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Abstract  
The discovery of q-regular forest description in terms of an infinite system of quadratic 
equations over a finite field Fq had an impact on the development of Graph-Based 
Cryptography and constructions of robust stream ciphers. The family of algebraic graphs 
D(n, K) defined over arbitrary commutative ring K with unity already was used for the 
description of some graph-based ciphers. We introduce new ciphers constructed in terms 
of D(n, K). Let K be arithmetical ring Zq, q = 2l, l≥3. We will use natural bijection between 
elements of multiplicative group K* and elements of Zp, p = 2l-1. The space of plaintexts is 
(Zp)n-s the space of ciphertexts is (Zq)n-s where s of size O(1) can be arbitrary parameter 
<[(n+2)/5]. The password can be selected as an arbitrary pair of tuples of kind (a1, a2, …, 
ak) ϵ (K*)k, (d1, d2, …, ds) ϵ (K*)s where even k, k<[(n+5)/2] has size O(1). We prove that 
different passwords produce distinct ciphertext from the selected plaintext. So the cost of 
a direct attack by an adversary is qspk. The encryption map has a multivariate nature, it is 
induced by non-bijective polynomial transformation Fn_of Kn-s to itself of prescribed 
degree d. Users can select d, d ≥3 as an arbitrary parameter of the size O(n). Appropriate 
selection of large d makes linearisation attacks on the cipher of multivariate nature 
unfeasible. The speed of encryption/ decryption is O(n). Additionally, we introduce 
similar ciphers based on the bijective transformation of the space of plaintexts Kn-s where 
K is an arbitrary commutative ring with unity with nontrivial multiplicative group K*. 
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1. Introduction 

Graph-Based Cryptography (GBC) area is 
moving with great speed into the mainstream 
of computer design, Information sciences, 
Information and Computer programming, 
Artificial Intelligence, and design. Applications 
of GBC are in diverse areas such as Data 
structures, Communication networks, and 
their security. A Graph-based approach centers 
on conserving the environment of security 
events by breaking down factors of observable 
data into a graph representation of all cyber 
vestiges, from all data aqueducts, counting for 
all once and present data. For secret 
communication, GBC is used for the key 
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exchange, development of Multivariate Public 
Keys, key-dependent message authentication 
codes, and algorithms of Noncommutative 
Cryptography [16–30]. 

Graph theory is commonly used as a tool for 
symmetric encryption. The first 
cryptographical applications of Graph Theory 
appeared in the areas of Symmetric 
Cryptography and Network Security. This 
paper [35] and monograph [15] reflect various 
results in the area of applications of families of 
algebraic graphs of the large girth of Extremal 
Graph Theory to the development of fast and 
secure encryption tools to process Big Data 
files. The girth is the length of the minimal 
cycle in the graph. This parameter defines the 
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size of the key space of the corresponding 
cipher. 

Observed and presented new ciphers have 
a multivariate nature. The space of plaintexts is 
an affine variety Kn defined over finite 
commutative ring K. Bijective encryption map 
F can be given by nonlinear multivariate 
polynomials f1, f2,…, fn from the multivariate 
commutative ring K[x1, x2,…, xn]. It acts on the 
affine space according to the rule (x1, x2,…, xn)→ 
(f1(x1, x2,…, xn), f2(x1, x2,…, xn),…, fn(x1, x2,…, xn)), 
where fi are given via corresponding list of 
monomial terms. The trapdoor accelerator 
(see [14]) is a piece of information A such that 
the knowledge of A allows us to compute the 
reimage of F in time O(n2). 

In presented ciphers based on bijective 
maps correspondents Alice and Bob share file 
A (the password) and encrypt according to the 
robust procedure in time O(n) or O(n1+ᾳ) where 
ᾳ is from the interval [0,1]. The adversary does 
not have a password he/she can intercept a 
large amount of pairs of 
plaintext/corresponding ciphertext and try to 
approximate maps F-1 and F. So the degree of F 
is an important parameter for cryptanalytical 
studies. The most important (active) part of 
the password is the information about the walk 
in the algebraic graph. 

The first description of selected graph-
based stream cipher based on approximations 
of the q-regular tree where q is a prime power 
was presented in [4] or [15]. The first 
implementation of these algorithms appeared 
at the beginning of 2001 [1]. During the last 
twenty years, many new results on the 
construction of new encryption tools and their 
cryptanalysis were obtained. They lead to an 
understanding of the multivariate nature of 
these algorithms and the necessity of usage of 
infinite algebraic graphs defined over infinite 
commutative rings of kind Fq [x1, x2, …, xn] or 
more general K[x1, x2,…, xn] where K is a finite 
commutative ring. Implemented in [1] 
encryption map is a polynomial map of degree 
3 such that their inverse is also a cubical 
transformation. So, the adversary can use 
linearisation attacks, and after the interception 
of O(n3) pairs of kind plaintexts/corresponding 
ciphertext he/she can approximate the 
encryption map in time O(n10). 

In [35] first graph-based encryption scheme 
with a nonbijective encryption map was 
presented. 

Section 2 is dedicated to the general schemes 
of flexible encryption algorithms based on a 
special family of algebraic graphs defined over 
a commutative ring. The used class of algebraic 
graphs is known as the class of linguistic 
graphs of type (1,1, n-1). Some of these 
schemes do not use descriptions of connected 
components of graphs. other schemes are 
based on the knowledge of connectivity 
invariants of the graphs. Some of them allow us 
to define bijective maps of corresponding 
affine space, and others are used for the 
creation of an injective map of (K*)n into Kn 
where K is a commutative ring with the unity 
and K* is its multiplicative group. 

The remarkable well-known family of 
linguistic graphs D(n, K) defined over K is 
introduced in Section 3. The connected 
components of these graphs and their 
properties and applications are discussed. In 
particular, we consider the theory of 
approximations of regular trees and forests 
with the example q-regular forest 
approximation D(n, Fq) = D(n, q), n→∞ [2] and 
tree approximation via linguistic graphs 
CD(n, q) [3]. 

The precise description of some graph-
based algorithms of Section 2 in the case of 
D(n, K) is given in Section 4 together with an 
evaluation of the degrees of the encryption 
map and its inverse. We select algorithms 
constructed without the usage of connectivity 
invariants of graphs. 

Section 5 is dedicated to the family of 
bijective and non-bijective ciphers described 
in terms of connectivity invariants. We discuss 
implementations of some of these ciphers in 
the case of arithmetical rings Zq, q=2l there. 

Section 6 contains conclusive remarks. 

2. Linguistic Graphs of Type (1, 1, 
n-1) and Encryption Schemes 

The families of graphs D(n, K) defined over 
arbitrary commutative ring K are linguistic 
bipartite graphs of type (1, 1, n-1) with 
partition sets which are two copies of Kn (see 
[7] or [15]), i.e. graphs with the incidence 
I = I(K) =  nI(K) between points (x1, x2,…, xn) and 
lines [y1, y2,…, yn] given by the system of 
equations a2x2-b2y2 =  f2(x1, y1), a3x3-b3y3 = f2(x1, 
x2, y1, y2 ),…, anxn-bnyn = f2(x1, x2,…, xn-1, y1, y2,…, yn-1) 
where parameters a2, a3,…, an-1 and b2, b3,…, bn-1 
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are taken from the multiplicative group 
K* of the commutative ring K. Parameters 
ρ((x1, x2,…, xn)) = x1 and ρ([y1, y2,…, yn]) = y1 
serve as colors of the point and the line. The 
following linguistic property holds. Each 
vertex of the graph has a unique neighbor of 
the chosen color. 

Graph CD(n, K) after the elimination of 
computed recurrently parameters also can be 
written as linguistic graphs of type (1, 1, m-1) 
where m=[3/4n]+c. 

Parameters n and m are equal to some 
selected constant. the length of the password is 
another even constant that has an impact on 
the speed of encryption. Another option to 
increase the speed of execution is the increase 
the cardinality of the ground field or ring. Let 
us consider the general scheme of creating the 
cipher based on the family of linguistic graphs 
nI(K), n=2, 3, …. 

Noteworthy that we can expand the defined 
above I(K) to the infinite linguistic graph I(K[x1, 
x2,…, xn]) defined over the ring K[x1, x2,…, xn] of 
all multivariate polynomials with coefficients 
from K and the variables xi, I = 1,2,…, n. So 
points and lines of this graph are X = (X1(x1, 
x2,…, xn), X2(x1, x2,…, xn),…, Xn(x1, x2,…, xn) and 
Y = [Y1(x1, x2,…, xn), Y2(x1, x2,…, xn),…, Yn(x1, x2,…, 
xn)]. The incidence of this bipartite graph is 
given by equations a2X2-b2Y2 = f2(X1, Y1), a3X3-
b3Y3 = f2(X1, X2, Y1, Y2),…, anXn-bnYn = f2(X1, X2,…, Xn-

1, Y1, Y2,…, Yn-1), where parameters a2, a3,…, an-1, b2, 
b3,…, bn-1 and polynomials fi, I = 2, 3,…, n with 
coefficients from K are taken from the 
equations in the definition of the linguistic 
graph I(K). 

We define the polynomial map F from Kn to 

K n via the following scheme (see [15]). Take 
the special point X = (x1, x2,…, xn) of I(K[x1, 
x2,…xn]) and consider the list of colours g1(x1), 
g2(x1), …, gt(x1). We compute the path 
v0Iv1Iv2…Ivt where v0 = X and vi+1 is the 
neighbour of vi with the colour gi(x1), I = 1,2, …, 
t and I = I(K[x1, x2,…, xn]). Then the destination 
point vt of this path can be written as (gt(x1), 
F2(x1, x2), …, Fn(x1, x2,…, xn)). The map F is given 
by the rule x1→gt(x1), x2→F(x1, x2),…, xn→F(x1, 
x2,…, xn). It is easy to see that F = F(g1, g2,…, gt) 
is a bijective map if and only if the equations of 
kind gt(x1) = b have unique solutions for 
unknown x1 for each b from K. 

So family of linguistic graphs nI(K), n = 2, 3,… 
together with family of affine transformations 
TnϵAGLn(K) can be used as a cipher with the 

space of plaintexts Kn and the password g1(x), 
g2(x),…, gt(x) and the encryption map Tn(F(g1, 
g2,…, gt)(Tn)-1. 

Correspondents Alice and Bob share the 
password given by g1, g2,…, gt and the sequence 
of transformations Tn, n = 2, 3,… We assume 
that inverse maps (Tn)-1 are computed and 
presented explicitly. For the encryption of 
potentially infinite plaintext (p) = (p1, p2,…, pn) 
they will use transformation TnF(g1, g2,…, 
gt)(Tn)-1. One of them creates the plaintext (p) 
and computes the ciphertext Tn(F(g1, g2,…, 
gt)(Tn)-1(p) = c recurrently. The procedure is 
the sequence of the following steps. 

S1. He/she computes (Tn)-1(p1, p2,…, pn) = (r(1), 
r(2),…, r(n)) = (r) 

S2. He/she computes a(1) = g1(r1), 
a(2) = g2(r1),…, a(t) = g(r1) 

S3. Let Na(x1, x2,…, xn) be the operator of 
taking the neighbor of point (x1, x2,…, xn) with 
the color a in the linguistic graph nI(K) and 
aN(y1, y2,…, yn) be an operator of taking the 
neighbor of the line [y1, y2,…, yn] with the color 
a. He/she executes the following operation. 
Computation of v1 = Na(1)(r), v2 = a(2)N(v1), 
v3 = Na(3)(v2), v4 = a(4)N(v3),…, vt-1 = Na(t-1)(vt-2), 
vt = a(t)N(vt-1) = u = (u1, u2,…, un) 

S4 He/she computes ciphertext as T(u)=c 
DECRYPTION PROCEDURE. 
Assume that one of the correspondents 

received the ciphertext c. He/she decrypts via 
the following steps.  

D1. Computation of u as (Tn)-1(c) = u and 
getting the solution x = r(1) of equation 
g(x) = u1 

D2. Computation of parameters 
a(1) = g1(r(1)), a(2) = g2(r(1)),…, a(t-1) = gt-

1(r(1)) and the completion of the recurrent 
procedure vt-1 = Na(t-1)(u), vt-2 = a(t-2)N(vt-1), vt-

3 = Na(t-3)(vt-2), vt-4 = a(4)N(vt-3),…, v1 = Na(1)(vt-2), 
r(1)N(v4t-1) = r. 

D3.  Computation of the plaintext (p) as T(r). 
OBFUSCATIONS OF THE ALGORITHM. 
O1. Let us consider the colour jump operator 

Ja which transforms point (p1, p2,…, pn) of the 
graph I(K) to the point (a, p2, p3,…, pn). 

We can change the encryption map TnF(g1, 
g2,…, gt)(Tn)-1 for the TnF(g1, g2,…, gt)Jg(Tn)-1, 
where Jg is a color jump operator acting on 
points of I(K[x1, x2,…xn] with the color 
g(x1)ϵK(x1) such that the equation of kind 
g(x1) = b has a unique solution for each 
parameter b from K. 
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After this change assumption of the bijection of 
gt on K is immaterial. Encryption procedure 
requires computation of (Tn)-1(p1, p2, …, 
pn) = (r(1), r(2),…, r(n)) = (r), the computation 
of u accordingly step S2. The computation of 
Jg(u) = u’ and application of affine 
transformation Tn to the tuple u’. 

For the decryption of ciphertext c the user 
has to compute u’ = (u’1, u’2,…, u’n) as (Tn)-1(c ), 
solve for x the equation g(x) = u’1, use the 
solution x = r(1) of this equation for the 
computation of a(1) = g1(r(1)), a(2) = g2(r(1)),…, 
a(t) = gt(r(1)), compute Ja(t)(u’) = (u) = (u1, u2,…, 
un) in the graph I(K) and execute procedure D2 

and D3 to get the original plaintext. 
O2. We can use “multiplicative equations” of 

kind g(x1) = b where g:K*→K* which has a 
unique solution if bϵK*. In this case, we can use 
the previous scheme O1 with Tn such that Tn-

1 = (r(1), r(2),…, r(n)) and r(1) is an element of 
multiplicative group K*. 

O3. Let I(K) be a linguistic graph of type (1, 
1, n-1). We say that multivariate function f, f 
ϵK[x1, x2,…, xn] is a connectivity invariant of I(K) 
if f(x1, x2,…, xn) = f(y1,y2,…yn) for each pair of 
points (x1, x2,…, xn), (y1, y2, …, yn) from the same 
connected component of the graph I(K). 
Assume that f1, f2,…, ft are connectivity 
invariants. We can use functions of kind 
gi(x1)+fi(x1, x2,…, xn), I = 1.2,…, t instead of gi in 
the cases of encryption schemes of type O2. 
This idea was proposed in [7] and [33]. We can 
change points for lines in the definition of 
connectivity invariant. 

O4. We can take T1 and T2 from the group 
AGLn(K) and use T1GT2 where G is a graph-
based transformation. 

O5. Let us assume that K = Zq, q = 2m. We can 
use graph based transformation G introduced 
in O2_given by polynomials g1(x1), g2(x1),…, 
gt(x1) and function g(x1) of the “multiplicative 
equations”. Assume the graph In(K) has 
connectivity invariants f1, f2,…, fk+1 from K[x1, 
x2,…, xn]. We change the colors gi and g for 
hi = gi(x1)+fi(x1, x2,…, xn) and. Let H be the graph-
based transformation in terms of In(K) and 
colors hi and g. Correspondents can work with 
the graph-based stream cipher defined in 
terms of the family of graphs In(K) and colors 
hi(x) and h(x) which has the space of plaintexts 
(K*)n, encryption function E = T1HT2 where T1, 
T2 are elements of GLn(K) and T1(x1)ϵK*. 
Noteworthy that the matrix of the linear 
transformation T1 can be constructed as a 

composition of low triangular matrix L = (l(i,j)) 
(l(i,j) = 0 for j>i) and an upper triangular matrix 
u = (u(i,j)) (u(i,j = 0 for i > j) such that 
u(1,1) ϵ K*. 

The space of plaintexts can be identified 
with the (Zp) n, p = 2 m-1. The map ϻ: 
x→2x+1estabishes the bijection between 
elements Zp and (Zq)*. 

Let us assume that Bob creates the plaintext 
(p1, p2,…, pn) = v. He computes v* as (ϻ(p1), 
ϻ(p2),…, ϻ(pn)) and creates the ciphertext 
E(v*) = c. 

Alice computes (T2)-1 (c ) = (b1. b2….,bm). 
Secondly, she solves for x the equation 
g(x) = b1.. Let x = x* be the solution. 

Alice takes the path in the graph with the 
starting point d = (x*, b2, b3,…, bn) = d and 
consecutive colors ht(x*), ht-1(x*), ht-2(x*),…, 
h1(x*), x*. Notice that for the computation of 
colors, Alice uses the identity fi(x1, x2,…, 
xn) = f1(x*, b2, b3,…, bn). 

The last vertex of the path is (ϻ(p1), ϻ(p2),…, 
ϻ(pn)). Alice applies ϻ-1, and gets the plaintext. 

3. On Families of Algebraic Graphs 
of Large Girth 

3.1. General Remarks 

The girth and diameter of a graph are the 
minimal length of its cycle and the maximal 
distance of the graph. The construction of finite 
or infinite graphs with prescribed girth and 
diameter is an important and difficult task of 
Graph Theory. 

Noteworthy that the incidence of classical 
projective geometry over various fields is a 
graph of girth 6 and diameter 3. J. Tits defined 
generalized m-gons as bipartite graphs of girth 
2m and diameter m. Feit and Higman proved 
that finite generalized m-gons with bi-degrees 
>2 exist only in the cases of m = 3, 4, 6, 8, and 
12. Geometries of finite simple groups of rank 
2 are natural examples of generalized m-gons 
for m = 3, 4, 6, 8. Classification of flag transitive 
generalized m-gons of Moufang type was 
obtained by J. Tits and R. Weiss. 

Infinite families of graphs of large girth of 
bounded degree are important objects of 
Extremal Graph Theory which were 
introduced by P. Erdős. He proved the 
existence of such families via his well-known 
probabilistic method. Nowadays few explicit 
constructions of such families are known. The 
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concept of an infinite family of small world 
graphs of bounded degree turns out to be very 
important for various applications of graph 
theory. 

Noteworthy that only one family of small-
world graphs of large girth is known. This is the 
family X(p, q) of Ramanujan graphs introduced 
by Gregory Margulis [8] and investigated via 
the computation of their girth, diameter, and 
the second largest eigenvalue by A. Lubotsky, 
R.Phillips and P.Sarnak [9]. 

We have to admit that studies of families of 
graphs Γi with well-defined projective limit Γ, 
which is isomorphic to an infinite tree, are 
well-motivated. 

We refer to such family as tree 
approximation. There is only one 
approximation by finite graphs which is a 
family of large girth. This is the mentioned 
above family of CD(n, q) defined by F. Lazebnik, 
V. Ustimenko, and A. Woldar [3]. 

The question of whether or not CD(n, q) 
forms a family of small world graphs has been 
still open since 1995. 

3.2. On Graphs D(n, q), Their 
Properties and Generalisations 

All graphs we consider are simple, i.e. 
undirected without loops and multiple edges. 
Let V(Γ ) and E(Γ ) denote the set of vertices and 
the set of edges of Γ, respectively. The 
parameter |V(Γ )| is called the order of Γ, and 
|E(G)| is called the size of Γ. A path in Γ is called 
simple if all its vertices are distinct. When it is 
convenient we shall identify Γ with the 
corresponding anti-reflexive binary relation 
on V(Γ), i.e. E(Γ) is a subset of V(Γ)×V(Γ). The 
length of a path is the number of its edges. The 
girth of a graph Γ, denoted by g = g(Γ), is the 
length of the shortest cycle in Γ. Let k≥3 and 
g≥3 be integers. The distance between vertices 
v and u of the graph Γ is a minimal length of the 
path between them. The diameter of the graph 
is the maximal distance between its vertices. 

The graph is connected if its diameter is 
finite. The graph is k-regular if each vertex of 
the graph is incident exactly to k other 
vertexes. A tree is a connected graph which 
does not contain cycles. 

1. An infinite family of simple regular 
graphs Γi of constant degree k and order 
vi such that diam (Γi)≤clogk-1(vi), where c 

is the independent of i constant and diam 
(Γi) is the diameter of Γi, is called a family 
of small world graphs. 

2. Recall that infinite families of simple 
regular graphs Γi of constant degree k 
and order vi such that g(Γi)≥clogk-1(vi), 
where c is the independent of i constant 
and g(Γi) is a girth of Γi are called families 
of graphs of large girth. Tree (q-regular 
simple graph without cycles) in terms of 
algebraic geometry over finite field Fq. 

3. The projective limit of graphs Γi is well 
defined and coincides with the q-regulate 
tree Tq. 

We refer to a family of graphs Γi satisfying 
condition (iii) as tree approximation. We know 
examples of the family satisfying conditions 1, 
2, and 3. 

The family X(p, q) formed Cayley graphs for 
PSL2(p), where p and q are primes, had been 
defined by G. Margulis [8] and investigated by 
A. Lubotzky, Sarnak, and Phillips [9]. As it is 
easy to see the projective limit of X(p, q) does 
not exist. 

3.3. Graphs D(n, K) 

Graphs D(n, q) introduced in [2] defines 
projective limit D(q) which is an infinite 
bipartite graph with partition sets formed by 
two infinite vector spaces over the finite field 
Fq_formed by points (p) = (p01, p11, p12, p21, p22, 
p’22, …, p’ii, pi i+1, pi+1,i, p+i+1,i+1 …) and lines [l] = [l10, 
l11, l12, l21, l22, l’22, …, l’ii, li i+1, li+1,i, l+i+1,i+1 …] and 
incidence relation given by equations 

lii-pii = l10 pi-1,i; 
l’ii-p’ii = li,i-1 p01; 
li,i+1-pi, i+1 = lii p01; 
li+1i-pi+1,I = l10p’ii . 
These four relations are defined for i≥1, 

(p’11 = p11, l’11 = l11). 
Remark. You can see that indexes of vectors 

correspond to coordinates of positive roots of 
root system A1 with a wave. 

Graph D(n, q) are bipartite graphs with the 
partition sets (Fq)n formed by the projections of 
points and lines of D(q) onto their first n 
coordinates and incidence given by first n-1 
equations in the definition of D(q). 
Historically graph D(q) is not the first example 
of a description of q-regular forest in terms of 
Algebraic Geometry. Geometries of buildings 
(see [10] and further references) correspond 
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to extended Dynkin diagram A1 as incidence 
structures are q+1-regular trees or q+1-regular 
forests. As a result, we get a description of a 
tree in group theoretical terms. 

In [11] it was noticed that the restriction of 
this incidence relation on orbits of Borel 
subgroup B- acting on maximal parabolic 
subgroups are q-regular bipartite graphs. So 
we get a description of a q-regular tree in terms 
of positive roots of A1 with a wave. 

In [2] authors proved that D(n, q) defined 
via first n-1equations of D(q) form a family of 
graphs of large girth. The general point and line 
of these graphs are projections of (p) and [l] 
onto the tuples of their first n coordinates. 

Unexpectedly it was discovered that these 
graphs are disconnected if n≥6. So forest D(q) 
contains infinitely many trees and the 
diameter is an infinity. F. Lazebnik conjectured 
that connected components of graphs D(n, q), 
n = 3, 4, … form a family of small world graphs. 
This conjecture is still open. 

In 1994 it was found out how to describe 
connected components CD(n, q) of graphs 
D(n, q) in terms of equations (see [6], [3]). In 
the case of families of graphs of large girth, we 
would like to have “speed of growth” c of the 
girth “as large as it is possible”. P. Erdos proved 
the existence of such a family with arbitrary 
large but bounded degree k with c = 1/4 by his 
probabilistic method. 

In the case of families X(p, q) and CD(n, q) 
the constant c is 4/3. So exact computation of 
the girth is the area of future research. There 
are essential differences between the family of 
graphs X(p, q) and tree approximations. Recall 
that the projective limit of X(p, q) does not 
exist. 

Families X(p, q) and CD(n, q) can be used for 
the construction of LDPC codes for noise 
protection in satellite communications. D. 
MacKay and M. Postol [12] proved that CD(n, q) 
based LDPC codes have better properties than 
those from X(p, q) for the constructions of 
LDPC codes. 

Cayley nature of X(p, q) does not allow to 
use of these graphs in multivariate 
cryptography. Various applications of graphs 
D(n, q) and CD(n, q) have been known since 
1998. 

3.4. On the Equations for Graphs 
CD(n, K) 

We can see that graphs D(n, q) are defined as 
bipartite graphs with the partition sets (Fq)n via 
the system of homogeneous polynomial 
equations with nonzero coefficients 1 and -1.  

Let K stand for an arbitrary commutative 
ring. We can introduce graphs D(n, K) via a 
simple change of vector space (Fq)n on free 
modules Kn and the use of the same equations 
(see [4]–[5]). 

To facilitate notation in the future results 
on “connectivity invariants” of D(n, K), it will 
be convenient for us to define 
p- 1,0 = l0,- 1 = p1,0 = l0,1 = 0, p0,0 = l00 = -1, p’0,0 = l’0,0 = -1, 
p1,1 = p’1,1, l1,1 = l’1,1 and to assume that our 
equations are defined for i≥0. 

Graphs CD(k, K) with k≥6 were introduced 
in [4]–[5] for as induced subgraphs of D(k, K) 
with vertices u satisfying special equations 
a2(u) = 0, a3(u) = 0,…, at(u) = 0, t = [(k+2)/4], 
where u = (uα, u11, u12, u21, …, ur,r, u’r,r, ut t+1 ur,r+1, 
ur+1,r, …), 2≤r≤t, α ϵ{(1, 0), (0,1)} is a vertex of 
D(k, K) and ar = ar(u) = Σi=0,r(uii u’r-i, r-i-ui,i+1 ur-i,r-i-1) 
for every r from the interval [2, t]. 

We set a = a(u) = (a2, a3, …, at) and assume 
that D(k, K) = CD(k, K) if k = 2, 3, 4, 5. As it was 
proven in [5] graphs D(n, K) are edge 
transitive. So their connected components are 
isomorphic graphs. Let vCD(k, K) be a solution 
set of a system of equations a(u) = (v2, v3, …, 
vt) = v for certain v ϵKt-1. It is proven that each 
vCD(k, K) is the disjoint union of some 
connected components of graph D(n, K). 

It is easy to see that sets of vertices of 
vCD(k, K), v ϵKt-1 form partitions of the vertex set 
of D(n, K). We consider more general graphs 
vCD_J(k, K) defined via subset J={i(1),i(2),…, i(s)}, 
1≤s≤t-1 of {2, 3,…, t} and tuple (vi(1), vi(2), …, vi(s)) 
formed by vertices uϵKn such that ai(1)(u) = vi(1), 
ai(2)(u) = vi(2),…, ai(s)(u) = vi(s). 

We refer to vCDJ(k, K) as the J-component of 
D(n, K). We assume that equations ai(1) = vi(1), 
ai(2) = vi(2),…,ai(s) = vi(s) define J-component vCDJ(K) 
of D(K). Noteworthy that in the case of a finite 
commutative ring vCDJ(K) is a regular forest. 

The concept of quasiprojective variety over 
commutative ring K can be introduced via 
simple substitution of K instead of field F. It 
leads to concepts of homogeneous algebraic 
graphs over K, forest and tree approximations, 
and families of graphs of large girth over K. It 
was proven that for the case of commutative 
ring K with unity of odd characteristic graphs 
CD(n, K) are connected (see [13]). So graph 



113 

CD(n, q) = CD(n, Fq) for odd q is a connected 
component of D(n, q). 

Theorem [5]. For each commutative 
integrity ring K with at least 3 elements the 
families of graphs D(n, K), n = 2,3, … are forest 
approximations and families of graphs of large 
girth. 

4. On the Description of Selected 
Bijective Multivariate Maps of 
Some Ciphers Based on 
Algebraic Graphs of Large Girth 

To achieve linear speed O(n) of the encryption 
described in Section 1 functions gi, I = 1, 2,..., t 
are selected in the form x1+c(i), c(i)ϵK and the 
parameter t will be selected within the interval 
[2, [(n+5)/2]) when I(K) = D(n, K) or 
I(K) = CD(n, K). 

Additionally we take parameters b(1), b(2), 
…,b(k), a(1), a(2),...,a(k), k = t/2 from K* to 
construct c(i) recurrently via the following 
rules c(1) = b(1), c(2) = a(1), c(i) = c(i-2)+b(i) if 
i, i≥3 is odd n and c(i) = c(i-2) = a(i) if i, i≥4 is 
even. 

We refer to the tuple (b(1), b(2),…, b(k), a(1), 
a(2), …, a(k)) as active password and affine 
transformation T as passive password. 

Our choice ensures that in the case of a 
constant passive password, the single change 
of a single character of an active password 
leads to a change of the ciphertext produced 
from the selected plaintext. We choose an 
affine transformation T in the form of a linear 
map given by the following rule 

T(x1) = x1+m(1)x2+…+m(n-1)xn-1 where m(i), 
i = 1, 2,…, n-1 are elements of K*. T(xi) = xi for 
i = 2, 3,…, n. So T-1 (x1) = x1-m(1)x2-m(2)x3-…-
m(n-1)xn. T-1 (xi) = xi for i=2, 3,…, n. 

Recall that an explicit description of 
linguistic graphs D(n, K) is given in the 
previous section and the general encryption 
algorithm is described in section 2. So, ciphers 
T E(n, K) T-1 have a full description. In the case 
of graph CD(n, K) we will use in fact the 
induced subgraph hCD(n, K), h = (h2, h3,…, ht), 
t = [(n+2)/4] of D(n, K) of all points and lines 
u = (uα, u11, u12, u21, …, ur,r, u’r,r, ut t+1 ur,r+1, ur+1,r,…) 
satisfying conditions ai(u) = hi. 

Linguistic graph  hCD(n, K) can be thought as 
bipartite graph with points (p) = (p01, p11, p12, 
p21, …, pi i+1, pi+1,i , p+i+1,i+1 …), I = 2,3,…, t-1 and 

lines [l] = [l10, l11, l12, l21, l22, …, li i+1, li+1,i , l+i+1,i +1 …], 
I = 2,3,…, t-1 of length n-t. 

Their incidence is given by the following 
system of equations 

lii-pii=l10 pi-1,i; 
li,i+1-pi,i+1 = lii p01; 
li+1i-pi+1,I = l10p’ii. 
where p’22 is defined by the equation a2(p01, 

p11, p12, p21, p22, p’22) = h2 and can be written as 
p’22 = a2(p01, p11, p12, p21, p22, p’22)-h1+p’22 = b2(p01 
, p11, p12, p21, p22), other parameters are 
p’33 = a3(p01, p11, p12, p21, p22, p’22, p2,3, p3,2, p3,3 
p’3,3)-h3+p’33 = b3(p01, p11, p12, p21, p22, p’22, p2,3, p 3, 

2, p, 33), …, p’tt=a_t(p01, p11, p12, p21, p22, p'22, …, p’t-

1,t-1, pt-1, t, pt, t-1, pt, t, p’t, t)-ht+p’t,t = bt(p01, p11, p12, 
p21, p22, p’22, …, p’t-1,t-1, pt-1, t, pt, t-1, pt, t). 

The computation of symbolic expressions 
p’i,i recurrently and their explicit substitution in 
the system of equations give us the equations 
of the linguistic graph. 

We assume that the corresponding cipher 
has the space of plaintexts Kn-t. We use active 
passwords (b(1), b(2),…, b(k), a(1), a(2), …, 
a(k)) and linear transformations T of Kn-t 
constructed via described above rules. We 
assume that parameters h2, h3, …, ht will be 
considered as part of the active password and 
denote the cipher as TCE(n, K)T-1 = TnF(g1, g2,…, 
gt)Jg(Tn)-1. 

We will use the presented in Section 2 
obfuscation scheme for each cipher TE(n, K)T-1 
and TCE(n, K)T-1 in the case K = Fq, q>2. We use 
special disturbance function g of Ig selected as 
x→xe+b where bϵFq, eϵZd, d = q-1, and (e, d) = 1. 
So, the notations DE(n, K) = TE(n, K)IgT-1 and 
DC(n, K) = TCE(n, K)IgT-1 will be used for these 
encryption schemes with the disturbance. 

Algorithms with the encryption map 
TE(n, K)T-1 independently on the choice of 
active and passive passwords have 
multivariate encryption and decryption 
functions of degree 3. In [31] the linearisation 
attacks on these ciphers with the interception 
of O(n3) pairs plaintext/ciphertext are 
presented. They can be executed in polynomial 
time O(n10). 

The ciphers DE(n, K) use cubical encryption 
maps as well but the usage of disturbance map 
D: x→xe leads to the increase of the degree r of 
inverse maps. Parameter r can be evaluated 
from below by the polynomial degree of 
transformation D-1 acting on the elements of 
multiplicative group K*. So, if K = Fq, q = 232 

then the order of the polynomial decryption 
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map is at least 231. It justifies that direct 
linearisation attacks are not feasible. 

Case TCE(n, K)T-1 is principally different. As 

it follows from the results of [32] (ust 
wroblevskska) the encryption function 
corresponding to the selected active password 
has a degree [(n+2)/4]+2. So the generation of 
a standard form for the encryption function 
can not be done in polynomial time. 

So the directed linearisation attacks are 
theoretically impossible. The principal 
difference between DC(n, K) and TCE(n, K)T-1 is 
the fact that the usage of disturbance implies 
the fact that the degree of the inverse function 
is essentially higher than that for the 
encryption function. 

We can use induced graphs vCDJ(k, K) of 
graphs D(n, K) which are J-components of them 
where J = J(n) = {i(1), i(2), …, i(t(n))} is the 
subset of {2, 3,…, [(n+2)/4]} = M(n) and tuples 
(vi(1), vi(2),…, vj(t(n)) are elements of Kt(n). 

Similarly to the case of CD(n, K) when 
J(n) = M(n) we can find the equations for 
vCDJ(n, K) via the elimination of special 
symbolic coordinates of general vertex 
<x> = <x1, x1,1, x12, x2,1, x2,2, x2,2, x2,3, x32, x3,3, x’33,…, 
xi,i, xi,i+1, xi+1,i+1, x’i+1,i+1, …>, 3≤i≤[(n+2)/4-1] 
(point or line) of D(n, K) given by the list x’i(k),i(k), 
k = 2, 3,…, t(n). The variable x’i(k], i(k) can be 
found from the equation ai(k)(<x>) = vi(k). The 
substitution of symbolic expressions of x’i(k), i(k) 
into the incidence conditions of D(n, K) gives us 
the linguistic interpretation of vCDJ(n, K). This 
bipartite graph has sets of points and lines 
isomorphic to the affine space Kl where 
l = n- t(n). 

We associate with the family of graphs 

vCDJ(n, K) the sequence of encryption maps 
obtained by the following rules. We assume 
that symbolic vertex <x> = (x) from Kn-t(n) is a 
point and the graph is given in its linguistic 
interpretation. Let us rename the indexes of 
points and lines of vCDJ(k, K) by 1, 2,…, n-k. So 
x = (x1, x2,…, xn-t(n)). 

The nonlinear graph-based transformation 
N is the following one. 

We select parameter k and form tuples 
ka = (ᾳ(1), a(2),…, a(k)) and kb = (β(1), β(2),…, 
β(k)) with the coordinates from the 
multiplicative group K* of the commutative 
ring K. 

Let ᾳN(u) be the operator of taking the 
neighbor of u = (u1, u2,…, un-t) from the graph 
vCDJ(k, K) with the color of u1+ᾳ. We consider 

the sequence 1u = β(1)N(x), 2u = ᾳ(1)N(1u), 
3u = β(2)N(2u), 4u = ᾳ(2)N(3u), …,2k-1u = β(k)N(2k-2u), 
2ku = ᾳ(k)N(2k-1u) = (w1, w2,…,wn-t). We set N(x1, 
x2,…, xn-t) = (w1, w2,…, wn-t). 

We also will use the obfuscation gN((x1, x2,…, 
xn-t) = (g(x1), w2,…, wn-t), where g(x) is selected 
bijective polynomial function on K of degree at 
most t(n)+2. 

Let us investigate the multivariate nature of 
the map N. We may assume that the 
coordinates of a general point (x) are variables 
x1, x2,…, xn-t. We consider the multivariate ring K[ 
x1, x2,…, xn-t ] and the graph vCDJ(K[x1, x2,…, xn-t ]) 
with points and lines of kind <g1, g2,…, gn-t>, giϵ 
K[x1, x2,…, xn-t]. 

We already select parameter k and form 
tuples ka = (ᾳ(1), a(2),…, a(k)) and kb = (β(1), 
β(2),…, β(k)) with the coordinates from the 
multiplicative group K* of the commutative 
ring K. 

We consider the walk in the graph with the 
starting point u0 = (x), u1, u2,…., u2k where colors of 
u1 = x1+ β(1), u2 = x1+ ᾳ(1), ui = ui-2+β(i), I = 3, 5,…, 
2k-1, ui = ui-2+ᾳ(i)), I = 4, 6,…, 2k. 

Let u2k = (x1+ᾳ(1)+ᾳ(2)+…+ᾳ(k)), F2(x1, x2,…, 
xn-t), F3(x1, x2,…, xn-t), …, Fn-t(x1, x2,…, xn-t). So we 
may treat N as the multivariate 
transformation of Kn-t to itself given by the rule 
x1→x1+ᾳ(1)+ᾳ(2)+…+ ᾳ(k), x2→ F2(x1, x2,…, xn-t), 
x3→F3(x1, x2,…, xn-t),…, xn-t→ Fn-t(x1, x2,…, xn-t). 

As it follows from [32] the maximal degree 
of Fi is t(n)+2.  

As in the cases of ciphers based on graphs 
D(n, K) and CD(n, K) the encryption map will be 
conjugated with the special linear 
transformation T given by the following rule. 
T(x1) = x1+m(1)x2+…+m(n-t-1)xn-t-1 where m(i), 
i = 1,2,…, n-1 are elements of K*, .T(xi) = xi for 
i = 2,3,…, n. 

We denoted the described below cipher as 
kED1 (n-t, K). The map TNT-1 has active 
password (ᾳ(1), a(2),…, a(k), β(1), β(2),…, β(k)), 
vi(1), vi(2),…, vj(t(n)). 

Parameters m(1), m(2)…, m(n-t-1) together 
with J = {i(1), i(2),…, i((t(n)) form the passive 
password. We assume that constants k and 
t(n) = t can be agreed by correspondents via an 
open channel. Under the described above 
assumptions cipher has a linear speed v(n) of 
size O(n). The slope of the v(n) is defined by the 
value of the weight parameter 
w = i(1)+i(2)+…+i(m). 

The following important property holds. 
The change of the active password leads to the 
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change of the ciphertext for the selected 
plaintext. It means that a brute force attack on 
the cipher requires p2kqt elementary 
operations where p is the order of K* and q is 
the size of the commutative ring K. 

5. The Implemented Case of Non-
Bijective Multivariate Graph-
Based Maps 

In this section, we concentrate on the case of 
commutative ring K = Zq, q = 2l, l≥8.  

We modify the ciphers kEDt(m, K), m = n-t 
with the active password (ᾳ(1), a(2),…, a(k), 
β(1), β(2),…, β(k)), vi(1), vi(2),…, vj(d(n)) and the 
passive password defined by nonzero 
parameters m(1), m(2)…, m(n-d(n)-1) together 
with the set J = {i(1), i(2),…, i((d(n))} 
accordingly the special case of the scheme O5 
given in the Section 2. 

Recall that the description of the generic 
connectivity invariants of D(n, K) is given via 
expressions ar = ar(u) = Σi=0,r(uii u’r-i, r-i-ui,i+1 ur-i,r-i-1) 
considered for every r from the interval [2, k] 
where k = [(n+2)/4]. 

It means that we can take arbitrary element 
F from K[y2, y3,…., yk], consider a symbolic 
vertex (x) = <x1, x1,1, x12, x2,1, x2,2, x2,2, x2,3, x32, x3,3, 
x’33,…, xi,i, xi,i+1, xi+1,i+1, x’i+1,i+1, …> and gets the 
connectivity invariant F(a2(x), a3(x),…, ak(x)). 

Recall that the induced graph vCDJ(n, K) was 
obtained via the restriction of the incidence 
relation of the bipartite graph D(n, K) onto the 
solutions set of equations ai(k)(<x>) = vi(k). We 
can get recursively the variables x’i(s),i(s), s = 1, 
2,…, d(n) from these equations as quadratic 
expressions bi in variables of {x1, x1,1, x12, x2,1, 
x2,2, x2,2, x2,3, x32, x3,3, x’33,…, xi,i, xi,i+1, xi+1,i+1, x’i+1,i+1, 
…}-{x’(1),i(1), xi(2),i(2),…, xd(n),d(n)}. 

It means that generic connectivity 
invariants of the graph vCDJ(n, K) can be 
obtained via consideration of J* = {2, 3,…, m}-J 
as the specialization Aj of aj, jϵJ* via the 
substitutions x’ii = bi, iϵJ. 

Let J* = {j(1), j(2),…, j(s)}, s = m-d(n). The 
general connectivity invariant is F(Aj(1), Aj(2),…, 
Aj(s)) where F is a polynomial function in s 
variables z1, z2,…, zs. Notice that F can be an 
expression of any even degree in variables x1, 
x1,1, x12, x2,1, x2,2, x2,2, x2,3, x32, x3,3, x’33,…, xi,i, xi,i+1, 
xi+1,i+1, x’i+1,i+1, …. 

We use forms F(z1, z2,…, zs) of connectivity 
invariants with density O(1) and degree O(n). 

In this case, the connectivity invariant can be 
computed in time O(n). 

Algorithm 1 
Assume that one of the correspondents 

(Alice) creates the map. She selects the 
parameters n, m, the commutative ring K with 
at least 2 regular elements, the set J = {i(1), 
i(2),…, i((d(n))} and the tuple of parameters 
(vi(1), vi(2), …, vi(d(n))). These parameters allow us 
to write down the linguistic equations of 
graphs vCDJ(n, K). 

Alice uses the scheme O5 with the following 
changes of the symbolic path in the graph 
vCDJ(n, K[x1, x1,1, x1,2, x2,1, x22, ….] to make a 
difference with the case of cipher kEDt(m, K), 
m = n-t. 

She takes two expressions F1, F2 = K[z1, z2, …, 
zs], s = m-d(m) of density O(1) and linear degree 
O(n). Alice works with J* = {j(1), j(2),…, j(s)}, 
she forms the connectivity invariants  F1(Aj(1), 
Aj(2),…, Aj(s)) = G1(x) and F2(Aj(1), Aj(2),…, Aj(s)) = G2(x). 
Similarly to the case of the cipher kEDt(m, K), 
m = n-t. Alice takes tuples of odd residues b(1), 
b(2), …,b(k), a(1), a(2),...,a(k), k = t/2 from K* to 
construct c(i) recurrently via the following 
rules c(1) = b(1), c(2) = a(1), c(i) = c(i-2)+b(i) if 
i, i≥3 is odd and c(i) = c(i-2)=a(i) if i, i≥4 is even. 
She constructs gi, I = 1, 2,…, t of the scheme O5 
as gi = xi+G1(x)+ci for odd i, gi = x1+G2(x)+ci for 
even I and takes linear g(x) of kind ax+b, where 
aϵK*’. 

Algorithm 2 
Correspondents select the commutative 

ring K = Zq, q = 2l, l≥8. They modify the previous 
algorithm via a selection of g in terms of O5 in 
the form x3+b for some b from K. 

Noteworthy that x3 = d has a unique solution 
if dϵK* because 3 is mutually prime with φ(2l) 
where φ is the Euler function. 

For the encryption and decryption Alice 
uses the standard procedures of O5. 

Let N = N(b(1), b(2), …, b(k), a(1), a(2), ..., 
a(k), J, vi(1), vi(2), …, vi(d(n)). F1, F2) stands for the 
described above encryption function. We use 
linear transformation T1 and T2 of kind 
Ti(x1) = x1+ im(2)x2+im(3)x3+…+im(n)xn, I = 1, 2 
such that im(2)+im(3)+…+iim(n) is an even 
parameter to form the encryption map 
3E(n, Zq) = T1 N T2. 

We assume that tuples (b(1), b(2), …, b(k), 
a(1), a(2),..., a(k)) and vi(1), vi(2), …, vi(d(n)) form 
active password of 3E(n, Zq). 



116 

Forms Fi, I = 1, 2 together with parameters n, q, 
im(2), im(3),…,im(n) form a passive part of the 
password. 

Alice selects passive and active passwords 
and delivers them to his correspondent Bob via 
a secure channel. 

Remark 1 
One of the option to use connectivity 

invariants Fi., I = 1, 2 is to use of the forms 
Fi(z1, z2,…, zs) of kind (zk(1))t(1) (zk(2))t(2)…(zk(r))t(r) 
for which t(1)+k(2)+…+k(r), r≥1 has linear size 
ᾳn, ᾳ>0 and r=O(1). 

Remark 2 
Selection of forms Fi of linear degree 

ensures that the multivariate standard form of 
the encryption map has a degree at least ᾳn, ᾳ>0. 
The use of cubical map g guarantees that the 
degree of decryption is higher than the degree 
of encryption transformation. 

Similarly to the algorithm described in the 
previous section described above assumptions 
ensure that the cipher has a linear speed v(n) 
of size O(n). The slope of the v(n) is defined by 
the value of weight parameter 
w = i(1)+i(2)+…+i(d(n)) and selection of forms 
Fi, I = 1, 2. 

As in the case of kEDt(m, K) the change of the 
active password leads to the change of the 
ciphertext for the selected plaintext. It means 
that a brute force attack on the cipher requires 
p2kqd(n) elementary operations where p = 2l-1 
and q = 2l.  

Implementation 
We implement the cipher 3E(n, Zq) with 

q = 256. So the space of plaintexts is an affine 
space over Z128 and d(n) = 128 with weights 
w = 213 and 216. In both cases, the degree of 
encryption map will be at least 256. So the 
linearisation attacks by adversaries are 
unfeasible. 

CRYPTALL 7 software is written in C++ 
programming language and therefore it is 
portable and runs on many platforms such as 
Unix/Windows. The context diagram is 
depicted in Fig. 1. The friendly interface allows 
users to enter active and passive passwords of 
selected length. The program is supported by a 
key exchange protocol based on Eulerian 
transformations of Z*256 [36]. This is one of the 
protocols of Noncommutative cryptography 
([37–51] for the description of the area and 
[52–57] for the cryptanalytical studies). 

The protocol allows the elaboration of the 
tuple of nonzero field elements of Z128 of length 

2k together with the tuple of elements from 
Z256 of length 128 to form both passwords. 

Experimental Measurements 
To evaluate the performance of our 

algorithm, we use different sizes of files. We 
denote by t (k, L) the time (in milliseconds) 
that is needed to encrypt or decrypt (because 
of symmetry). The file size is in kilobytes for 
passwords of length L. Then the value of t(k, L) 
can be represented by the following matrices 
(Fig. 1 and Fig. 2). 
 

L\k 3000 4000 5000 6000 

4 1388.00 1864.00 2132.25 2575.00 

8 2625.75 3641.50 4192.25 5039.25 

12 3728.50 4988.25 6146.00 7350.00 

16 4967.00 6592.50 8103.50 9648.25 

20 6231.25 8231.50 10082.25 11989.75 

 
Figure 1: Run time for CRYPTALL 7 System 

 

L\k 3000 4000 5000 6000 

4 1796.25 2412.25 2759.25 3332.50 

8 3398.00 4714.00 5425.25 6521.25 

12 4825.25 6455.25 7953.50 9511.75 

16 6427.75 8531.50 10486.75 12486.00 

20 8064.00 10652.50 13047.75 15516.00 

 
Figure 2: Run time for CRYPTALL 8 System 

In both cases, algorithms have nice mixing 
properties. change of a single character leads 
to the change of at least 98% of the characters 
in the ciphertext. 

6. Conclusion 
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The first result of the paper (Algorithm 1) is the 
explicit construction of the family of 
multivariate maps of affine maps Fn of linear 
degree s(n) = cn, c>0 based on the graphs 
D(n, K) with the trapdoor accelerator. Fn acts 
on the affine space Kn defined over an arbitrary 
commutative ring K with at least 3 elements. 
The execution speed of the algorithm with 
encryption function is O(n). It depends on 
active password A = (a(1), a(2),…, a(k), b(1), 
b(2),…, b(k), v1, v2, ..., vs) from (K*)2kKs where 
parameters k and s can be selected by users. 
Let p = |K*|, q = |K|. 

Different active passwords produce distinct 
ciphertexts from the same plaintext. It means 
that the adversary’s direct attack costs p2kqs 
attempts. Correspondents can govern the 
security via a choice of parameters k and s. 

The map Fn is multivariate. Its degree d 
depends from the choice of degrees d(1) and 
d(2) of F1 and F2 from K[z1, z2, …, zl], 
l = [(n+2)/4]-s and parameter s. We can justify 
that d = 4d(1)+2d(2)+s is a degree of 
encryption and decryption maps. It means that 
users can select F1 and F2 of prescribed degrees 
and control the parameter d. Constructed 
trapdoor accelerator consists of active 
password A, maps F1, F2, g(x)ϵK[x], g(x) = ax+b, 
aϵK* and two affine transformations Ti, I = 1, 2. 

If d is sufficiently large then the 
computation of the standard form of Fn is an 
unfeasible task. So this cipher is resistant to 
linearisation attacks by adversaries. 

The important feature of this algorithm is 
the linear execution speed of size O(n). So this 
method of encryption can be used for the 
processing of Big Data. 

Another cipher described as Algorithm 2 is 
an obfuscation of Algorithm 1 obtained via the 
change of linear g(x) of scheme O5 for g(x) of 
kind xt+b such that (t, p) = 1, t≤4d(1)+2d(2)+s. 
This modification can be implemented in the 
case of commutative ring K with at least 3 
regular elements. The active password, 
transformations F1, F2, and T2 are unchanged, 
but T1 has to satisfy the condition T(x1)ϵK*. The 
space of plaintexts of the new algorithm is 
(K*)n-s but the space of ciphertexts is Kn-s as in 
the case of Algorithm 1. 

Algorithms 1 and 2 have the same degree of 
encryption map, but the nonlinear nature of 
g(x) increases the degree of the decryption 
map. 

We implement Algorithm 2 in the 
practically important case of K = Zq, q = 2l. In 
this case, the space of plaintexts is isomorphic 
to (Zp)n-s

, p = 2l-1. 
We use loaded multiplication tables for K*. 

These tables increase the speed of 
computations and make immaterial the 
computational difference between cases of 
fields Fq and arithmetical rings Zq. Suggested 
ciphers have good mixing properties, the 
change of a single character of the active 
password leads to the change of 98% of 
characters of ciphertext produced from the 
selected plaintext. 

We hope that new flexible algorithms with 
resistance to linearization attacks and linear 
speed of encryption will be successfully used 
for the protection of Information systems and 
Big Data Processing. 
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