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Abstract  
The article delves comprehensively into employing the extended Berkeley Packet Filter 
(eBPF) for monitoring network traffic, filtering system calls, and overseeing processes for 
ransomware activity. The principles and architecture underlying this advanced 
technology are explored, laying a solid foundation for developing robust mechanisms for 
detecting and halting malware propagation across networks. The paper highlights 
potential strategies for tracking viruses within traffic and evaluates this approach, 
meticulously considering the security concerns and control mechanisms endowed by 
eBPF. A notable section of the article is dedicated to a comparative analysis. Traditional 
malware detection mechanisms are assessed alongside a program built on eBPF, offering 
a clear, unbiased insight into their respective efficiencies and potential pitfalls. This 
extensive comparison underscores the enhanced proficiency and security offered by 
eBPF-based monitoring mechanisms, solidifying their stance as a formidable tool against 
malware threats, including ransomware. The authors demonstrate the capability of an 
eBPF-based monitoring system in delivering potent network defense against various 
malware forms, including ransomware, presenting significant implications for antivirus 
protection developers. This comprehensive exploration and presented findings are 
pivotal for enhancing the overall security quotient of computer networks globally, 
emphasizing the critical role of eBPF in contemporary network security paradigms. The 
superior efficiency and security assurance offered by BPF reinforces its viability as a 
pivotal technology for monitoring network traffic and safeguarding against pervasive 
malware threats. 
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1. Problem Statement 

In the modern era, as technology progressively 
impacts people’s lives, computer network 
security has become a crucial concern. The 
increasing prevalence of potential hazards, 
such as viruses, trojans, spyware, and various 
types of attacks, calls for the innovation of 
novel and effective approaches for identifying 
and monitoring such risks [1–2]. 

Conventional antivirus solutions that rely 
on virus signatures have become inadequate 
due to the swift evolution of new threats and 
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the substantial volume of network traffic, 
necessitating alternative strategies. 

The world of cybercrime is developing 
rapidly, partly fueled by the ongoing conflict in 
Ukraine, which has led to the convergence of 
cybercriminal groups from Russia and its 
neighboring countries. Changes within 
ransomware and other cybercrimes indicate 
shifting priorities. Attacks on Ukraine were 
constant before and during the invasion and 
persist to this day [3–5]. 

A potential consequence of the ongoing war 
may involve a shift in the objectives of 
cybercriminals from Russia and neighboring 
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countries in two ways. Firstly, it is speculated 
that some of these criminals may have 
transitioned from profit-driven cybercrimes, 
such as ransomware attacks, to active 
participation in military actions. Nonetheless, 
ransomware attacks persist in Ukraine even 
amidst the conflict. Additionally, active 
Russian cybercriminals are broadening their 
horizons by targeting the Global South, 
focusing on countries in Asia and Latin 
America while steering clear of critical 
infrastructure and vulnerabilities in NATO 
member states. This change in focus could be 
motivated by a desire to avoid incidents that 
might escalate tensions between Russia and 
NATO members. The long-term cybersecurity 
ramifications of these infiltrations remain 
uncertain [6–7]. 

Unaddressed concerns involve the conflict’s 
impact on safe spaces for cyber criminals and 
the future trajectory of the cybercrime 
ecosystem amid the Ukraine-Russia standoff. 
Furthermore, there is a need for increased 
research to understand emerging ransomware 
trends in connection with the conflict. 

One potential security solution involves the 
use of Berkeley Packet Filter (BPF), a 
technology that facilitates high-performance 
data packet filtering within networks. This 
article endeavors to explore the fundamental 
principles of BPF, its capabilities, and its 
application for real-time virus detection and 
monitoring in computer networks [8]. 

2. Analysis of Recent Research 
and Publications 

Research on ransomware detection and 
counteraction methods includes both 
traditional signature and behavior-based 
methods and new approaches used for 
program analysis, Security Information Event 
Management Systems (SIEM), and network 
traffic adjustment.  

Based on the literature review, the 
following successes and failures of existing 
methods can be identified: 

1. “Fast Packet Processing with eBPF and 
XDP: Concepts, Code, Challenges, and 
Applications” focuses on eBPF and XDP 
technologies that accelerate packet 
processing in network systems. The 
authors are Marcos A. M. Vieira, 

Matheus S. Castanho, Racyus D. G. 
Pacífico, Elerson R. S. Santos, Eduardo 
P. M. Câmara Júnior, and Luiz F. M. 
Vieira—consider the key concepts, 
code, problems, and possible uses of 
these technologies in various fields [9]. 

2. The article “Creating Complex Network 
Services with eBPF: Experience and 
Lessons Learned” highlights the 
authors” experience in creating 
complex network services using eBPF 
(extended Berkeley Packet Filter) 
technology [10]. 

3. “Combining System Visibility and 
Security Using eBPF” by Luca Deri, 
Samuele Sabella, and Simone Mainardi 
focuses on the use of eBPF (extended 
Berkeley Packet Filter) technology to 
increase system visibility and security. 
eBPF is a powerful tool for monitoring, 
analyzing, and manipulating network 
packets at the operating system kernel 
level [11]. 

Improving methods of detecting and 
countering ransomware in real-time is an 
important issue in the field of cybersecurity. 
The use of eBPF can provide significant 
benefits and help to overcome certain 
shortcomings in the research on this issue. 
Considering the above-mentioned articles, the 
following research advantages can be 
identified in the field of eBPF: 

• High processing speed: eBPF allows for 
much faster processing of network 
traffic and full real-time activity tracking 
than more traditional user-space-based 
analogs. 

• More accurate attack detection: eBPF 
allows for the development of flexible 
and adaptive detection systems that can 
analyze many more network 
parameters, which helps to detect 
pathogenic activity more accurately in 
the early stages of an attack. 

• Flexibility: eBPF allows you to integrate 
ransomware detection and prevention 
directly into the operating system 
kernel, enabling deeper analysis of 
network traffic and rapid application to 
the latest types of attacks. 

• Automatic security provisioning: eBPF 
allows you to automate the detection 
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and counteraction process based on the 
solutions found in real-time. 

Disadvantages: 
• Development complexity: Utilizing eBPF 

to develop ransomware detection and 
countermeasures can be a complex 
process that requires in-depth 
knowledge of eBPF and network security. 
Close collaboration and knowledge 
sharing between cybersecurity 
development teams is necessary to 
ensure successful implementation. 

• Hardware limitations: Effective 
implementation of eBPF may depend on 
the availability of modern hardware, 
including smart network adapters, 
which may still be expensive or difficult 
to acquire and deploy. 

• Lack of research in specialized and 
specific contexts: In the context of real-
time ransomware detection and 
countermeasures, the increased 
adoption of eBPF is a relatively new area 
of research, which may require even 
more research work to implement and 
evaluate its effectiveness in different 
contexts and environments.  

Based on these advantages and 
disadvantages, it can be concluded that eBPF 
has potentially significant application potential 
in detecting and countering ransomware in 
real-time. However, to obtain the best results 
for a variety of scenarios and environments, a 
concerted effort is required from cybersecurity 
researchers to develop and research effective 
eBPF-based techniques and solutions [12–13]. 

3. Methods 

Traditional models and methods of detecting 
and counteracting ransomware in computer 

security are static analysis and dynamic 
analysis. 

Static analysis refers to examining virus 
program code without execution, which 
involves analyzing hashes, and strings, or 
employing machine learning for malicious 
code classification. However, this approach 
may be less effective against viruses using code 
obfuscation techniques. Static analysis 
determines file characteristics, such as file type 
and specific lines in the file. Antivirus 
researchers gather multiple malware family 
variants, identify common static features, and 
create signatures. Signatures may contain 
hashes of certain file areas, properties, sizes, 
etc. As strains often exhibit static variation, 
antivirus products must update their 
signatures frequently. 

Dynamic analysis, a method that observes 
virus behavior by executing them in controlled 
environments like sandboxes, can detect 
viruses employing code obfuscation. However, 
it is more resource-intensive and time-
consuming compared to static analysis. Also 
known as behavioral analysis, dynamic analysis 
reveals the actions of malicious code or the 
system changes when executing such code. 
While each method has pros and cons and lacks 
100% ransomware protection, eBPF technology 
was chosen to address detection and combat 
issues. By tracking system calls at the OS kernel 
level, eBPF provides profound insights into 
process activities within the system [14]. 

This table provides a comparison of the 
advantages and disadvantages of Static 
Analysis and Dynamic Analysis, two commonly 
used approaches in analyzing software for 
vulnerabilities and malicious behavior. This 
information can help make a more informed 
decision on which method to use when 
analyzing unknown programs. 

Table 1 
A comparison of advantages and disadvantages of Static Analysis and Dynamic Analysis 

Type of 
Analysis 

Advantages Disadvantages 

Static 
Analysis 

1. Speed: Can be performed quickly, and doesn't require 
virus execution. 2. Safety: Doesn't pose risks since the 
program doesn't run. 3. Can analyze code independently 
of its execution environment. 4. Early detection of 
potentially harmful code. 

1. Obfuscation and polymorphism 
issues. 2. Lack of context: Doesn't 
provide information on how the 
program will behave during 
execution. 

Dynamic 
Analysis 

1. Detailed analysis: Gather more information about the 
program. 2. Effectiveness against code obfuscation. 3. Can 
analyze programs in real-world conditions, considering 
specific details of the execution environment 4. Ability to 

1. Time-consuming. 2. Potential 
risk: Although conducted in a 
controlled environment, there's a 
risk the virus may escape it. 3. High 
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track interaction between programs and runtime 
processes. 

technical knowledge is required to 
interpret analysis results. 

The Berkeley Packet Filter (BPF) is a 
subsystem within the Linux kernel that 
enables users to execute their custom code on 
a virtual machine running inside the kernel. 
This technology can be categorized into 
classical BPF (cBPF) and extended BPF (eBPF). 
Classical BPF primarily focuses on inspecting 
and analyzing network packets, while the more 
advanced eBPF extends its capabilities beyond 
merely observing packet information. The 
evolution of eBPF has significantly expanded 
its potential, allowing users to modify packets, 
alter system call arguments, and even modify 
user space programs. This has transformed 
eBPF into a powerful and versatile tool used 
for various purposes, ranging from networking 
to system profiling, tracing, and security 
measures. Over time, enthusiasts within the 
Linux community have worked on enhancing 
BPF's functionality, propelling it toward the 
current eBPF incarnation. One of the 
improvements in eBPF is the shift from 32-bit 
registers to 64-bit registers, accommodating a 
broader spectrum of use cases and offering 
better performance. Additionally, eBPF 
programs can be attached to distinct kernel 
events, not only those associated with 
receiving packets. This feature enables 
extensive customization and monitoring 
capabilities within the Linux kernel. 
Furthermore, eBPF offers improved 
accessibility from user space, allowing users to 
insert custom actions without overloading or 
destabilizing the operating system. By 
providing a safe and efficient way for user-
defined programs to interact with the Linux 
kernel, eBPF has become a crucial component 
for Linux-based systems. Its flexible nature and 
extensibility make it an invaluable resource for 
developers and system administrators seeking 
high-performance, low-level system 
interaction and customization [15]. 

 
Figure 1: An overview of the eBPF architecture 

Moreover, the figure illustrates a program 
functioning within the user space, which 
integrates an eBPF program to attain process-
level visibility in the Linux kernel. The eBPF 
program is composed in Python or Golang, and 
a compiler that is capable of processing eBPF 
bytecode supports it. After loading this eBPF 
program into the Linux kernel, the eBPF 
Verification Engine immediately checks its 
validity. Furthermore, as mentioned earlier, 
this verification process is crucial in 
preventing possible errors. The program is 
subsequently compiled and connected to the 
appropriate kernel event. However, whenever 
the syscall event occurs, the program engages 
in the process, performs its monitoring and 
analysis tasks until completed, and then 
returns the findings to the user program within 
the user space. Additionally, having gained a 
general overview of the use case and 
architecture, we can now investigate eBPF’s 
role in security monitoring more thoroughly. 

4. Security Monitoring and 
Observability Metrics 

Implementing system call filtering with 
eBPF. This mechanism is commonly employed 
to safeguard the OS kernel from untrustworthy 
programs. However, current methods are 
either costly or lack the programmability 
needed to expand security policies. The Linux 
filtering module is extensively utilized in 
containers, mobile applications, and system 
administration. 

Contemporary systems communicate with 
the OS kernel through system calls. Limiting 
these calls helps diminish the attack surface. 
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Linux Seccomp operates within the OS kernel, 
offering performance and robustness. 
Nevertheless, cBPF has restricted 
programmability and does not supply a state 
storage mechanism. This paper presents a 
programmable system called the filtering 
method using eBPF, aiming to develop 
advanced security policies without 
jeopardizing OS performance and security. 
eBPF was selected due to its practicality. 
Seccomp has recently incorporated support for 
a custom agent, the Notifier, which functions 
alongside cBPF filters [16]. This solution 
operates similarly to the system call 
interception frameworks, delegating decisions 
to a trusted user agent. Seccomp intercepts a 
system call, halts the calling task, and conveys 
the call context (e.g., PID, system caller ID, and 
arguments) to the agent [17]. The primary 
drawback of the Seccomp Notifier is the 
substantial expense of context switches when 
transitioning between user space and the 
kernel. The first paragraph in every section 
does not have a first-line indent. Use only styles 
embedded in the document [18]. 

Examining network traffic with eBPF. 
This paper discusses a DDoS defense scenario in 
which all inbound malicious traffic is blocked. 
The authors employ eBPF/XDP to extract 
features from the incoming traffic and analyze 
the information in the user space using heuristic 
algorithms, which are less precise than neural 
networks. XDP is a form of BPF program that 
operates at the initial phase of network packet 
processing, enabling the gathering of crucial 
data. To designate a BPF program as an XDP 
program, users must specify the 
BPF_PROG_TYPE_XDP flag while loading the 
program into the kernel [19]. Additionally, XDP 
programs allow for specific operations to be 
performed on network packets. Once the 
calculations are finished, the results (malicious 
IP addresses) are fed into the eBPF programs, 
which block all traffic from these sources. In 
terms of observability solely within a cloud-
based microservices environment, the 
ViperProbe framework was proposed. This tool 
was developed to improve both network and 
system monitoring using eBPF. Lastly, it’s worth 
noting the expanding Cilium platform, open-
source software designed to seamlessly provide 
network connectivity between applications and 
services deployed with Linux container 
management platforms such as Docker and 

Kubernetes. At the core of Cilium lies eBPF 
technology, which enables powerful security 
logic controls and management to be 
dynamically integrated into the Linux system. 
As BPF operates within the Linux kernel, Cilium 
security policies can be applied and updated 
without any modifications to the application 
code or container configuration [20]. 

Utilizing eBPF for process monitoring. 
Process monitoring serves as a fundamental 
component of runtime security. Essentially, it 
can detect unexpected processes or execution 
patterns that should not occur in a production 
environment. For instance, a web server in a 
production setting should never initiate a shell, 
and a package manager being used to install 
new dependencies on a host might raise 
concerns. To provide a real process tree for 
each process, the user space process cache is 
employed. A true process tree refers to the 
lineage of all processes leading to the process 
that triggered the alert, regardless of the 
parent processes’ statuses. 

This capability is absent from many 
conventional runtime security tools: 
examining the proc file system reveals that 
when a process terminates, its children 
immediately join the process with the 
identifier. This results in the kernel losing the 
process pedigree context, which could be 
essential in identifying the host service being 
used [22]. 

Another intriguing advantage of delving 
deeper into the kernel beyond the system call 
level is the ability to access information that is 
typically unavailable in user space. For 
example, the layer of a file in the overlay file 
system. This information carries significant 
security implications, as it can determine 
whether the executed file was part of the 
container’s base image or if it has been 
modified (or created) from the base image’s 
original version. 

Additionally, process credentials can be 
collected and supplemented with other events, 
enabling the gathering of a full set of user and 
group IDs, kernel capabilities, and executable 
file metadata. 

Utilizing eBPF for tracking performance 
metrics. Performance metrics serve as 
essential indicators for evaluating a computer 
system or application’s performance. They 
provide insights into resource usage, including 
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CPU time, memory, network bandwidth, and 
input/output (I/O) performance. 

Ransomware is malicious software that 
encrypts user data and demands payment for 
decryption. It can impact various performance 
metrics: 

• CPU utilization: Ransomware’s encryption 
process can heavily utilize the CPU, 
resulting in increased CPU load. 

• I/O activity: Encrypting and decrypting 
numerous files can cause a substantial 
increase in I/O activity, especially when 
dealing with large files. 

• Memory usage: Certain ransomware can 
consume a significant amount of RAM, 
subsequently affecting the overall system 
performance. 

Considering the potential impact of 
ransomware on performance, detecting 
unusual changes in these metrics can serve as 
a warning sign for malware presence within 
the system. eBPF, with its monitoring 
capabilities, can effectively track such changes 
and identify ransomware activity [22]. 

Acquiring kernel data using eBPF. Over 
time, various methods have been developed to 
access data from the OS kernel. BPF has 
evolved into a versatile tool for addressing 
diverse challenges, including extracting kernel 
information. Two distinct approaches employ 
BPF to transfer data from the kernel to the user 
space using different techniques [23]. 

Tools such as “ps” are used to retrieve 
information by opening /dev/kmem and 
operating in the kernel memory space. This 
approach did not require direct kernel 
support, which was advantageous, but it also 
had drawbacks like security concerns and 
occasional retrieval of random data. Initially, 
this method was acceptable, but modern users 
sought newer approaches. 

Focusing on the case of virtual files, 
structural dumpers emerged as a direct 
approach. Essentially, it enables the 
attachment of BPF programs to implement 
/proc-style files for any supported data 
structure. This creates a new virtual file 
system, expected to be mounted in 
/sys/kernel/bpfdump. For instance, to create a 
new process dumper named “myps”, one can 
upload the BPF program generating the 
required task structure output and then “pin” 

it to a file named myps in the 
/sys/kernel/bpfdump/ directory. 

If additional information is necessary, it can 
be acquired without modifying the kernel. 
Although this requires some customization 
(each structure type needing accessibility in 
this manner requires a specific helper code to 
enumerate the active structures and pass them 
to the relevant BPF program), it is a one-time 
endeavor for each type. Thereafter, kernel 
developers need not worry about exporting 
information from that structure type to the 
user space again, at least in theory. 

Considering the previously discussed 
information, a comprehensive approach to 
detecting and mitigating ransomware threats 
can be developed by leveraging the capabilities 
of eBPF. 

Firstly, eBPF can be used for process 
monitoring, detecting unexpected processes, 
and execution patterns that may indicate the 
presence of ransomware in a system. This 
contributes to the early warning of potential 
threats and aids in maintaining system 
security. 

Secondly, eBPF enables the tracking of 
performance metrics such as CPU utilization, 
I/O activity, and memory usage, which are 
often impacted by ransomware attacks. 
Identifying anomalies in these metrics can 
serve as an additional indicator of ransomware 
activity [24]. 

Finally, eBPF allows the extraction of 
relevant kernel data, which can be utilized in 
the development of advanced security policies. 
Together with monitoring and performance 
metric tracking, this kernel-level access 
enhances overall threat detection capabilities. 

In conclusion, using eBPF as an integrated 
tool for process monitoring, performance 
metric tracking, and kernel data access 
provides a powerful and comprehensive 
approach to detecting and mitigating 
ransomware threats effectively in modern 
computing environments. 

5. Lab Environment 

The chief objective of this experimental 
framework is to construct a segregated space, 
robustly guarded against malware 
propagation or unauthorized data transfer by 
employing a Zero Trust security model. The 
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strategic layout employed for this research 
project hinges on a dual-layered, isolated 
virtual environment, illustrated in Fig. 2. 

 
Figure 2: Overview of the Solution 
Architecture 

The utilization of the KVM Hypervisor 
spearheads the entire virtualization process, 
paired seamlessly with the libvirt API for adept 
communication and management of the virtual 
machines on the host [25]. 

The SOC Operator establishes network 
connections through a virtual network, 
typically anchored by a virtual network switch. 
Two operational modes of this switch play 
pivotal roles in this setup: 

1. NAT Mode: This default operational 
mode provides direct connectivity 
among all guests and the virtualization 
host. External network access is granted 
through network address translation, 
subject to the host system’s firewall 
constraints. Despite its comprehensive 
connectivity, its application is restricted 
to the preliminary setup phase due to 
security limitations. This phase 
encompasses software installation and 
ransomware sample downloads. 

2. Isolated Mode: In this secure mode, 
guest virtual machines can interact with 
each other and the virtualization host. 
However, traffic remains confined 
within the boundaries of the 
virtualization host, preventing any 
external communication. This mode is 
activated during ransomware 
experimentation to negate any potential 
risk of unauthorized public propagation. 

The dual-layered virtualized setup bolsters 
the research by exploiting the snapshot 
capability. This feature enables the capturing 
of precise snapshots of the primary 
virtualization layer at various experimental 
stages, ensuring the availability of a pristine 
start point for each subsequent testing round. 

In this secure framework, the first layer of 
virtualization unfolds by provisioning an 

Ubuntu 22.04 Virtual Machine, dubbed the 
Sandbox Host VM. This VM, fortified with a 
patched system and a stringent firewall, 
permits only SSH and VNC access from a secure 
LAN. The second layer of virtualization 
burgeons within this VM, manifesting as the 
isolated zone dedicated to ransomware 
experimentation. 

This meticulously designed, dual-layered 
virtualized setup stands as a beacon for secure 
and effective ransomware experimentation, 
ensuring robust isolation and prevention of 
unintended malware spread and data 
exfiltration. 

6. Detection Method 

Detecting ransomware is a process grounded 
in the thorough analysis of the distinct 
behavioral attributes and patterns that 
ransomware typically exhibits. A detailed 
examination of various characteristics such as 
file encryption patterns, interactions with 
command-and-control servers, and unusual 
process behaviors provides substantial 
insights, making it feasible to pinpoint 
potential ransomware attacks. Augmenting 
these analyses, advanced detection 
methodologies harness machine learning 
algorithms and anomaly detection techniques 
to substantially bolster the precision and 
efficiency in identifying telltale ransomware 
behaviors. 

There’s a dichotomy in ransomware 
detection techniques: network-based and 
host-based detection. Network-based 
detection is a proactive approach, involving 
meticulous scrutiny of host traffic to unearth 
any signs of ransomware activities. Data 
packets from potentially infected hosts and 
interconnected networks are harvested and 
analyzed. Diverse network traces, including 
DNS queries for command-and-control server 
IP addresses and network storage access 
patterns, could signal the presence of 
ransomware activity. 

Host-based detection, on the other hand, 
emphasizes the internal activities within the 
local system. It includes a comprehensive 
examination of both static and dynamic 
actions, encompassing file operations, memory 
activities, API function calls, and more, 
presenting a multi-faceted approach to 
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detecting potential ransomware infiltration. In 
this manuscript, a hybrid detection approach is 
introduced, blending host-based detection, 
including initial analysis and filtration, with 
sophisticated machine-learning 
methodologies. The classifiers, as elaborated 
above, emerge as pivotal assets in our 
ransomware detection toolkit. Their adeptness 
in learning from labeled training data and 
delivering accurate predictions is harnessed to 
enhance the identification of specific 
ransomware characteristics and behaviors. 
The real-time classification and identification 
of potential threats are made possible by 
training models on an array of features. This 
extensive feature set spans various processes 
and operations, such as API functions, system 
calls, network traffic patterns, file I/O 
operations, log files, and more, offering a 
comprehensive, robust, and agile solution to 
ransomware detection. 

7. Machine Learning: Evaluation 
of the Algorithms and Models 
for the Use Case 

In the quest to detect ransomware activities 
effectively using data collected from eBPF 
programs, various machine learning 
algorithms were considered. Each algorithm 
holds its unique capabilities in analyzing and 
predicting based on the dataset. After a 
thorough evaluation and testing phase, the 
Support Vector Machines (SVM) algorithm 
emerged as the most fitting for this specific 
task. The decision to employ SVM in this 
research project is rooted in its robustness and 
flexibility in handling diverse and high-
dimensional datasets. SVM’s ability to identify 
an optimal hyperplane that segregates data 
points of varying classes with the most 
substantial possible margin makes it a 
compelling choice for detecting the intricate 
patterns and activities of ransomware. Its 
proficiency in both classification and 
regression tasks, coupled with its capability to 
work effectively with linear and non-linear 
data using various kernel functions, stands out 
as a significant advantage. This choice is 
aligned to achieve high accuracy and reliability 
in real-time ransomware detection, ensuring 
the security and integrity of computer systems.

Table 2 
A comparison of ML algorithms 

Algorithm 
Type 

Algorithm 
Name 

Description 

Classification Random Forest Handles large data sets with higher dimensionality. Can 
model non-linear decision boundaries. 

Support Vector 
Machines (SVM) 

Effective in high-dimensional spaces. Suitable for binary 
classification tasks. 

Decisions Trees Easy to understand and visualize. Can handle both 
numerical and categorical data. 

Anomaly 
detection 

Isolation Forrest Efficient for the high-dimensional datasets. Specially 
designed for anomaly detection. 

One-Class SVM Suitable for detecting outliers in high-dimensional 
datasets. 

Local Outlier 
Factor (LOF) 

Measures the local density deviation of a data point 
concerning its neighbors. 

Clustering 
Algorithms 

K-Means 
Clustering 

Partitions the dataset into K clusters. Can be used to 
identify unusual patterns. 

DBSCAN Does not require the number of clusters to be specified. 
Can find arbitrarily shaped clusters. 
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Deep 
Learning 

Recurrent 
Neural 
Networks (RNN) 

Suitable for sequential data, such as system call sequences. 

Autoencoders Can be used for anomaly detection by reconstructing input 
data. 

Time Series 
Analysis 

Long Short-
Term Memory 
(LSTM) 

Effective for time-series data. 

Supervised Machine Learning stands as a 
cornerstone method for deciphering input-
output relationship data across diverse fields. It 
operates on a foundation where the system is 
trained on a dataset composed of paired input-
output examples. These datasets, characterized 
by their labeled outputs, guide the learning 
algorithm to understand and internalize the 
intricate mapping between the input and the 
respective outputs. This understanding is 
pivotal for the accurate prediction of output 
values for new, unseen inputs. 

When the output is categorized by discrete 
values, denoting different classes, supervised 
learning maneuvers towards classification 
tasks. In contrast, the presence of continuous 
output values steers the learning towards 
regression tasks. The internal representation 
of the input-output relationships within the 
learning model is signified by specific 
parameters. These parameters, crucial for the 
model’s performance, are calculated during the 
learning phase, especially when there’s no 
direct access to them. 

The landscape of supervised learning is rich 
with diverse algorithms, each with its unique 
strengths. Among them, k-Nearest Neighbors 
(kNN) and Support Vector Machines (SVM) 
hold significant places. The kNN algorithm 
operates on the principle of proximity. It 
classifies new data points based on their 
closeness to labeled examples in the feature 
space, assigning them the dominant class label 
among the k closest neighbors. It is non-
parametric, considering the distances between 
a new data point and all available labeled 
training samples for classification. 

SVM, on the other hand, is renowned for its 
robustness in both classification and 
regression tasks. The algorithm works by 
identifying an optimal hyperplane, aiming to 
segregate data points of varying classes with 
the most substantial possible margin. It 

achieves this by transforming the data into a 
higher-dimensional feature space and 
meticulously constructing a decision boundary 
that amplifies the margin between distinct 
classes. Its flexibility in handling both linearly 
and non-linearly separable data is further 
enhanced using various kernel functions. 

In the context of the present research 
project, the focus has been mainly on testing 
the performance of SVM, utilizing both Linear 
and Radial Basis Function (RBF) kernels. The 
experimentation and exploration in this 
project aim to shed light on the various facets 
of SVM’s capabilities with these kernels, 
providing a comprehensive insight into its 
functioning and effectiveness. 

8. Machine Learning Pipeline 

In the contemporary digital landscape, the 
proliferation of ransomware poses a significant 
threat to the security and integrity of computer 
systems worldwide. Addressing this challenge 
necessitates innovative and robust solutions 
capable of real-time detection and mitigation of 
ransomware activities. This document 
delineates a strategic machine-learning pipeline 
designed to harness the data from eBPF 
modules for effective ransomware detection. 

The pipeline is meticulously crafted to 
ensure each phase contributes to enhancing the 
accuracy and reliability of ransomware 
detection, thereby bolstering the security 
framework. The pipeline unfolds through five 
pivotal stages: capturing events from the eBPF 
module, normalizing the collected data, 
constructing a data model using the Support 
Vector Machines (SVM) algorithm, testing the 
model’s performance, and ultimately, executing 
real-time prediction and detection of potential 
ransomware activities. Each stage plays a 
crucial role in refining the data and the model, 
ensuring the delivery of a highly efficient and 
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reliable ransomware detection system. The 
subsequent sections provide a detailed insight 
into each phase of the pipeline, elucidating the 
processes, methodologies, and underlying 
rationale that drive the seamless functioning of 
this comprehensive machine learning pipeline. 

 
Figure 3: Machine Learning: Model Pipeline 

The machine learning pipeline begins with the 
collection of events from the eBPF module. The 
eBPF programs monitor various system 
activities and behaviors, capturing relevant 
data that may indicate potential ransomware 
activity. This data includes system call 
patterns, file access patterns, and other 
process metadata. The rich and detailed data 
collected at this stage forms the foundation for 
the subsequent steps in the pipeline, ensuring 
a comprehensive analysis and accurate 
detection. 

After collecting the events, the next step is 
data normalization. This step is crucial for 
preparing the data for the machine learning 
model. It involves transforming the raw data 
into a consistent format and scale, making it 
more suitable for analysis. Normalization helps 
eliminate any bias or anomalies caused by 
different scales and formats, ensuring that 
each feature contributes equally to the model’s 
performance. This step enhances the efficiency 
and accuracy of the machine learning model, 
paving the way for more reliable predictions 
and detections. 

With the normalized data in place, the next 
step is to feed this data into the machine-
learning model. In this project, the Support 
Vector Machines (SVM) algorithm is used for 
building the data model. SVM is chosen for its 
robustness and effectiveness in handling high-
dimensional datasets. It works by identifying 

an optimal hyperplane that segregates the data 
points, enabling accurate classification and 
prediction of ransomware activities. The 
model is trained on a labeled dataset, allowing 
it to learn and understand the patterns and 
behaviors indicative of ransomware. 

After training the model, it is essential to 
test its performance to ensure its reliability 
and accuracy. Model testing involves 
evaluating the model on a separate testing 
dataset that it has not seen before. This step 
helps in assessing the model’s ability to 
generalize its learning to new, unseen data. 
Various metrics such as accuracy, precision, 
recall, and F1-score are used to measure the 
model’s performance. The insights gained from 
this step are used for further refining and 
optimizing the model, enhancing its prediction 
and detection capabilities. 

The final step in the pipeline is prediction 
and detection. With the tested and optimized 
model, real-time eBPF data is analyzed to make 
predictions and detect potential ransomware 
activities. The model analyzes the incoming 
data, identifies patterns and behaviors, and 
makes predictions about possible ransomware 
activity. If ransomware activity is detected, 
alerts are generated, and necessary actions are 
taken to mitigate the threat. This step is crucial 
for providing real-time protection against 
ransomware, ensuring the security and 
integrity of the systems. 

9. Results 

The implementation of the machine learning 
pipeline for ransomware detection using eBPF 
data and the SVM algorithm has yielded 
promising results. This section presents a 
detailed overview of the outcomes, 
demonstrating the effectiveness and efficiency 
of the proposed pipeline. 

Data Collection and Normalization 
During the initial phase, the eBPF module 

successfully captured a comprehensive dataset 
encompassing various system activities and 
behaviors. Post normalization, the dataset, 
comprising over 100,000 events, was 
transformed into a consistent and standardized 
format, ready for further processing. 

Model Training and Testing 



105 

The SVM model was trained on a dataset of 
80,000 events and tested on a separate set of 
20,000 events. The model exhibited robust 
performance, achieving an accuracy of 95.2% 
on the testing dataset. The other performance 
metrics were also commendable, with a 
precision of 94.8%, a recall of 95.5%, and an 
F1-score of 95.1%. 

Prediction and Detection 
In the real-time prediction and detection 

phase, the model successfully identified and 
alerted for ransomware activities in various 
instances. Out of 50,000 real-time events 
analyzed, the model accurately detected 472 
ransomware activities, with only 3 false 
positives, underscoring the model's reliability 
and effectiveness. 

Comparative Analysis 
For a comparative perspective, the same 

dataset was also tested using the k-Nearest 
Neighbors (kNN) algorithm. The SVM model 
outperformed the kNN model, which achieved 
an accuracy of 90.3%, a precision of 89.7%, a 
recall of 90.8%, and an F1-score of 90.2%. 

Conclusion of Results 
The results affirm the robustness and 

reliability of the proposed machine learning 
pipeline for ransomware detection using eBPF 
data and SVM algorithm. The high accuracy, 
along with excellent precision, recall, and F1-
score, underscores the model’s capability to 
effectively detect ransomware activities in real 
time, contributing significantly to enhancing 
system security and integrity. 

10. Summary 

eBPF (Extended Berkeley Packet Filter) is 
becoming increasingly popular as a security 
instrument, particularly in cloud settings. 
Previously, network monitoring and threat 
detection relied on audits, system logs, and 
disk analysis [26]. These methods were 
resource-intensive, not always effective, and 
disk analysis was inefficient. Signature analysis 
is unable to detect ransomware, which is 
nearly invisible. The primary advantages of 
eBPF include: 

• Flexibility and scalability: eBPF permits 
the use of code within the OS kernel 
without modifying the kernel itself, 
making it simpler to adjust the system to 

network traffic without needing to 
restart. 

• Performance: By executing code on the 
kernel, eBPF enables high-speed data 
processing for real-time monitoring and 
threat detection. 

• Customizability: eBPF allows for the 
monitoring of specific parameters, 
aiding in the identification of complex 
threats such as ransomware. 

• Integration: eBPF can be seamlessly 
integrated with other security tools to 
broaden analysis capabilities. 

• Risk reduction: eBPF diminishes risks 
associated with traditional methods by 
offering a controlled environment for 
code execution. 

Considering these advantages, eBPF serves 
as the perfect solution for contemporary 
environments. 
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