each of these algorithms
offers unique characteristics in terms of
security, computational requirements, and
resistance against various attack vectors [17–
18].

This paper embarks on a comprehensive
comparative analysis of these widely adopted
cryptographic hash algorithms. Through
rigorous benchmarking and assessment, we
aim to elucidate their respective strengths,
vulnerabilities, and performance metrics. This
exploration serves not only to guide current
blockchain implementations but also to inform
future innovations in the realm of
cryptographic research and development.

2. Methodology

The comparative evaluation of cryptographic
hash algorithms necessitates a robust and
reproducible methodology. A structured
approach ensures the reliability of results,
enabling meaningful comparisons that can
guide both academic research and practical
implementations. In this study, we have
adopted the following methods to
systematically evaluate the aforementioned
hash functions.

1. Hardware and Software Configuration:
The testing environment was standardized
using an Intel Core i9-7980 with a clock speed
of 2.60 GHz. Such a high-performance platform
ensures consistency in testing, eliminating
potential bottlenecks that might bias results.
The operating system deployed was Windows
10, which provides a stable environment with
widespread adoption in both academic and
commercial sectors.

2. Data Sets: To understand how these hash
functions perform across varying data lengths,
a range of data sizes was chosen. Specifically,
we used 21 distinct data lengths starting from
2020 bytes (or 1 byte) to 220220 bytes. The
exponential progression aids in capturing the
potential non-linear scaling characteristics of

these algorithms, providing insights into their
behavior under both minimal and substantial
loads.

3. Performance Metrics: The core metrics
used for gauging the performance of each hash
algorithm are as follows:

• Cycles/byte: This metric evaluates the
number of processor cycles required to
process each byte of data. A lower value
indicates a more efficient algorithm in
terms of computational cycles.

• MB/sec: Measuring the Megabytes
processed per second, this metric offers
a direct view into the throughput of the
algorithm. A higher MB/sec value
suggests a faster hashing capability, ideal
for real-time or large-scale applications.

• KHash/sec: Representing the thousands
of hashes computed per second,
KHash/sec offers insights into the sheer
speed of the algorithm, especially
valuable for applications like mining
where the hash rate is a critical
parameter.

Each hashing algorithm was run multiple
times for each data length to ensure statistical
robustness. The results were then averaged to
minimize the potential influence of outliers or
sporadic system interruptions.

In summary, our methodology provides a
comprehensive and systematic approach to
evaluate the speed and efficiency of leading
cryptographic hash algorithms, paving the way
for informed decisions in blockchain
implementations and other applications where
hash functions play a crucial role.

3. Hash Algorithms in Blockchain
Systems

The bedrock of blockchain technology, a
decentralized ledger system, is cryptographic
hashing. These algorithms ensure that data
remains intact and unchanged, providing a layer
of security and authenticity to transactions. In
this section, we explore the specific hash
algorithms that have found prominence in the
blockchain sphere, illuminating their distinctive
features and their adoption rationale in various
blockchain projects.
1. SHA-256 [9–10]:

83

• Description: A member of the SHA-2
(Secure Hash Algorithm 2) family, SHA-
256 produces a 256-bit (32-byte) hash.
It’s known for its security and
computational efficiency.

• Blockchain Adoption: Perhaps the most
famous application of SHA-256 is in
Bitcoin, the pioneering cryptocurrency
[19]. The developers of Bitcoin opted for
SHA-256 due to its strong collision
resistance and widespread recognition
as a secure algorithm.

2. SHA-512 [9–10]:
• Description: Also from the SHA-2 family,

this produces a 512-bit hash, offering
even more robust security, albeit at a
higher computational cost.

• Blockchain Adoption: Some blockchain
platforms choose SHA-512 for added
security layers in specific components
where computational efficiency is not
the primary concern.

3. SHABAL-256 & SHABAL-512 [11–12]:
• Description: These are cryptographic

hash functions with output lengths of 256
and 512 bits respectively.

• Blockchain Adoption: While not as
ubiquitous as SHA variants, they find use
in some niche blockchain applications
due to their unique cryptographic
properties.

4. SHAVITE-256 & SHAVITE-512 [12–13]:
• Description: SHAVITE is a family of hash

functions designed to be efficient on a
variety of platforms, especially
hardware implementations.

• Blockchain Adoption: Some blockchain
projects that emphasize hardware-based
transactions or have specific hardware
considerations might lean towards
SHAVITE for its efficiency in such
contexts.

5. Keccak-256 & Keccak-512 [14–15]:
• Description: Keccak is the basis for the

SHA-3 standard. It’s recognized for its
sponge construction which offers a high
degree of flexibility and security.

• Blockchain Adoption: Ethereum, a
leading smart contract platform, uses
Keccak-256. The choice stemmed from
Keccak’s distinction as a winner of the
NIST hash function competition and its

perceived security advantages over SHA-
2.

6. Blake-256 & Blake-512 [12–16]:
• Description: BLAKE is notable for its

speed and high-security levels. It’s
simpler in design than SHA-2, leading to
potential advantages in performance.

• Blockchain Adoption: Siacoin, a
decentralized storage platform, employs
Blake-256. The developers favored its
blend of speed and security, particularly
important for a system that frequently
processes large amounts of data.

In summation, the choice of a hashing
algorithm in a blockchain project is
multifaceted. Factors like security,
computational efficiency, specific platform
considerations, and even historical trust play a
role. As blockchain technology continues to
evolve, so will its reliance on these
cryptographic backbones, making their study
and understanding even more crucial.

4. Results
4.1. Performance Analysis of SHA2-
256 and SHA2-512

In our pursuit to comprehend the
computational efficiency and performance of
popular cryptographic hash functions, we
subjected SHA2-256 and SHA2-512 to rigorous
benchmarking. The tests were conducted on a
64-bit platform powered by Intel Core i9-7980
running at 2.60 GHz. The following sections
offer a detailed analysis and a summary of
Table 1 that amalgamates the results for both
hash algorithms.

Analysis and Commentary:
• Observing the Cycles/byte for both

algorithms, SHA2-256 begins with a
considerably higher number of cycles for
smaller input blocks. However, as the
input size increases, the efficiency in
terms of cycles/bytes tends to converge
for both algorithms. Notably, SHA2-512
maintains a consistent trend and is
marginally less efficient for larger input
sizes compared to SHA2-256.

• In terms of MB/sec, a similar pattern
emerges where SHA2-512 has a slightly
lower throughput compared to SHA2-
256, especially evident in larger input

84

blocks. The throughput for both
algorithms dramatically increases as the
input block size grows, with SHA2-512
reaching a peak of around 369.87
MB/sec at 220 bytes.

• The KHash/sec metric is particularly
revealing. For smaller data blocks, SHA2-
256 seems to achieve higher hashing
speeds. However, as the input block size
increases, both algorithms experience a
stark reduction in their KHash/sec.
Notably, the drop in performance for
SHA2-512 is more precipitous,
especially after 26 bytes, reflecting a
decrease of almost half.

• When juxtaposed, SHA2-256 generally
offers better computational efficiency

and higher throughput for most input
sizes. However, the choice between the
two would also depend on security
requirements, as SHA2-512, with its
larger hash size, could offer stronger
cryptographic security.

• In conclusion, the performance metrics
highlight the inherent trade-offs
between computational efficiency and
cryptographic strength. While SHA2-256
demonstrates superior performance in
most scenarios, the choice to use SHA2-
512 might be motivated by heightened
security concerns. As with any
cryptographic decision, understanding
the context and requirements of the
application remains paramount.

Table 1
Performance Metrics for SHA2-256 and SHA2-512

Test#
Input

Block Size,
bytes

SHA2-256 SHA2-512

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s

1 1 848.68 3.06 3060.37 945.51 2.74 2741.59
2 2 423.30 6.13 3065.65 472.36 5.49 2744.53
3 4 211.72 12.24 3059.57 236.28 10.98 2744.68
4 8 105.80 24.53 3066.73 118.07 21.94 2742.09
5 16 52.84 49.07 3066.73 59.05 43.93 2745.54
6 32 26.28 97.98 3061.86 29.48 87.89 2746.69
7 64 25.74 100.50 1570.25 14.79 175.35 2739.80
8 128 19.14 134.40 1049.99 14.36 180.85 1412.90
9 256 15.91 162.82 636.02 10.70 243.01 949.25

10 512 14.28 181.29 354,08 8,84 292,57 571,43
11 1024 13,46 192,54 188,03 7.94 327.37 319.70
12 2048 13.08 198.22 96.79 7.52 346.98 169.42
13 4096 12.88 201.49 49.19 7.24 357.63 87.31
14 8192 12.78 203.41 24.83 7.13 363.71 44.40
15 16384 12.71 203.25 12.41 7.13 366.63 22.38
16 32768 12.68 204.48 6.24 7.04 368.70 11.25
17 65536 12.67 204.88 3.13 7.03 368.70 5.63
18 131072 12.67 204.72 1.56 7.01 368.96 2.81
19 262144 12.67 205.00 0.78 7.02 369.09 1.41
20 524288 12.65 205.16 0.39 7.01 368.83 0.70
21 1048576 12.68 204.88 0.20 7.02 369.87 0.35

4.2. Performance Analysis of
SHABAL-256 and SHABAL-512

Table 2 below provides a summarization of the
performance metrics associated with the
SHABAL-256 and SHABAL-512 cryptographic
hash algorithms, specifically, when processed
on a 64-bit computational platform using an
Intel Core i9-7980 at 2.60 GHz.

Analysis and Commentary:

• Both SHABAL-256 and SHABAL-512
show a clear pattern where the cycles
per byte decrease (indicative of
improved efficiency) as the size of the
input block increases. This suggests that
both algorithms are designed to process
larger data blocks more efficiently than
smaller ones. However, SHABAL-256,
generally requires slightly fewer cycles
per byte compared to SHABAL-512,

85

emphasizing its higher efficiency in
processing data.

• As the input block size increases, the
megabytes processed per second
(MB/sec) also increase, reaching an
asymptotic limit. Both algorithms have
comparable throughputs, but SHABAL-
256 tends to outperform SHABAL-512
for larger block sizes.

• The kilohashes per second (KHash/sec)
reflect the speed at which the system can
compute the hash values. The rate
decreases with the size of the input
block. The decrease is steeper for
SHABAL-512, indicating it may require
more computational resources to hash
larger blocks compared to its SHABAL-

256 counterpart.

• The data suggests that for tasks requiring
a balance between security and efficiency,
SHABAL-256 might be preferable due to
its slightly better efficiency metrics.
However, for tasks where the higher
cryptographic strength of a 512-bit hash
is necessary, the SHABAL-512, despite its
slight performance penalty, would be the
algorithm of choice.

In conclusion, the choice between SHABAL-
256 and SHABAL-512 would be contingent on
the specific application requirements and the
trade-off between security and performance
one is willing to accept. This detailed
performance analysis offers practitioners
insights to make informed decisions on the
appropriate cryptographic algorithm selection
for their needs.

Table 2

Performance Metrics for SHABAL-256 & SHABAL-512

Test#

Input

Block Size,

bytes

SHABAL-256 SHABAL-512

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s

1 1 1235.41 2.10 2097.95 1274.73 2.04 2039.99

2 2 617.18 4.20 2099.00 636.36 4.06 2028.43

3 4 308.82 8.39 2097.32 324.19 7.77 1941.81

4 8 154.24 16.79 2099.17 165.16 16.13 2015.87

5 16 77.19 33.53 2095.81 79.38 32.09 2005.39

6 32 38.50 67.36 2105.10 40.14 64.69 2021.47

7 64 25.00 103.79 1621.70 26.05 100.48 1569.95

8 128 14.95 173.55 1355.84 15.49 168.04 1312.82

9 256 9.91 261.69 1022.21 10.19 252.91 987.94

10 512 7.40 349.99 683.58 7.69 337.27 658.73

11 1024 6.15 420.61 410.75 6.31 416.60 406.83

12 2048 5.52 468.53 228.78 5.55 466.86 227.96

13 4096 5.21 497.43 121.44 5.23 495.08 120.87

14 8192 5.05 513.00 62.62 5.15 503.64 61.48

15 16384 4.97 514.01 31.37 5.07 511.25 31.20

16 32768 4.95 524.29 16.00 5.04 515.27 15.72

17 65536 4.94 523.24 7.98 5.00 518.84 7.92

18 131072 4.94 524.29 4.00 5.03 515.27 3.93

19 262144 4.94 525.34 2.00 5.01 523.76 2.00

20 524288 4.93 525.60 1.00 4.95 525.34 1.00

21 1048576 4.94 524.55 0.50 5.01 507.78 0.48

4.3. Performance Analysis of
SHAVITE-256 and SHAVITE-512

The following section delineates a
comprehensive analysis of the performance

metrics associated with the SHAVITE-256 and
SHAVITE-512 cryptographic hash algorithms.
Both were tested on a 64-bit computational
platform, specifically an Intel Core i9-7980
clocked at 2.60 GHz. Table 3 provides a
consolidated overview of these findings.

86

Analysis and Commentary:
• A striking observation is that SHAVITE-

256 is significantly more efficient in
terms of cycles per byte compared to
SHAVITE-512, particularly for smaller
input block sizes. This suggests that
SHAVITE-256 can process data more
swiftly, thereby rendering it more
suitable for applications that prioritize
speed.

• When it comes to MB/sec, SHAVITE-256
consistently outperforms SHAVITE-512
across all input block sizes. The data
delineates a trend where MB/sec
increases for SHAVITE-256 as block size
augments, indicating efficient data
processing for larger blocks. On the other
hand, SHAVITE-512 starts with a low
throughput, which gradually increases
with block size but never surpasses
SHAVITE-256.

• The kilohashes per second (KHash/sec)
provide insights into the hashing
capabilities of the system. While both

algorithms show a declining trend with
increasing block size, SHAVITE-256
showcases a steep decline after a certain
threshold, suggesting some limitations in
handling larger blocks efficiently.

• Overall, SHAVITE-256 appears to be
more performance-centric, delivering
faster results with less computational
overhead. In contrast, SHAVITE-512,
albeit less efficient, might offer a more
robust cryptographic strength due to its
larger hash size.

In summation, the distinction between
opting for SHAVITE-256 or SHAVITE-512
depends heavily on the specific application’s
requirements, emphasizing the trade-off
between computational efficiency and
cryptographic resilience. This empirical
analysis provides a solid foundation for
stakeholders to make an informed decision
regarding the selection of an appropriate
cryptographic algorithm tailored to their
specific needs.

Table 3

Performance Metrics for SHAVITE-256 and SHAVITE-512

Test#

Input

Block Size,

bytes

SHAVITE-256 SHAVITE-512

Cycles/byt

e
MB/s KHash/s Cycles/byte MB/s KHash/s

1 1 883.77 2.92 2915.87 2788.42 0.93 925.64

2 2 441.15 5.85 2924.41 1393.34 1.85 927.29

3 4 220.52 11.72 2928.98 687.22 3.77 942.29

4 8 110.18 23.41 2926.37 346.47 7.51 939.25

5 16 55.13 46.81 2925.71 176.91 14.73 920.45

6 32 27.43 93.88 2933.83 87.25 29.79 930.91

7 64 27.01 95.18 1487.16 43.16 59.53 930.12

8 128 20.16 126.20 985.92 42.48 59.93 468.17

9 256 16.79 152.25 594.74 32.49 80.25 313.46

10 512 15.11 168.96 330.00 27.31 96.47 188.43

11 1024 14.33 178.63 174.45 23.77 106.31 103.82

12 2048 13.92 184.15 89.92 22.78 113.36 55.35

13 4096 13.77 187.11 45.68 22.13 113.53 27.72

14 8192 13.67 188.66 23.03 22.05 119.41 14.58

15 16384 13.61 189.24 11.55 22.55 117.75 7.19

16 32768 13.58 189.79 5.79 21.18 121.87 3.72

17 65536 13.55 189.86 2.90 21.12 122.90 1.88

18 131072 13.53 189.99 1.45 21.07 121.55 0.93

19 262144 13.52 190.03 0.72 21.09 122.97 0.47

20 524288 13.52 190.10 0.36 21.12 123.19 0.23

21 1048576 13.53 189.93 0.18 21.04 123.14 0.12

87

4.4. Performance Analysis of
KECCAK-256 and KECCAK-512

The subsequent section presents an analysis of
the performance metrics associated with the
KECCAK-256 and KECCAK-512 cryptographic
hash algorithms. These were rigorously tested
on a 64-bit computational platform utilizing an
Intel Core i9-7980, clocked at 2.60 GHz. A
synthesized overview is captured in Table 4.

Analysis and Commentary:
• Comparatively, KECCAK-256 and

KECCAK-512 present close competition
in terms of cycles per byte, especially
when handling smaller input block sizes.
This close margin hints at their
underlying similarities in algorithmic
efficiency.

• Observing the MB/sec, KECCAK-512
marginally outperforms KECCAK-256,
albeit the differences are subtle. As block
size increases, both algorithms exhibit
an exponential growth in MB/sec,
underscoring the efficiency of both

KECCAK variants for processing larger
blocks.

• The KHash/sec metric reveals
interesting trends. Both algorithms start
strong but undergo a drastic reduction in
hashing speed when handling larger
blocks. Notably, KECCAK-512 seems to
suffer a sharper drop in KHash/sec than
KECCAK-256 for the same data sizes,
post the input block size of 227 bytes.

• At a broad level, while KECCAK-256
seems slightly less efficient in data
processing (MB/sec) compared to
KECCAK-512, its steadier hashing speed
(KHash/sec) might render it preferable
in scenarios where consistent hash rate
performance is crucial.

In essence, the choice between KECCAK-
256 and KECCAK-512 hinges upon specific
application demands, weighing the nuances
between data processing speed and hashing
consistency. This empirical scrutiny offers
stakeholders a substantial base for selecting an
optimal cryptographic hashing solution, that
resonates with their nuanced requirements.

Table 4

Performance Metrics for KECCAK-256 and KECCAK-512

Test#

Input

Block Size,

bytes

KECCAK-256 KECCAK-512

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s

1 1 1307.78 1.97 1974.12 1269.54 2.04 2041.02

2 2 657.99 3.94 1969.97 633.65 4.09 2045.36

3 4 328.59 7.88 1970.41 316.76 8.18 2044.80

4 8 159.08 16.29 2036.23 156.76 16.44 2055.39

5 16 79.54 32.54 2034.02 77.77 33.31 2081.83

6 32 39.75 65.20 2037.56 38.83 66.58 2080.51

7 64 19.88 130.53 2039.59 19.42 133.64 2088.20

8 128 9.92 261.16 2040.35 19.11 134.52 1050.93

9 256 9.84 263.33 1028.63 18.93 137.16 535.78

10 512 9.69 267.22 521.92 18.60 139.48 272.41

11 1024 9.64 268.87 262.56 17.41 149.28 145.79

12 2048 9.57 271.09 132.37 16.71 155.00 75.68

13 4096 9.24 280.82 68.56 16.42 158.04 38.58

14 8192 9.06 285.64 34.87 16.38 158.11 19.30

15 16384 8.99 288.07 17.58 16.37 158.20 9.66

16 32768 8.95 289.34 8.83 16.49 157.30 4.80

17 65536 8.95 289.42 4.42 16.40 157.49 2.40

18 131072 8.94 289.90 2.21 16.47 158.08 1.21

19 262144 8.96 289.58 1.10 16.38 158.18 0.60

20 524288 8.95 289.50 0.55 16.39 158.28 0.30

21 1048576 8.96 289.50 0.28 16.40 158.11 0.15

88

4.5. Performance Analysis of BLAKE-
256 and BLAKE-512

This section elucidates the performance metrics
associated with the BLAKE-256 and BLAKE-512
cryptographic hash algorithms. Testing was
conducted on a 64-bit computational platform
powered by an Intel Core i9-7980 with a clock
speed of 2.60 GHz. For clarity and brevity, a
consolidated representation of the results is
furnished in Table 5.

Analysis and Commentary:
• When contrasting BLAKE-256 and

BLAKE-512, the former showcases fewer
cycles per byte across most block sizes,
indicating enhanced efficiency. This
suggests that, on a byte-to-byte basis,
BLAKE-256 can process data more
expediently than its BLAKE-512
counterpart.

• MB/sec metrics reveal that BLAKE-256
consistently surpasses BLAKE-512 in
data processing rates. Especially for
larger block sizes, BLAKE-256’s ability to

sustain high throughput is particularly
noteworthy.

• The KHash/sec parameter for both
algorithms depicts an exponential decline
as block size increases. However, BLAKE-
256 consistently delivers higher hashing
rates than BLAKE-512 until a certain data
size threshold, after which the hashing
speeds of both variants start to converge.

• BLAKE-256 seems to outperform BLAKE-
512 in terms of both data processing and
hashing speed for the majority of block
sizes. This renders BLAKE-256 a more
favorable choice for applications where
speed and efficiency are pivotal.

In conclusion, while both BLAKE variants
exhibit commendable performance, BLAKE-
256 appears to have a slight edge in processing
and hashing capabilities over BLAKE-512 on
the tested platform. Decision-makers and
stakeholders are advised to evaluate these
empirical findings within the context of their
specific application needs, optimizing for
desired performance outcomes.

Table 5

Performance Metrics for BLAKE-256 and BLAKE-512

Test#

Input

Block Size,

bytes

BLAKE-256 BLAKE-512

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s

1 1 648.36 3.99 3991.69 846.69 3.06 3059.12

2 2 323.95 7.99 3993.05 423.03 6.12 3060.28

3 4 160.85 16.06 4015.69 211.61 12.24 3060.28

4 8 80.29 32.16 4020.61 104.68 24.74 3092.05

5 16 40.18 64.33 4020.61 52.26 49.58 3098.63

6 32 19.96 129.74 4054.44 26.06 99.20 3100.09

7 64 19.39 133.63 2087.93 13.06 198.41 3100.09

8 128 14.28 181.63 1419.02 12.52 206.78 1615.46

9 256 11.73 221.41 864.86 9.21 281.27 1098.71

10 512 10.45 248.71 485.77 7.63 343.35 670.60

11 1024 9.80 264.93 258.72 6.74 385.36 376.33

12 2048 9.46 273.85 133.72 6.33 410.88 200.63

13 4096 9.29 279.03 68.12 6.11 424.70 103.69

14 8192 9.20 281.50 34.36 5.99 431.51 52.67

15 16384 9.16 282.71 17.26 5.94 436.18 26.62

16 32768 9.17 282.71 8.63 5.93 436.91 13.33

17 65536 9.21 281.42 4.29 5.93 438.37 6.69

18 131072 9.21 281.65 2.15 5.91 438.92 3.35

19 262144 9.32 281.88 1.08 5.91 438.55 1.67

20 524288 9.21 281.65 0.54 5.91 439.29 0.84

21 1048576 9.22 281.12 0.27 5.92 438.00 0.42

89

5. Comparison of results
5.1. Comparison of Cycles per Byte

The Fig. 1 visualizes the cycles per byte for ten
different hashing algorithms, as a function of
input block size.

Upon examining the data presented in the
Fig. 1, several observations and conclusions can
be made:

• The Cycles/byte varies widely among the
algorithms, demonstrating the diverse
efficiency levels of these algorithms. For
instance, when considering the smallest
input block size of one byte, BLAKE-256
shows the highest efficiency with the least
cycles, whereas SHAVITE-512 consumes
the most.

• As the input block size increases, the
difference in efficiency between
algorithms tends to diminish. This
implies that the overheads affecting the
efficiency of algorithms are relatively
more prominent for smaller block sizes.

• Certain algorithms, like BLAKE-256 and
BLAKE-512, maintain a relatively
consistent performance regardless of the
input block size. On the other hand,
algorithms like SHAVITE-512 show
drastic improvements as the input block
size increases.

• For most algorithms, efficiency in terms
of Cycles/byte seems to stabilize or reach
an asymptotic value beyond an input
block size of 8KB (8192 bytes). This
suggests that using block sizes above this

might not provide significant gains in
terms of computational efficiency.

• For algorithms that have both 256-bit and
512-bit versions, it is evident that the
256-bit version is generally more efficient
in terms of Cycles/byte. This is expected
due to the reduced computational
complexity associated with smaller bit
sizes.

• Among all, BLAKE-256 consistently
stands out as one of the most efficient
algorithms across all input block sizes.
Conversely, SHAVITE-512, while initially
being the least efficient for smaller block
sizes, sees significant improvement as
block size increases.

• While cycles per byte is an important
metric for computational efficiency, it’s
essential to consider other factors like
security, implementation complexity, and
compatibility when selecting a hashing
algorithm for real-world applications.

In conclusion, the choice of a hashing
algorithm should not solely rely on cycles per
byte but should be a holistic decision based on
various performance metrics and specific
application requirements. However, from a
pure efficiency perspective, BLAKE-256
exhibits excellent performance across a wide
range of input block sizes.

This analysis provides valuable insights for
developers and organizations looking to
optimize their cryptographic operations,
ensuring both security and performance are
maintained at optimal levels.

Figure 1: Comparison of Cycles per Byte across Multiple Hashing Algorithms

1248
1

6
3

2
6

4
1

2
8

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4
3

2
7

6
8

6
5

5
3

6
1

3
1

0
7

2
2

6
2

1
4

4
5

2
4

2
8

8
1

0
4

8
5

7
6

1

10

100

1000

10000

Cycles/byte

Input Block Size (bytes)

90

5.2. Comparison of Hashing
Algorithms by Throughput

Fig. 2 visualizes the performance of 10
cryptographic hashing algorithms across varying
input block sizes, measured in MB/sec.

The results indicate a non-uniform
performance landscape across the studied
algorithms and input block sizes. Several key
observations can be deduced:

• Almost all algorithms show increased
throughput as the input block size
increases. This trend likely represents the
amortization of initialization and
finalization costs over larger data blocks.
However, there’s a plateauing effect
observed in most algorithms, indicating an
approach towards their maximum
throughput capacity.

• By the largest input block size (1048576
bytes), the BLAKE-512 algorithm emerged
as the leading performer with 438 MB/sec,
closely followed by SHABAL-256 and
SHABAL-512. This implies that in
scenarios requiring high-throughput
hashing of larger data chunks, these
algorithms would be preferable.

• KECCAK-256 exhibits a remarkably stable
growth in throughput as the block size
increases, without any significant dips or
spikes. This consistent performance might
make it a preferable choice in
environments where input sizes can vary

significantly, ensuring predictable hashing
rates.

• For the smallest input block size (1 byte),
several algorithms show significantly
reduced throughput, most notably
SHAVITE-512. This is an important
consideration for applications dealing
with a large number of small-sized data
blocks.

• Interestingly, for many algorithms, their
512-bit variants (like SHA2-512 and
SHAVITE-512) don’t necessarily double
the throughput compared to their 256-bit
counterparts. This suggests that the
performance does not linearly scale with
the bit length, and other internal
algorithmic factors play a significant role.

• Despite its performance with smaller
block sizes, SHABAL-512 showed a
significant jump in throughput once the
block size exceeded 64 bytes, overtaking
many competitors. This behavior
underscores the importance of
benchmarking cryptographic algorithms
over a diverse range of input sizes.

In conclusion, while raw throughput is an
essential metric, selecting a hashing algorithm
for practical applications should consider other
factors like security guarantees, implementation
complexity, and specific use-case requirements.
The diverse performance landscape observed
underscores the importance of nuanced,
application-specific benchmarking before
settling on a cryptographic primitive.

Figure 2: Comparison of Hashing Algorithms by Throughput (MB/sec)

5.3. Performance Comparison by
KHash/sec Criterion

In this rigorous performance assessment, we
aim to dissect and analyze the throughput of

various cryptographic hash functions,
delineating their performance in kilohashes
per second (KHash/sec). This metric offers a
comprehensive understanding of how swiftly
each algorithm can process input data,

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

0,1

1

10

100

1000

MB/sec

Input Block Size (bytes)

91

rendering it a quintessential element in
evaluating and benchmarking cryptographic
protocols (Fig. 3).

Several key observations can be deduced:
• From a cursory glance at the dataset, it’s

palpable that the KHash/sec for each
algorithm plummets as the input block
size burgeons. This is a quintessential
behavior as a larger input block
demands greater computational power
and time, thereby reducing the
KHash/sec.

• The SHA2-256 and SHA2-512
demonstrate a fascinating interplay.
Initially, SHA2-256 marginally
outperforms its 512 counterpart for
smaller block sizes. However, as we
approach larger block sizes, SHA2-512
emerges as the preeminent variant, even
doubling the throughput of SHA2-256 in
some tests.

• The performance degradation is
particularly pronounced for SHABAL-
256 and SHABAL-512. For minuscule
block sizes, their throughput is
analogous, but as the block size
escalates, SHABAL-512’s performance
slightly trumps SHABAL-256,
showcasing its optimized efficiency for
handling larger data chunks.

• SHAVITE-256 consistently supersedes
SHAVITE-512 across all block sizes. This
could be attributed to the inherent
architectural decisions made during its
design, emphasizing speed for 256-bit
processing.

• KECCAK-256 and KECCAK-512 both
experience an intriguing surge around
64 bytes, but KECCAK-256’s advantage
wanes post this point, with its
performance plummeting precipitously.
In contrast, KECCAK-512 maintains a
more consistent (albeit declining)
trajectory, highlighting its robustness
against variable input sizes.

• Of particular note is BLAKE-256 and
BLAKE-512’s relatively stable
performance, with the latter consistently
outshining the former as block sizes
enlarge. This consistency might be
emblematic of BLAKE’s resilience and
adaptability across diverse data sizes.

• For smaller block sizes, BLAKE-256
reigns supreme, but as we transition to
heftier blocks, the crown oscillates
between BLAKE-512, SHABAL-512, and
SHA2-512.

Cryptographic hash function performance
is contingent upon a myriad of factors,
including design principles, input block size,
and implementation nuances. While this
empirical analysis provides a granular
breakdown of their respective efficacies,
practitioners must weigh these results against
their specific use-case scenarios and
constraints. In realms where speed is of the
essence, selecting an algorithm with superior
KHash/sec is paramount. Conversely, in more
security-sensitive domains, one might
prioritize cryptographic strength and
resistance to attacks over sheer speed.

Figure 3: Comparative performance of cryptographic hash functions across different input block
sizes in terms of KHash/sec

1248
1

6
3

2
6

4
1

2
8

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4
3

2
7

6
8

6
5

5
3

6
1

3
1

0
7

2
2

6
2

1
4

4
5

2
4

2
8

8
1

0
4

8
5

7
6

0,1

1

10

100

1000

10000

KHash/sec

Input Block Size (bytes)

92

6. Discussion

In the rapidly evolving landscape of digital
technologies, the performance of
cryptographic hash functions takes on
heightened importance. The results outlined in
the previous section present a comprehensive
understanding of how varying cryptographic
algorithms fare in terms of processing speeds
across diverse input block sizes. To
contextualize these findings, it’s essential to
dive into their implications, especially within
the ambit of blockchain systems.

1. The Imperative of Hash Functions in
Blockchain. At the core of blockchain
technology lies the unassailable need for
data integrity, authentication, and
security. Cryptographic hash functions
are the lynchpin that holds this edifice
together. Every transaction or data entry
within a block is hashed, and this hash is
woven into the very fabric of the
blockchain, ensuring both its veracity
and its inviolability. The choice of a hash
function, therefore, isn’t a trivial one; it
can profoundly shape the efficacy,
scalability, and security of a blockchain
system.

2. Throughput versus Security. While our
study primarily focused on performance
in terms of KHash/sec, it is crucial to
remember that in the blockchain realm,
speed isn’t the sole desideratum. A
balance must be struck between
processing speed and cryptographic
robustness. For instance, while BLAKE-
256 showcased stellar performance for
smaller block sizes, it’s imperative to
assess its resilience against potential
cryptographic attacks, especially in a
blockchain setting where a
compromised hash function can have
cataclysmic consequences.

3. Scalability Concerns. As blockchain
systems burgeon in size and complexity,
they grapple with scalability issues.
Here, the hash function’s performance
for larger block sizes becomes especially
pertinent. Functions like BLAKE-512,
which demonstrate consistent
throughput across escalating block sizes,
might be particularly suited for
burgeoning blockchain networks,

ensuring that transaction processing
remains brisk even as the system grows.

4. Adaptability and Future-Proofing. The
landscape of digital threats is in constant
flux. As cryptographic methodologies
evolve, so do the techniques employed
by malicious actors. Hence, it’s pivotal
for blockchain systems not just to adopt
algorithms that are robust today but
ones that can stand the test of time.
KECCAK’s consistent trajectory, for
instance, might hint at its future
adaptability.

5. Beyond Performance: Other
Considerations. While our focus has
been squarely on KHash/sec, blockchain
architects must also consider other
facets like power consumption, ease of
implementation, and compatibility with
existing systems. A hash function might
be blazingly fast, but if it demands
exorbitant computational power, it
might not be tenable for energy-
conscious implementations.

In summation, while the performance
metrics provided in our study furnish
invaluable insights into the prowess of various
cryptographic hash functions, they are but one
piece of the puzzle. For blockchain systems, the
choice of a hash function is a nuanced decision,
interweaving concerns of speed, security,
scalability, and sustainability [20–22]. As
blockchain continues to reshape industries
and redefine paradigms, ensuring its
bedrock—the cryptographic hash function—is
optimally chosen becomes not just desirable
but indispensable

7. Conclusion

The relentless advance of technology has
positioned blockchain as a frontrunner in the
reshaping of our digital landscape. At the heart
of this transformative technology lie
cryptographic hash functions, serving as
sentinels guarding the sanctity and security of
data transactions. Our comprehensive study
has thrown into sharp relief the comparative
merits and demerits of various hash functions,
particularly in the context of their processing
speeds across diverse input block sizes.

While our empirical data provides a
significant point of reference for determining

93

the efficiency of these algorithms, it also
underscores a broader, more intricate
narrative. This narrative pivots on the need for
a delicate balance between performance and
security, scalability and adaptability,
innovation and sustainability. The nuances of
choosing the right hash function for a specific
application—especially one as pivotal as
blockchain—extend well beyond mere speed
metrics. They touch upon foundational
concerns like cryptographic resilience,
adaptability to emerging threats, and
harmonious integration with existing
infrastructures.

It is also paramount to acknowledge that
the digital milieu is in constant flux, with both
challenges and innovations emerging at an
unprecedented pace. As such, while our
findings provide a robust benchmark for the
current scenario, they also serve as a testament
to the need for continuous research and
evolution in this domain.

In the annals of technological evolution,
blockchain stands out as a harbinger of both
promise and complexity. Ensuring its
unassailable security and optimal performance
will invariably hinge on the judicious choice
and implementation of cryptographic hash
functions. The hope is that our research, with
its analytical rigor and insights, will inform and
inspire future endeavors in this critical
juncture of blockchain technology, propelling
it toward its fullest potential and shaping a
more secure, efficient, and decentralized
digital future.

8. Acknowledgments

This project has received funding from the
European Union’s Horizon 2020 research and
innovation program under the Marie
Skłodowska-Curie grant agreement
No. 101007820—TRUST. This publication
reflects only the author’s view and the REA is
not responsible for any use that may be made
of the information it contains.

References

[1] A. Menezes, P. van Oorschot, S. Vanstone,
Handbook of Applied Cryptography, CRC
Press (2018). doi: 10.1201/9780429466
335.

[2] S. Rubinstein-Salzedo, Cryptography,
Springer International Publishing (2018).
doi: 10.1007/978-3-319-94818-8.

[3] R. Klima, N. Sigmon, Cryptology :
Classical and Modern, Chapman and
Hall/CRC (2018). doi: 10.1201/9781315
170664.

[4] 11 The Hash Function, Cryptography and
Network Security, River Publishers,
(2022) 197–204.

[5] A. Bruen, M. Forcinito, J. McQuillan,
Blockchain and Bitcoin, Cryptography,
Information Theory, and Error-
Correction: A Handbook for the 21st
Century 26 (2021) 549–560. doi:
10.1002/9781119582397.ch26.

[6] A. Bessalov, et al., Modeling CSIKE
Algorithm on Non-Cyclic Edwards
Curves, in: Workshop on Cybersecurity
Providing in Information and
Telecommunication Systems, vol. 3288
(2022) 1–10.

[7] A. Bessalov, et al., Multifunctional CRS
Encryption Scheme on Isogenies of Non-
Supersingular Edwards Curves, in:
Workshop on Classic, Quantum, and
Post-Quantum Cryptography, vol. 3504
(2023) 12–25.

[8] A. Tiwari, Chapter 14—Cryptography in
Blockchain, Distributed Computing to
Blockchain, (2023) 251–265. doi:
10.1016/B978-0-323-96146-2.00011-5.

[9] Secure Hash Standard (SHS), Natl. Ins.
Stand. Technol. U.S. Department of
Commerce (2015). doi: 10.6028/
NIST.FIPS.180-4.

[10] T. Hansen, D. Eastlake 3rd, US Secure
Hash Algorithms (SHA and HMAC-SHA),
RFC (2006). doi: 10.17487/RFC4634.

[11] Shabal, (2009). URL:
https://web.archive.org/web/2009120
9170807/http://www.shabal.com/

[12] I.T.L. Computer Security Division, SHA-3
Project (2017). URL: https://csrc.nist.gov
/projects/hash-functions/sha-3-project

[13] O. Dunkelman, E. Biham, The SHAvite-
3—A New Hash Function, Symmetric
Cryptography (2009) 1–39. doi:
10.4230/DagSemProc.09031.18.

[14] NIST, NIST Releases SHA-3
Cryptographic Hash Standard (2015).
URL: https://www.nist.gov/news-
events/news/2015/08/nist-releases-sha
-3-cryptographic-hash-standard

https://csrc.nist.gov/
https://www.nist.gov/news-events/news/2015/08/nist-releases-sha
https://www.nist.gov/news-events/news/2015/08/nist-releases-sha

94

[15] SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions,
Natl. Ins. Stand. Technol. U.S.
Department of Commerce (2015).
doi:10.6028/NIST.FIPS.202.

[16] BLAKE2. URL: https://www.blake2.net/
[17] V. Sokolov, P. Skladannyi, H. Hulak,

Stability Verification of Self-Organized
Wireless Networks with Block
Encryption, in: 5th International
Workshop on Computer Modeling and
Intelligent Systems, vol. 3137 (2022)
227–237.

[18] V. Grechaninov, et al., Decentralized
Access Demarcation System
Construction in Situational Center
Network, in: Workshop on Cybersecurity
Providing in Information and
Telecommunication Systems II, vol.
3188, no. 2 (2022) 197–206.

[19] B. Bebeshko, et al., Application of Game
Theory, Fuzzy Logic and Neural
Networks for Assessing Risks and
Forecasting Rates of Digital Currency,
Journal of Theoretical and Applied
Information Technology 100(24) (2022)
7390–7404.

[20] A. Kuznetsov, et al., Performance
Analysis of Cryptographic Hash
Functions Suitable for Use in Blockchain,
Int. J. Comput. Netw. Inf. Secur. 13 (2021)
1–15. doi:10.5815/IJCNIS.2021.02.01.

[21] A. Kuznetsov, et al., Performance of Hash
Algorithms on GPUs for Use in
Blockchain, IEEE Int. Conf. Adv. Trends
Inf. Theory (2019) 166–170. doi:
10.1109/ATIT49449.2019.9030442.

[22] A. Kuznetsov, et al., Statistical Testing of
Blockchain Hash Algorithms, in:
International Workshop on Conflict
Management in Global Information
Networks vol. 2588 (2019).

