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Abstract  
With the advancement of digital systems, biometric authentication methods, especially 
fingerprint recognition, have become an integral component of various security 
protocols. However, these systems remain susceptible to spoofing attacks where 
counterfeit fingerprints can be used maliciously. This research aims to address the 
challenge of fingerprint liveness detection by leveraging the capabilities of Convolutional 
Neural Networks (CNNs). Using the SocoFing dataset, we designed and implemented a 
CNN-based model, highlighting its architecture comprising multiple convolutional layers, 
pooling layers, and dense layers. The model was trained with the Adam optimizer and 
evaluated using metrics such as accuracy, False Acceptance Rate (FAR), and False 
Rejection Rate (FRR). Our results offer promising insights into the robustness of CNNs in 
detecting genuine versus spoofed fingerprints. Furthermore, this study discusses 
challenges faced during implementation, implications for real-world applications, and 
potential avenues for future research in the realm of biometric security. 
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1. Introduction 

Biometric identification [1] methods provide 
reliable protection. Biometric user 
authentication is a method that identifies a 
user and verifies their identity based on the 
measurement of their unique physiological 
traits or behavioral characteristics [2]. 
Physiological biometrics are fingerprint, face 
recognition, iris scan, hand geometry, and 
retina scan. Behavioral biometrics are voice 
recognition, gait, keystroke scanning, and 
signature scanning. Fingerprints and 
handprints are the most widely used biometric 
methods today. Many laptops are equipped 
with fingerprint scanners, and fingerprint 
readers on USB drives are also available. 
Biometric authentication is widely used and 
has great reliability: it saves the user from the 
difficult task of recovering passwords; 
biometric data are unique and simple; it is very 
difficult to reproduce biometric 
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characteristics; biometric characteristics 
cannot be lost; fingerprint scanning [3] is small 
and inexpensive; eye scanning is accuracy in 
user identification. 

1.1. Background 

With the ever-increasing reliance on biometric 
authentication in security systems [4], the 
importance of fingerprint recognition has 
surged dramatically. Fingerprint-based 
systems are deployed in a myriad of 
applications ranging from smartphones to 
immigration checks at airports. However, like 
all security systems, fingerprint recognition 
systems [5] are not impervious to malicious 
attempts at bypassing them. One such attempt 
is the presentation of fake or spoofed 
fingerprints, prompting the need for effective 
liveness detection mechanisms [6]. 

Liveness detection ensures [7] that the 
presented biometric data is from a living 
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person and not some form of artifact or 
replication. With advancements in technology, 
attackers have become adept at creating high-
quality fake fingerprints, challenging 
traditional liveness detection mechanisms [8]. 

1.2. Problem Statement 

While numerous techniques and 
methodologies exist for fingerprint liveness 
detection [9], there is a need for robust and 
reliable methods that can stand the test of time 
and technological evolution. With the rise of 
deep learning, Convolutional Neural Networks 
(CNNs) [10] have demonstrated significant 
promise in various computer vision tasks. This 
research aims to explore the robustness of 
CNNs in the realm of fingerprint liveness 
detection [11]. 

1.3. Objectives of the Study 

The primary objectives of this study are: 
• To design and train a CNN model for 

fingerprint liveness detection [12]. 
• To evaluate the model’s performance 

using standard metrics such as Accuracy, 
False Acceptance Rate (FAR), and False 
Rejection Rate (FRR) [13]. 

• To provide insights into the model’s 
robustness against varying types and 
quality of spoof attempts. 

• To compare CNN’s performance with 
other machine learning and deep 
learning models, gauging the overall 
effectiveness of CNNs in this application. 

In addition to this, the study will shed light 
on potential improvements and directions for 
future research. 

2. Methodology 
2.1. Dataset Description: Socofing 

The research is based on the Socofing dataset 
[14], available on Kaggle. Socofing is a 
comprehensive fingerprint dataset designed to 
assist in fingerprint liveness detection 
research. It contains a mixture of genuine and 
spoofed fingerprints, making it ideal for our 
analysis. 

• About Socofing: The Socofing dataset 
was created by the BiDA-Lab 

(Biométrica de América Laboratory) at 
the Universidad de las Fuerzas Armadas 
ESPE in Ecuador. It aims to provide a 
robust benchmark for algorithms aiming 
to discern between genuine and fake 
fingerprints. 

• Size and Volume: The dataset comprises 
numerous fingerprint images, with a 
varied distribution between genuine and 
spoofed fingerprints [14]. 

• Resolution: Each image in the dataset 
varies in resolution, capturing 
fingerprints with intricate details. 

• Source: Fingerprint images in the 
Socofing dataset were sourced from 
various devices and represent a diversity 
in data to mimic real-world scenarios. 

• Pre-processing: Before feeding the data 
into the models, each image underwent 
several pre-processing steps including 
normalization, resizing, and 
augmentation to increase the model’s 
generalization capability. 

SocoFing dataset examples are displayed 
(Fig. 1): Real Fingerprints in the first row, 
Slightly modified fingerprints in the second 
row, and Greatly modified fingerprints in the 
third row. 

 
Figure 1: SocoFing Dataset examples 

2.2. Model Architecture 
2.2.1. Convolutional Neural Network 
(CNN) 

The primary model explored in this research is 
a CNN, known for its prowess in handling 
image data. The architecture comprises: 

1. Input Layer: 
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• Purpose: Accepts the raw pixel values of 
the image as input. 

• Shape: Corresponds to the shape of 
train_images[0], which is the resolution 
of the fingerprint images used for 
training. If you’re using RGB images, this 
would be (height, width, 3), and for 
grayscale, it would be (height, width, 1). 

2. Convolutional Layer (Conv2D): 
• Purpose: To scan the input image with 

filters/kernels, helping the model learn 
local patterns. 

• Number of Filters: 32. 
• Filter Size: 3×3. 
• Activation Function: ReLU (Rectified 

Linear Unit), which introduces non-
linearity to the model, enabling it to 
learn from the error and make 
adjustments, which is essential for 
learning complex patterns. 

3. Max Pooling Layer (MaxPooling2D): 
• Purpose: To downsample the spatial 

dimensions of the output volume. It’s used 
to reduce the computational complexity, 
allowing the network to focus on the more 
relevant patterns/features. 

• Pool Size: 2×2. 
4. Convolutional Layer (Conv2D): 
• Purpose: Another convolution operation 

to extract higher-level features. 
• Number of Filters: 64. 
• Filter Size: 3×3. 
• Activation Function: ReLU. 
5. Max Pooling Layer (MaxPooling2D): 
• Purpose: Again, downsampling the 

spatial dimensions. 
• Pool Size: 2×2. 
6. Flattening Layer (Flatten): 
• Purpose: As its name suggests, this layer 

flattens the output of the previous layers 
into a single long vector. This is 
necessary because fully connected layers 
(dense layers) expect a 1D input vector. 

7. Fully Connected Layer (Dense): 
• Purpose: It interprets the features and 

patterns learned by previous layers. 
• Units (Neurons): 128. 
• Activation Function: ReLU. 
8. Output Layer (Dense): 
• Purpose: To output a probability 

distribution over the classes (Genuine 
and Spoof in your case). 

• Units (Neurons): 2, corresponding to the 
two classes: Genuine and Spoof. 

Activation Function: Softmax. This 
activation function returns the probability 
distribution over the classes, meaning each 
neuron will output a value between 0 and 1, 
representing the likelihood of the input image 
belonging to its respective class (Fig. 2). 

 
Figure 2: Architecture of the Convolutional 
Neural Network Model for Fingerprint 
Liveness Detection 

2.2.2. Model Compilation 

Optimizer: The Adam optimizer is an adaptive 
learning rate optimization algorithm [15] 
that’s been shown to handle sparse gradients 
on noisy problems. It combines the advantages 
of two other extensions of stochastic gradient 
descent: AdaGrad and RMSProp. 

Loss Function: Sparse Categorical Cross 
EntropyThis loss function is used for multi-
class classification problems where the labels 
are integers (as opposed to one-hot encoded 
vectors). It computes the cross-entropy loss 
between true labels and predicted labels. 

2.3. Evaluation Metrics 

To measure the performance of the models, the 
following metrics were employed: 

• Accuracy: This represents the 
proportion of correctly classified 
fingerprints out of the total fingerprints 
[16]. 

• False Acceptance Rate (FAR): The 
percentage of spoofed fingerprints 
incorrectly identified as genuine. 

• False Rejection Rate (FRR): The 
percentage of genuine fingerprints 
incorrectly identified as spoofed. 
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These metrics ensure a comprehensive 
evaluation, focusing not just on overall 
accuracy but also on the type and rate of errors 
the models make. 

3. Experiment Setup and Results 

For this research, we aimed to evaluate the 
effectiveness of a Convolutional Neural 
Network (CNN) in distinguishing between 
genuine and spoofed fingerprints using the 
Socofing dataset: 

• Data Preprocessing: Before feeding the 
data to the CNN, each fingerprint image 
underwent standard pre-processing 
steps, which included resizing to a 
consistent resolution, normalization to 
scale pixel values between 0 and 1, and 
data augmentation (like random 
rotations and flips) to enhance the 
model’s robustness. 

• Model Initialization: The chosen CNN 
architecture comprised multiple 
convolutional, pooling, and dense layers. 
The model was initialized with random 
weights. 

• Training Settings: Training was 
performed using a batch size of 2764 and 
for 10 epochs. We employed a split of 
80% for training and 20% for validation 
from the dataset. The Adam optimizer 
was used with a learning rate of 0.001 
and a categorical cross-entropy loss 
function. 

3.1. Results from CNN. Training and 
Validation Curves 

Throughout the training process, we 
monitored both the training and validation loss 
and accuracy (Table 1). 

Table 1 
Model Training and Validation Accuracy 
metrics for each epoch 

Epoch Loss 
Accu-
racy 

Vali-
dation 
Loss 

Vali-
dation 
Accu-
racy 

1 0.1742 0.9260 0.1342 0.9378 

2 0.0751 0.9694 0.0650 0.9761 

3 0.0482 0.9813 0.0634 0.9755 

4 0.0348 0.9866 0.0375 0.9860 

5 0.0260 0.9905 0.0267 0.9910 

6 0.0189 0.9931 0.0350 0.9869 

7 0.0162 0.9940 0.0246 0.9919 

8 0.0131 0.9952 0.0252 0.9935 

9 0.0116 0.9958 0.0321 0.9923 

10 0.0116 0.9959 0.0368 0.9896 

 
The convergence of training and validation 
curves indicated minimal overfitting, and the 
model generalizes well to unseen data (Fig. 3).

 
Figure 3: Training and Validation Accuracy curves 
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3.2. Performance Metrics: Accuracy, 
FAR, and FRR 

Upon completion of the training process, the 
model was evaluated on a test dataset to 
measure its performance: 

• Accuracy: 98.964%. 
• False Acceptance Rate (FAR): 0.215%. 
• False Rejection Rate (FRR): 7.251%. 

The model showcased a high accuracy rate, 
indicating its proficiency in distinguishing 
between genuine and spoofed fingerprints. 
However, the FRR suggests a need for further 
optimizations, as genuine fingerprints were 
occasionally misclassified (Fig. 4). 

 
Figure 4: Performance metrics of the liveness 
detection model showcasing accuracy, FAR, 
and FRR. 

3.3. Confusion Matrix Analysis 

From the test dataset evaluation, the confusion 
matrix was: 

• True Positives (TP): 2392 

• False Positives (FP): 42 

• True Negatives (TN): 19487 

• False Negatives (FN): 187 

While the model showed a high rate of true 
positives and true negatives, indicating correct 
classifications, there were instances of both 
false positives and false negatives, which 
emphasize areas for potential model 
refinement (Fig. 5). 

 
Figure 5: Confusion Matrix 

4. Analysis and Implications of 
CNN-based Fingerprint Liveness 
Detection 

4.1. Insights from the Results 

The CNN’s performance on the Socofing 
dataset offered several valuable insights: 

• High Accuracy: The CNN demonstrated a 
strong capability in distinguishing 
genuine from spoofed fingerprints with 
an accuracy nearing 99%. This 
underscores the model’s potential as a 
robust tool for fingerprint liveness 
detection. 

• Potential for Optimization: Despite the 
impressive accuracy, the FRR of 7.251% 
highlights an area that requires 
attention. In practical scenarios, genuine 
users could face challenges in 
authentication due to such 
misclassifications. 

• Confusion Matrix Observations: The low 
number of false positives suggests that 
the model rarely misidentifies a spoof as 
a genuine fingerprint. However, the 
presence of false negatives indicates 
room for enhancing the model's 
sensitivity. 

4.2. Challenges Encountered 

During the research, several challenges were 
faced: 

• Data Imbalance: The Socofing dataset 
might contain an imbalanced 
distribution between genuine and 
spoofed fingerprints, which can 
influence model training. 
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• Data Variability: The varying quality, 
orientation, and characteristics of 
fingerprints in the dataset can pose 
challenges to model consistency. 

• Computational Constraints: Training 
deep learning models requires 
significant computational resources, 
which might limit the extent of 
hyperparameter tuning and 
experimentation. 

4.3. Implications for Practical 
Implementation 

From a practical standpoint, the model’s 
results emphasize its utility in security systems 
requiring fingerprint authentication [17–18]. 
However, considerations must be made: 

• User Experience: An elevated FRR can 
lead to user frustration due to failed 
genuine attempts [19]. 

• Adaptability: Any implementation 
should provide regular updates to the 
model, considering the continuous 
evolution of spoofing techniques. 

5. Conclusion and Future Work 
5.1. Summary of Findings 

The research embarked on an exploration of 
the CNN-based Model’s efficacy in fingerprint 
liveness detection using the Socofing dataset. It 
displayed a commendable ability, with an 
accuracy close to 99%. However, certain 
metrics revealed avenues for optimization. 

Apart from the theoretical variety of 
possible biometric methods used in practice 
[20], there are few. Today, all biometric 
technologies are probabilistic [21], and this 
fact is often the basis of biometric criticism. It 
is hard not to agree that biometric technologies 
are reliable and convenient security measures 
that have been widely used until now [22]. 
Despite strong efforts in recent years to 
develop and improve user identification 
methods to control access to information 
system resources, the reliability and stability 
of existing systems are insufficient for modern 
needs [23]. The main advantage of biometric 
technology is its high reliability. Everyone 
knows that in nature there are no two people 
with the same fingerprint [24x]. 

5.2. Recommendations 

Based on the findings: 
• Data Augmentation: Increase the use of 

data augmentation techniques to enhance 
the model’s ability to recognize diverse 
fingerprint variations. 

• Model Refinement: Dive deeper into 
model architecture, considering additions 
or modifications, to address the elevated 
FRR. 

Continuous Training: Keep the model 
updated with new data to ensure it stays relevant 
against emerging spoofing techniques. 

5.3. Future Research Directions 

Future research could focus on: 
• Hybrid Models: Combining the 

strengths of different architectures, 
like integrating features from RNNs or 
Autoencoders with CNNs, might offer 
improved performance. 

• Transfer Learning: Utilize pre-trained 
models on larger datasets and fine-
tune them for fingerprint liveness 
detection. 

• Advanced-Data Augmentation: 
Techniques like GANs can generate 
synthetic fingerprints to expand the 
dataset and potentially improve model 
robustness. 
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