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Abstract  
In the burgeoning realm of digital technologies, blockchain has emerged as a 
revolutionary force, underpinned by the intricate fabric of cryptographic hash functions. 
This study provides a comprehensive evaluation of various hash functions, delineating 
their processing efficacies across a spectrum of input block sizes. Through rigorous 
empirical analysis, our research juxtaposes the performance metrics of ten distinct 
algorithms, thereby offering invaluable insights into their respective computational 
robustness. Notably, our findings underscore the complexities inherent in the selection of 
an appropriate hash function for blockchain applications. Beyond mere processing 
speeds, the selection process requires a nuanced understanding of cryptographic 
resilience, adaptability to emerging threats, and seamless integration with prevailing 
infrastructures. While our results furnish a contemporaneous benchmark, they also 
accentuate the imperative for incessant research and adaptation in an ever-evolving 
digital landscape. This investigation serves both as a reference point for current 
blockchain applications and a clarion call for sustained innovation in the quest for 
optimized cryptographic solutions. The overarching aim is to fortify the blockchain’s 
promise by ensuring its security and performance through the judicious application of 
cryptographic hash functions, thereby catalyzing a more decentralized, efficient, and 
secure digital future. 
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1. Introduction 

In the contemporary era of digital 
communication and data exchange, 
cryptographic hash functions play an 
indispensable role in ensuring data integrity, 
authentication, and security [1]. A 
cryptographic hash function is a mathematical 
algorithm that takes an input (or “message”) 
and produces a fixed-size string of characters, 
which is typically a sequence of numbers and 
letters [2–3]. These functions are designed 
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such that even a minute change in the input 
will produce a drastically different output, 
making them fundamental tools in the fields of 
cryptography, cyber-security, and, notably, 
blockchain technology [4]. 

Blockchain, a decentralized and distributed 
ledger system, relies heavily on cryptographic 
hash functions for its operation [5]. The core 
principle behind blockchain’s security and 
integrity is the continuous chaining of blocks 
using cryptographic hashes [6–7]. Given the 
growing significance of blockchain in various 
applications, ranging from financial 
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transactions to supply chain management, the 
efficiency, security, and performance of the 
hashing algorithms employed are of 
paramount importance [8]. 

Among the myriad of hash functions, SHA2 
[9–10], SHABAL [11–12], SHAVITE [12–13], 
Keccak [14–15], and Blake [12, 16] have 
emerged as frontrunners in contemporary 
blockchain projects. Each of these algorithms 
offers unique characteristics in terms of 
security, computational requirements, and 
resistance against various attack vectors [17–
18]. 

This paper embarks on a comprehensive 
comparative analysis of these widely adopted 
cryptographic hash algorithms. Through 
rigorous benchmarking and assessment, we 
aim to elucidate their respective strengths, 
vulnerabilities, and performance metrics. This 
exploration serves not only to guide current 
blockchain implementations but also to inform 
future innovations in the realm of 
cryptographic research and development. 

2. Methodology 

The comparative evaluation of cryptographic 
hash algorithms necessitates a robust and 
reproducible methodology. A structured 
approach ensures the reliability of results, 
enabling meaningful comparisons that can 
guide both academic research and practical 
implementations. In this study, we have 
adopted the following methods to 
systematically evaluate the aforementioned 
hash functions. 

1. Hardware and Software Configuration: 
The testing environment was standardized 
using an Intel Core i9-7980 with a clock speed 
of 2.60 GHz. Such a high-performance platform 
ensures consistency in testing, eliminating 
potential bottlenecks that might bias results. 
The operating system deployed was Windows 
10, which provides a stable environment with 
widespread adoption in both academic and 
commercial sectors. 

2. Data Sets: To understand how these hash 
functions perform across varying data lengths, 
a range of data sizes was chosen. Specifically, 
we used 21 distinct data lengths starting from 
2020 bytes (or 1 byte) to 220220 bytes. The 
exponential progression aids in capturing the 
potential non-linear scaling characteristics of 

these algorithms, providing insights into their 
behavior under both minimal and substantial 
loads. 

3. Performance Metrics: The core metrics 
used for gauging the performance of each hash 
algorithm are as follows: 

• Cycles/byte: This metric evaluates the 
number of processor cycles required to 
process each byte of data. A lower value 
indicates a more efficient algorithm in 
terms of computational cycles. 

• MB/sec: Measuring the Megabytes 
processed per second, this metric offers 
a direct view into the throughput of the 
algorithm. A higher MB/sec value 
suggests a faster hashing capability, ideal 
for real-time or large-scale applications. 

• KHash/sec: Representing the thousands 
of hashes computed per second, 
KHash/sec offers insights into the sheer 
speed of the algorithm, especially 
valuable for applications like mining 
where the hash rate is a critical 
parameter. 

Each hashing algorithm was run multiple 
times for each data length to ensure statistical 
robustness. The results were then averaged to 
minimize the potential influence of outliers or 
sporadic system interruptions. 

In summary, our methodology provides a 
comprehensive and systematic approach to 
evaluate the speed and efficiency of leading 
cryptographic hash algorithms, paving the way 
for informed decisions in blockchain 
implementations and other applications where 
hash functions play a crucial role. 

3. Hash Algorithms in Blockchain 
Systems 

The bedrock of blockchain technology, a 
decentralized ledger system, is cryptographic 
hashing. These algorithms ensure that data 
remains intact and unchanged, providing a layer 
of security and authenticity to transactions. In 
this section, we explore the specific hash 
algorithms that have found prominence in the 
blockchain sphere, illuminating their distinctive 
features and their adoption rationale in various 
blockchain projects. 
1. SHA-256 [9–10]: 
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• Description: A member of the SHA-2 
(Secure Hash Algorithm 2) family, SHA-
256 produces a 256-bit (32-byte) hash. 
It’s known for its security and 
computational efficiency. 

• Blockchain Adoption: Perhaps the most 
famous application of SHA-256 is in 
Bitcoin, the pioneering cryptocurrency 
[19]. The developers of Bitcoin opted for 
SHA-256 due to its strong collision 
resistance and widespread recognition 
as a secure algorithm. 

2. SHA-512 [9–10]: 
• Description: Also from the SHA-2 family, 

this produces a 512-bit hash, offering 
even more robust security, albeit at a 
higher computational cost. 

• Blockchain Adoption: Some blockchain 
platforms choose SHA-512 for added 
security layers in specific components 
where computational efficiency is not 
the primary concern. 

3. SHABAL-256 & SHABAL-512 [11–12]: 
• Description: These are cryptographic 

hash functions with output lengths of 256 
and 512 bits respectively. 

• Blockchain Adoption: While not as 
ubiquitous as SHA variants, they find use 
in some niche blockchain applications 
due to their unique cryptographic 
properties. 

4. SHAVITE-256 & SHAVITE-512 [12–13]: 
• Description: SHAVITE is a family of hash 

functions designed to be efficient on a 
variety of platforms, especially 
hardware implementations. 

• Blockchain Adoption: Some blockchain 
projects that emphasize hardware-based 
transactions or have specific hardware 
considerations might lean towards 
SHAVITE for its efficiency in such 
contexts. 

5. Keccak-256 & Keccak-512 [14–15]: 
• Description: Keccak is the basis for the 

SHA-3 standard. It’s recognized for its 
sponge construction which offers a high 
degree of flexibility and security. 

• Blockchain Adoption: Ethereum, a 
leading smart contract platform, uses 
Keccak-256. The choice stemmed from 
Keccak’s distinction as a winner of the 
NIST hash function competition and its 

perceived security advantages over SHA-
2.  

6. Blake-256 & Blake-512 [12–16]: 
• Description: BLAKE is notable for its 

speed and high-security levels. It’s 
simpler in design than SHA-2, leading to 
potential advantages in performance. 

• Blockchain Adoption: Siacoin, a 
decentralized storage platform, employs 
Blake-256. The developers favored its 
blend of speed and security, particularly 
important for a system that frequently 
processes large amounts of data. 

In summation, the choice of a hashing 
algorithm in a blockchain project is 
multifaceted. Factors like security, 
computational efficiency, specific platform 
considerations, and even historical trust play a 
role. As blockchain technology continues to 
evolve, so will its reliance on these 
cryptographic backbones, making their study 
and understanding even more crucial. 

4. Results 
4.1. Performance Analysis of SHA2-
256 and SHA2-512 

In our pursuit to comprehend the 
computational efficiency and performance of 
popular cryptographic hash functions, we 
subjected SHA2-256 and SHA2-512 to rigorous 
benchmarking. The tests were conducted on a 
64-bit platform powered by Intel Core i9-7980 
running at 2.60 GHz. The following sections 
offer a detailed analysis and a summary of 
Table 1 that amalgamates the results for both 
hash algorithms. 

Analysis and Commentary: 
• Observing the Cycles/byte for both 

algorithms, SHA2-256 begins with a 
considerably higher number of cycles for 
smaller input blocks. However, as the 
input size increases, the efficiency in 
terms of cycles/bytes tends to converge 
for both algorithms. Notably, SHA2-512 
maintains a consistent trend and is 
marginally less efficient for larger input 
sizes compared to SHA2-256. 

• In terms of MB/sec, a similar pattern 
emerges where SHA2-512 has a slightly 
lower throughput compared to SHA2-
256, especially evident in larger input 
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blocks. The throughput for both 
algorithms dramatically increases as the 
input block size grows, with SHA2-512 
reaching a peak of around 369.87 
MB/sec at 220 bytes. 

• The KHash/sec metric is particularly 
revealing. For smaller data blocks, SHA2-
256 seems to achieve higher hashing 
speeds. However, as the input block size 
increases, both algorithms experience a 
stark reduction in their KHash/sec. 
Notably, the drop in performance for 
SHA2-512 is more precipitous, 
especially after 26 bytes, reflecting a 
decrease of almost half. 

• When juxtaposed, SHA2-256 generally 
offers better computational efficiency 

and higher throughput for most input 
sizes. However, the choice between the 
two would also depend on security 
requirements, as SHA2-512, with its 
larger hash size, could offer stronger 
cryptographic security. 

• In conclusion, the performance metrics 
highlight the inherent trade-offs 
between computational efficiency and 
cryptographic strength. While SHA2-256 
demonstrates superior performance in 
most scenarios, the choice to use SHA2-
512 might be motivated by heightened 
security concerns. As with any 
cryptographic decision, understanding 
the context and requirements of the 
application remains paramount. 

Table 1 
Performance Metrics for SHA2-256 and SHA2-512 

Test# 
Input 

Block Size, 
bytes 

SHA2-256 SHA2-512 

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s 

1 1 848.68 3.06 3060.37 945.51 2.74 2741.59 
2 2 423.30 6.13 3065.65 472.36 5.49 2744.53 
3 4 211.72 12.24 3059.57 236.28 10.98 2744.68 
4 8 105.80 24.53 3066.73 118.07 21.94 2742.09 
5 16 52.84 49.07 3066.73 59.05 43.93 2745.54 
6 32 26.28 97.98 3061.86 29.48 87.89 2746.69 
7 64 25.74 100.50 1570.25 14.79 175.35 2739.80 
8 128 19.14 134.40 1049.99 14.36 180.85 1412.90 
9 256 15.91 162.82 636.02 10.70 243.01 949.25 

10 512 14.28 181.29 354,08 8,84 292,57 571,43 
11 1024 13,46 192,54 188,03 7.94 327.37 319.70 
12 2048 13.08 198.22 96.79 7.52 346.98 169.42 
13 4096 12.88 201.49 49.19 7.24 357.63 87.31 
14 8192 12.78 203.41 24.83 7.13 363.71 44.40 
15 16384 12.71 203.25 12.41 7.13 366.63 22.38 
16 32768 12.68 204.48 6.24 7.04 368.70 11.25 
17 65536 12.67 204.88 3.13 7.03 368.70 5.63 
18 131072 12.67 204.72 1.56 7.01 368.96 2.81 
19 262144 12.67 205.00 0.78 7.02 369.09 1.41 
20 524288 12.65 205.16 0.39 7.01 368.83 0.70 
21 1048576 12.68 204.88 0.20 7.02 369.87 0.35 

 

4.2. Performance Analysis of 
SHABAL-256 and SHABAL-512 

Table 2 below provides a summarization of the 
performance metrics associated with the 
SHABAL-256 and SHABAL-512 cryptographic 
hash algorithms, specifically, when processed 
on a 64-bit computational platform using an 
Intel Core i9-7980 at 2.60 GHz. 

Analysis and Commentary: 

• Both SHABAL-256 and SHABAL-512 
show a clear pattern where the cycles 
per byte decrease (indicative of 
improved efficiency) as the size of the 
input block increases. This suggests that 
both algorithms are designed to process 
larger data blocks more efficiently than 
smaller ones. However, SHABAL-256, 
generally requires slightly fewer cycles 
per byte compared to SHABAL-512, 
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emphasizing its higher efficiency in 
processing data. 

• As the input block size increases, the 
megabytes processed per second 
(MB/sec) also increase, reaching an 
asymptotic limit. Both algorithms have 
comparable throughputs, but SHABAL-
256 tends to outperform SHABAL-512 
for larger block sizes. 

• The kilohashes per second (KHash/sec) 
reflect the speed at which the system can 
compute the hash values. The rate 
decreases with the size of the input 
block. The decrease is steeper for 
SHABAL-512, indicating it may require 
more computational resources to hash 
larger blocks compared to its SHABAL- 

256 counterpart. 

• The data suggests that for tasks requiring 
a balance between security and efficiency, 
SHABAL-256 might be preferable due to 
its slightly better efficiency metrics. 
However, for tasks where the higher 
cryptographic strength of a 512-bit hash 
is necessary, the SHABAL-512, despite its 
slight performance penalty, would be the 
algorithm of choice. 

In conclusion, the choice between SHABAL-
256 and SHABAL-512 would be contingent on 
the specific application requirements and the 
trade-off between security and performance 
one is willing to accept. This detailed 
performance analysis offers practitioners 
insights to make informed decisions on the 
appropriate cryptographic algorithm selection 
for their needs.

Table 2 

Performance Metrics for SHABAL-256 & SHABAL-512  

Test# 

Input 

Block Size, 

bytes 

SHABAL-256 SHABAL-512 

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s 

1 1 1235.41 2.10 2097.95 1274.73 2.04 2039.99 

2 2 617.18 4.20 2099.00 636.36 4.06 2028.43 

3 4 308.82 8.39 2097.32 324.19 7.77 1941.81 

4 8 154.24 16.79 2099.17 165.16 16.13 2015.87 

5 16 77.19 33.53 2095.81 79.38 32.09 2005.39 

6 32 38.50 67.36 2105.10 40.14 64.69 2021.47 

7 64 25.00 103.79 1621.70 26.05 100.48 1569.95 

8 128 14.95 173.55 1355.84 15.49 168.04 1312.82 

9 256 9.91 261.69 1022.21 10.19 252.91 987.94 

10 512 7.40 349.99 683.58 7.69 337.27 658.73 

11 1024 6.15 420.61 410.75 6.31 416.60 406.83 

12 2048 5.52 468.53 228.78 5.55 466.86 227.96 

13 4096 5.21 497.43 121.44 5.23 495.08 120.87 

14 8192 5.05 513.00 62.62 5.15 503.64 61.48 

15 16384 4.97 514.01 31.37 5.07 511.25 31.20 

16 32768 4.95 524.29 16.00 5.04 515.27 15.72 

17 65536 4.94 523.24 7.98 5.00 518.84 7.92 

18 131072 4.94 524.29 4.00 5.03 515.27 3.93 

19 262144 4.94 525.34 2.00 5.01 523.76 2.00 

20 524288 4.93 525.60 1.00 4.95 525.34 1.00 

21 1048576 4.94 524.55 0.50 5.01 507.78 0.48 

 

4.3. Performance Analysis of 
SHAVITE-256 and SHAVITE-512 

The following section delineates a 
comprehensive analysis of the performance 

metrics associated with the SHAVITE-256 and 
SHAVITE-512 cryptographic hash algorithms. 
Both were tested on a 64-bit computational 
platform, specifically an Intel Core i9-7980 
clocked at 2.60 GHz. Table 3 provides a 
consolidated overview of these findings. 
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Analysis and Commentary: 
• A striking observation is that SHAVITE-

256 is significantly more efficient in 
terms of cycles per byte compared to 
SHAVITE-512, particularly for smaller 
input block sizes. This suggests that 
SHAVITE-256 can process data more 
swiftly, thereby rendering it more 
suitable for applications that prioritize 
speed. 

• When it comes to MB/sec, SHAVITE-256 
consistently outperforms SHAVITE-512 
across all input block sizes. The data 
delineates a trend where MB/sec 
increases for SHAVITE-256 as block size 
augments, indicating efficient data 
processing for larger blocks. On the other 
hand, SHAVITE-512 starts with a low 
throughput, which gradually increases 
with block size but never surpasses 
SHAVITE-256. 

• The kilohashes per second (KHash/sec) 
provide insights into the hashing 
capabilities of the system. While both 

algorithms show a declining trend with 
increasing block size, SHAVITE-256 
showcases a steep decline after a certain 
threshold, suggesting some limitations in 
handling larger blocks efficiently. 

• Overall, SHAVITE-256 appears to be 
more performance-centric, delivering 
faster results with less computational 
overhead. In contrast, SHAVITE-512, 
albeit less efficient, might offer a more 
robust cryptographic strength due to its 
larger hash size. 

In summation, the distinction between 
opting for SHAVITE-256 or SHAVITE-512 
depends heavily on the specific application’s 
requirements, emphasizing the trade-off 
between computational efficiency and 
cryptographic resilience. This empirical 
analysis provides a solid foundation for 
stakeholders to make an informed decision 
regarding the selection of an appropriate 
cryptographic algorithm tailored to their 
specific needs.

Table 3 

Performance Metrics for SHAVITE-256 and SHAVITE-512 

Test# 

Input 

Block Size, 

bytes 

SHAVITE-256 SHAVITE-512 

Cycles/byt

e 
MB/s KHash/s Cycles/byte MB/s KHash/s 

1 1 883.77 2.92 2915.87 2788.42 0.93 925.64 

2 2 441.15 5.85 2924.41 1393.34 1.85 927.29 

3 4 220.52 11.72 2928.98 687.22 3.77 942.29 

4 8 110.18 23.41 2926.37 346.47 7.51 939.25 

5 16 55.13 46.81 2925.71 176.91 14.73 920.45 

6 32 27.43 93.88 2933.83 87.25 29.79 930.91 

7 64 27.01 95.18 1487.16 43.16 59.53 930.12 

8 128 20.16 126.20 985.92 42.48 59.93 468.17 

9 256 16.79 152.25 594.74 32.49 80.25 313.46 

10 512 15.11 168.96 330.00 27.31 96.47 188.43 

11 1024 14.33 178.63 174.45 23.77 106.31 103.82 

12 2048 13.92 184.15 89.92 22.78 113.36 55.35 

13 4096 13.77 187.11 45.68 22.13 113.53 27.72 

14 8192 13.67 188.66 23.03 22.05 119.41 14.58 

15 16384 13.61 189.24 11.55 22.55 117.75 7.19 

16 32768 13.58 189.79 5.79 21.18 121.87 3.72 

17 65536 13.55 189.86 2.90 21.12 122.90 1.88 

18 131072 13.53 189.99 1.45 21.07 121.55 0.93 

19 262144 13.52 190.03 0.72 21.09 122.97 0.47 

20 524288 13.52 190.10 0.36 21.12 123.19 0.23 

21 1048576 13.53 189.93 0.18 21.04 123.14 0.12 
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4.4. Performance Analysis of 
KECCAK-256 and KECCAK-512 

The subsequent section presents an analysis of 
the performance metrics associated with the 
KECCAK-256 and KECCAK-512 cryptographic 
hash algorithms. These were rigorously tested 
on a 64-bit computational platform utilizing an 
Intel Core i9-7980, clocked at 2.60 GHz. A 
synthesized overview is captured in Table 4. 

Analysis and Commentary: 
• Comparatively, KECCAK-256 and 

KECCAK-512 present close competition 
in terms of cycles per byte, especially 
when handling smaller input block sizes. 
This close margin hints at their 
underlying similarities in algorithmic 
efficiency. 

• Observing the MB/sec, KECCAK-512 
marginally outperforms KECCAK-256, 
albeit the differences are subtle. As block 
size increases, both algorithms exhibit 
an exponential growth in MB/sec, 
underscoring the efficiency of both 

KECCAK variants for processing larger 
blocks. 

• The KHash/sec metric reveals 
interesting trends. Both algorithms start 
strong but undergo a drastic reduction in 
hashing speed when handling larger 
blocks. Notably, KECCAK-512 seems to 
suffer a sharper drop in KHash/sec than 
KECCAK-256 for the same data sizes, 
post the input block size of 227 bytes. 

• At a broad level, while KECCAK-256 
seems slightly less efficient in data 
processing (MB/sec) compared to 
KECCAK-512, its steadier hashing speed 
(KHash/sec) might render it preferable 
in scenarios where consistent hash rate 
performance is crucial. 

In essence, the choice between KECCAK-
256 and KECCAK-512 hinges upon specific 
application demands, weighing the nuances 
between data processing speed and hashing 
consistency. This empirical scrutiny offers 
stakeholders a substantial base for selecting an 
optimal cryptographic hashing solution, that 
resonates with their nuanced requirements.

Table 4 

Performance Metrics for KECCAK-256 and KECCAK-512 

Test# 

Input 

Block Size, 

bytes 

KECCAK-256 KECCAK-512 

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s 

1 1 1307.78 1.97 1974.12 1269.54 2.04 2041.02 

2 2 657.99 3.94 1969.97 633.65 4.09 2045.36 

3 4 328.59 7.88 1970.41 316.76 8.18 2044.80 

4 8 159.08 16.29 2036.23 156.76 16.44 2055.39 

5 16 79.54 32.54 2034.02 77.77 33.31 2081.83 

6 32 39.75 65.20 2037.56 38.83 66.58 2080.51 

7 64 19.88 130.53 2039.59 19.42 133.64 2088.20 

8 128 9.92 261.16 2040.35 19.11 134.52 1050.93 

9 256 9.84 263.33 1028.63 18.93 137.16 535.78 

10 512 9.69 267.22 521.92 18.60 139.48 272.41 

11 1024 9.64 268.87 262.56 17.41 149.28 145.79 

12 2048 9.57 271.09 132.37 16.71 155.00 75.68 

13 4096 9.24 280.82 68.56 16.42 158.04 38.58 

14 8192 9.06 285.64 34.87 16.38 158.11 19.30 

15 16384 8.99 288.07 17.58 16.37 158.20 9.66 

16 32768 8.95 289.34 8.83 16.49 157.30 4.80 

17 65536 8.95 289.42 4.42 16.40 157.49 2.40 

18 131072 8.94 289.90 2.21 16.47 158.08 1.21 

19 262144 8.96 289.58 1.10 16.38 158.18 0.60 

20 524288 8.95 289.50 0.55 16.39 158.28 0.30 

21 1048576 8.96 289.50 0.28 16.40 158.11 0.15 
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4.5. Performance Analysis of BLAKE-
256 and BLAKE-512 

This section elucidates the performance metrics 
associated with the BLAKE-256 and BLAKE-512 
cryptographic hash algorithms. Testing was 
conducted on a 64-bit computational platform 
powered by an Intel Core i9-7980 with a clock 
speed of 2.60 GHz. For clarity and brevity, a 
consolidated representation of the results is 
furnished in Table 5. 

Analysis and Commentary: 
• When contrasting BLAKE-256 and 

BLAKE-512, the former showcases fewer 
cycles per byte across most block sizes, 
indicating enhanced efficiency. This 
suggests that, on a byte-to-byte basis, 
BLAKE-256 can process data more 
expediently than its BLAKE-512 
counterpart. 

• MB/sec metrics reveal that BLAKE-256 
consistently surpasses BLAKE-512 in 
data processing rates. Especially for 
larger block sizes, BLAKE-256’s ability to 

sustain high throughput is particularly 
noteworthy. 

• The KHash/sec parameter for both 
algorithms depicts an exponential decline 
as block size increases. However, BLAKE-
256 consistently delivers higher hashing 
rates than BLAKE-512 until a certain data 
size threshold, after which the hashing 
speeds of both variants start to converge. 

• BLAKE-256 seems to outperform BLAKE-
512 in terms of both data processing and 
hashing speed for the majority of block 
sizes. This renders BLAKE-256 a more 
favorable choice for applications where 
speed and efficiency are pivotal. 

In conclusion, while both BLAKE variants 
exhibit commendable performance, BLAKE-
256 appears to have a slight edge in processing 
and hashing capabilities over BLAKE-512 on 
the tested platform. Decision-makers and 
stakeholders are advised to evaluate these 
empirical findings within the context of their 
specific application needs, optimizing for 
desired performance outcomes.

Table 5 

Performance Metrics for BLAKE-256 and BLAKE-512 

Test# 

Input 

Block Size, 

bytes 

BLAKE-256 BLAKE-512 

Cycles/byte MB/s KHash/s Cycles/byte MB/s KHash/s 

1 1 648.36 3.99 3991.69 846.69 3.06 3059.12 

2 2 323.95 7.99 3993.05 423.03 6.12 3060.28 

3 4 160.85 16.06 4015.69 211.61 12.24 3060.28 

4 8 80.29 32.16 4020.61 104.68 24.74 3092.05 

5 16 40.18 64.33 4020.61 52.26 49.58 3098.63 

6 32 19.96 129.74 4054.44 26.06 99.20 3100.09 

7 64 19.39 133.63 2087.93 13.06 198.41 3100.09 

8 128 14.28 181.63 1419.02 12.52 206.78 1615.46 

9 256 11.73 221.41 864.86 9.21 281.27 1098.71 

10 512 10.45 248.71 485.77 7.63 343.35 670.60 

11 1024 9.80 264.93 258.72 6.74 385.36 376.33 

12 2048 9.46 273.85 133.72 6.33 410.88 200.63 

13 4096 9.29 279.03 68.12 6.11 424.70 103.69 

14 8192 9.20 281.50 34.36 5.99 431.51 52.67 

15 16384 9.16 282.71 17.26 5.94 436.18 26.62 

16 32768 9.17 282.71 8.63 5.93 436.91 13.33 

17 65536 9.21 281.42 4.29 5.93 438.37 6.69 

18 131072 9.21 281.65 2.15 5.91 438.92 3.35 

19 262144 9.32 281.88 1.08 5.91 438.55 1.67 

20 524288 9.21 281.65 0.54 5.91 439.29 0.84 

21 1048576 9.22 281.12 0.27 5.92 438.00 0.42 
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5. Comparison of results 
5.1. Comparison of Cycles per Byte 

The Fig. 1 visualizes the cycles per byte for ten 
different hashing algorithms, as a function of 
input block size. 

Upon examining the data presented in the 
Fig. 1, several observations and conclusions can 
be made: 

• The Cycles/byte varies widely among the 
algorithms, demonstrating the diverse 
efficiency levels of these algorithms. For 
instance, when considering the smallest 
input block size of one byte, BLAKE-256 
shows the highest efficiency with the least 
cycles, whereas SHAVITE-512 consumes 
the most. 

• As the input block size increases, the 
difference in efficiency between 
algorithms tends to diminish. This 
implies that the overheads affecting the 
efficiency of algorithms are relatively 
more prominent for smaller block sizes. 

• Certain algorithms, like BLAKE-256 and 
BLAKE-512, maintain a relatively 
consistent performance regardless of the 
input block size. On the other hand, 
algorithms like SHAVITE-512 show 
drastic improvements as the input block 
size increases. 

• For most algorithms, efficiency in terms 
of Cycles/byte seems to stabilize or reach 
an asymptotic value beyond an input 
block size of 8KB (8192 bytes). This 
suggests that using block sizes above this 

might not provide significant gains in 
terms of computational efficiency. 

• For algorithms that have both 256-bit and 
512-bit versions, it is evident that the 
256-bit version is generally more efficient 
in terms of Cycles/byte. This is expected 
due to the reduced computational 
complexity associated with smaller bit 
sizes. 

• Among all, BLAKE-256 consistently 
stands out as one of the most efficient 
algorithms across all input block sizes. 
Conversely, SHAVITE-512, while initially 
being the least efficient for smaller block 
sizes, sees significant improvement as 
block size increases. 

• While cycles per byte is an important 
metric for computational efficiency, it’s 
essential to consider other factors like 
security, implementation complexity, and 
compatibility when selecting a hashing 
algorithm for real-world applications. 

In conclusion, the choice of a hashing 
algorithm should not solely rely on cycles per 
byte but should be a holistic decision based on 
various performance metrics and specific 
application requirements. However, from a 
pure efficiency perspective, BLAKE-256 
exhibits excellent performance across a wide 
range of input block sizes. 

This analysis provides valuable insights for 
developers and organizations looking to 
optimize their cryptographic operations, 
ensuring both security and performance are 
maintained at optimal levels.

 
Figure 1: Comparison of Cycles per Byte across Multiple Hashing Algorithms 
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5.2. Comparison of Hashing 
Algorithms by Throughput 

Fig. 2 visualizes the performance of 10 
cryptographic hashing algorithms across varying 
input block sizes, measured in MB/sec. 

The results indicate a non-uniform 
performance landscape across the studied 
algorithms and input block sizes. Several key 
observations can be deduced: 

• Almost all algorithms show increased 
throughput as the input block size 
increases. This trend likely represents the 
amortization of initialization and 
finalization costs over larger data blocks. 
However, there’s a plateauing effect 
observed in most algorithms, indicating an 
approach towards their maximum 
throughput capacity. 

• By the largest input block size (1048576 
bytes), the BLAKE-512 algorithm emerged 
as the leading performer with 438 MB/sec, 
closely followed by SHABAL-256 and 
SHABAL-512. This implies that in 
scenarios requiring high-throughput 
hashing of larger data chunks, these 
algorithms would be preferable. 

• KECCAK-256 exhibits a remarkably stable 
growth in throughput as the block size 
increases, without any significant dips or 
spikes. This consistent performance might 
make it a preferable choice in 
environments where input sizes can vary 

significantly, ensuring predictable hashing 
rates. 

• For the smallest input block size (1 byte), 
several algorithms show significantly 
reduced throughput, most notably 
SHAVITE-512. This is an important 
consideration for applications dealing 
with a large number of small-sized data 
blocks. 

• Interestingly, for many algorithms, their 
512-bit variants (like SHA2-512 and 
SHAVITE-512) don’t necessarily double 
the throughput compared to their 256-bit 
counterparts. This suggests that the 
performance does not linearly scale with 
the bit length, and other internal 
algorithmic factors play a significant role. 

• Despite its performance with smaller 
block sizes, SHABAL-512 showed a 
significant jump in throughput once the 
block size exceeded 64 bytes, overtaking 
many competitors. This behavior 
underscores the importance of 
benchmarking cryptographic algorithms 
over a diverse range of input sizes. 

In conclusion, while raw throughput is an 
essential metric, selecting a hashing algorithm 
for practical applications should consider other 
factors like security guarantees, implementation 
complexity, and specific use-case requirements. 
The diverse performance landscape observed 
underscores the importance of nuanced, 
application-specific benchmarking before 
settling on a cryptographic primitive.

 
Figure 2: Comparison of Hashing Algorithms by Throughput (MB/sec) 
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rendering it a quintessential element in 
evaluating and benchmarking cryptographic 
protocols (Fig. 3). 

Several key observations can be deduced: 
• From a cursory glance at the dataset, it’s 

palpable that the KHash/sec for each 
algorithm plummets as the input block 
size burgeons. This is a quintessential 
behavior as a larger input block 
demands greater computational power 
and time, thereby reducing the 
KHash/sec. 

• The SHA2-256 and SHA2-512 
demonstrate a fascinating interplay. 
Initially, SHA2-256 marginally 
outperforms its 512 counterpart for 
smaller block sizes. However, as we 
approach larger block sizes, SHA2-512 
emerges as the preeminent variant, even 
doubling the throughput of SHA2-256 in 
some tests. 

• The performance degradation is 
particularly pronounced for SHABAL-
256 and SHABAL-512. For minuscule 
block sizes, their throughput is 
analogous, but as the block size 
escalates, SHABAL-512’s performance 
slightly trumps SHABAL-256, 
showcasing its optimized efficiency for 
handling larger data chunks. 

• SHAVITE-256 consistently supersedes 
SHAVITE-512 across all block sizes. This 
could be attributed to the inherent 
architectural decisions made during its 
design, emphasizing speed for 256-bit 
processing. 

• KECCAK-256 and KECCAK-512 both 
experience an intriguing surge around 
64 bytes, but KECCAK-256’s advantage 
wanes post this point, with its 
performance plummeting precipitously. 
In contrast, KECCAK-512 maintains a 
more consistent (albeit declining) 
trajectory, highlighting its robustness 
against variable input sizes. 

• Of particular note is BLAKE-256 and 
BLAKE-512’s relatively stable 
performance, with the latter consistently 
outshining the former as block sizes 
enlarge. This consistency might be 
emblematic of BLAKE’s resilience and 
adaptability across diverse data sizes. 

• For smaller block sizes, BLAKE-256 
reigns supreme, but as we transition to 
heftier blocks, the crown oscillates 
between BLAKE-512, SHABAL-512, and 
SHA2-512. 

Cryptographic hash function performance 
is contingent upon a myriad of factors, 
including design principles, input block size, 
and implementation nuances. While this 
empirical analysis provides a granular 
breakdown of their respective efficacies, 
practitioners must weigh these results against 
their specific use-case scenarios and 
constraints. In realms where speed is of the 
essence, selecting an algorithm with superior 
KHash/sec is paramount. Conversely, in more 
security-sensitive domains, one might 
prioritize cryptographic strength and 
resistance to attacks over sheer speed.

 

 
Figure 3: Comparative performance of cryptographic hash functions across different input block 
sizes in terms of KHash/sec 
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6. Discussion 

In the rapidly evolving landscape of digital 
technologies, the performance of 
cryptographic hash functions takes on 
heightened importance. The results outlined in 
the previous section present a comprehensive 
understanding of how varying cryptographic 
algorithms fare in terms of processing speeds 
across diverse input block sizes. To 
contextualize these findings, it’s essential to 
dive into their implications, especially within 
the ambit of blockchain systems. 

1. The Imperative of Hash Functions in 
Blockchain. At the core of blockchain 
technology lies the unassailable need for 
data integrity, authentication, and 
security. Cryptographic hash functions 
are the lynchpin that holds this edifice 
together. Every transaction or data entry 
within a block is hashed, and this hash is 
woven into the very fabric of the 
blockchain, ensuring both its veracity 
and its inviolability. The choice of a hash 
function, therefore, isn’t a trivial one; it 
can profoundly shape the efficacy, 
scalability, and security of a blockchain 
system. 

2. Throughput versus Security. While our 
study primarily focused on performance 
in terms of KHash/sec, it is crucial to 
remember that in the blockchain realm, 
speed isn’t the sole desideratum. A 
balance must be struck between 
processing speed and cryptographic 
robustness. For instance, while BLAKE-
256 showcased stellar performance for 
smaller block sizes, it’s imperative to 
assess its resilience against potential 
cryptographic attacks, especially in a 
blockchain setting where a 
compromised hash function can have 
cataclysmic consequences. 

3. Scalability Concerns. As blockchain 
systems burgeon in size and complexity, 
they grapple with scalability issues. 
Here, the hash function’s performance 
for larger block sizes becomes especially 
pertinent. Functions like BLAKE-512, 
which demonstrate consistent 
throughput across escalating block sizes, 
might be particularly suited for 
burgeoning blockchain networks, 

ensuring that transaction processing 
remains brisk even as the system grows. 

4. Adaptability and Future-Proofing. The 
landscape of digital threats is in constant 
flux. As cryptographic methodologies 
evolve, so do the techniques employed 
by malicious actors. Hence, it’s pivotal 
for blockchain systems not just to adopt 
algorithms that are robust today but 
ones that can stand the test of time. 
KECCAK’s consistent trajectory, for 
instance, might hint at its future 
adaptability. 

5. Beyond Performance: Other 
Considerations. While our focus has 
been squarely on KHash/sec, blockchain 
architects must also consider other 
facets like power consumption, ease of 
implementation, and compatibility with 
existing systems. A hash function might 
be blazingly fast, but if it demands 
exorbitant computational power, it 
might not be tenable for energy-
conscious implementations. 

In summation, while the performance 
metrics provided in our study furnish 
invaluable insights into the prowess of various 
cryptographic hash functions, they are but one 
piece of the puzzle. For blockchain systems, the 
choice of a hash function is a nuanced decision, 
interweaving concerns of speed, security, 
scalability, and sustainability [20–22]. As 
blockchain continues to reshape industries 
and redefine paradigms, ensuring its 
bedrock—the cryptographic hash function—is 
optimally chosen becomes not just desirable 
but indispensable 

7. Conclusion 

The relentless advance of technology has 
positioned blockchain as a frontrunner in the 
reshaping of our digital landscape. At the heart 
of this transformative technology lie 
cryptographic hash functions, serving as 
sentinels guarding the sanctity and security of 
data transactions. Our comprehensive study 
has thrown into sharp relief the comparative 
merits and demerits of various hash functions, 
particularly in the context of their processing 
speeds across diverse input block sizes. 

While our empirical data provides a 
significant point of reference for determining 
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the efficiency of these algorithms, it also 
underscores a broader, more intricate 
narrative. This narrative pivots on the need for 
a delicate balance between performance and 
security, scalability and adaptability, 
innovation and sustainability. The nuances of 
choosing the right hash function for a specific 
application—especially one as pivotal as 
blockchain—extend well beyond mere speed 
metrics. They touch upon foundational 
concerns like cryptographic resilience, 
adaptability to emerging threats, and 
harmonious integration with existing 
infrastructures. 

It is also paramount to acknowledge that 
the digital milieu is in constant flux, with both 
challenges and innovations emerging at an 
unprecedented pace. As such, while our 
findings provide a robust benchmark for the 
current scenario, they also serve as a testament 
to the need for continuous research and 
evolution in this domain. 

In the annals of technological evolution, 
blockchain stands out as a harbinger of both 
promise and complexity. Ensuring its 
unassailable security and optimal performance 
will invariably hinge on the judicious choice 
and implementation of cryptographic hash 
functions. The hope is that our research, with 
its analytical rigor and insights, will inform and 
inspire future endeavors in this critical 
juncture of blockchain technology, propelling 
it toward its fullest potential and shaping a 
more secure, efficient, and decentralized 
digital future. 
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