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Abstract

Recently, large language models (LLMs) have gained significant attention in the field of Natural Language

Processing (NLP) and have shown promise across various tasks, even when given only a few examples

to learn from. However, their ability to understand and reason with natural language remains uncertain.

While there have been attempts to evaluate these models using reasoning tests, these evaluations have

mostly focused on models’ final answers, often overlooking the step-by-step reasoning processes behind

their performance. Additionally, these analyses have typically concentrated on just one or a few aspects

of reasoning, especially for tasks that do not require much complex thinking to find the answer. This

limits our understanding of LLMs’ potential and limitations when it comes to more complex and realistic

questions. To address this issue, we conduct a comprehensive analysis of LLMs using the existing Fermi

reasoning challenge, a task that combines different aspects of reasoning into a single question-answering

format, requiring deeper levels of reasoning. In this paper, we examine various advanced LLMs in this

reasoning challenge and explore how their performance is affected by their size (i.e., the number of

parameters). We also investigate how these models behave with different levels of supervision, ranging

from having all the information to no evidence at all. Furthermore, we compare the two primary methods

of teaching these LLMs, fine-tuning, and few-shot learning, using the Chain-of-Thought approach. We

provide a detailed case study highlighting the most common limitations of these models. While our

results imply that these models may have a long journey ahead to reach human-level reasoning, our work

can be considered a robust baseline for the community to strive toward achieving this ambitious goal.

Our code is available on GitHub https://github.com/MostafaRahgouy/LLMs_for_FPs for the community.

Keywords

NLP, Natural Language Reasoning, LLMs, QA, Fermi Problems, Few-shot Learning, Fine-tuning

1. Introduction

Throughout history, humans have grappled with the concept of reasoning, seeking to define

and understand it. This pursuit dates back to the early Greek philosophers, who posed profound

questions such as “What can be known?” and “What does that mean someone knows something?”

in their quest to illuminate the nature of reasoning [2]. A more recent definition involves step-

by-step or systematic thinking that guides humans toward correct answers [3]. With the advent
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of Artificial Intelligence (AI), the development of systems facilitating reasoning has emerged

as a paramount objective for researchers in this domain ([4, 5]). This aspiration has drawn

nearer to realization with the introduction of LLMs. These models undergo a two-phase training

process, commonly referred to as pre-training and fine-tuning. In the pre-training phase, they

are exposed to vast volumes of data, equipping them with a foundational understanding of

language. Subsequently, in the fine-tuning phase, these models refine their capabilities by

learning to excel at specific downstream tasks. Prominent exemplars of such LLMs include

BERT [6], BART [7], and T5 [8], which have consistently outperformed their predecessors

across a spectrum of NLP tasks, including reasoning challenges. Researchers have pushed the

boundaries further by introducing super-large language models capable of addressing various

questions with minimal or even zero examples, denoted as few-shot and zero-shot learning,

respectively [9]. Models such as GPT-4 and LLaMA [10], have demonstrated remarkable prowess

in these areas. Nevertheless, in numerous NLP tasks, LLMs often approach or even surpass

human-level performance. However, their ability to reason falls significantly short of human

capabilities, warranting further in-depth investigation to enhance these models. For example,

[11] has pointed out a significant issue where LLMs like GPT-3 and BLOOM struggle with

simple common-sense planning tasks, which humans find easy. Moreover, [12] conducted

experiments and found that existing LLMs are still unable to pass the Theory-of-Mind tests,

where Theory-of-Mind tests aim to assess LLMs abilities to understand and infer the intentions,

emotions, and mental states of others. The root cause of the uncertainty regarding the ability of

LLMs in reasoning can be traced back to the initial works that published tasks and benchmark

datasets that are overly simplistic for these large models. Such simplicity inadvertently provides

opportunities for models to employ suboptimal techniques, thus potentially skewing their

performance [13, 14]. To address this issue, we have recently witnessed significant efforts

within the community aimed at devising more intricate tasks that LLMs to not only comprehend

but also engage in reasoning when responding to questions [15, 16]. These endeavors have

resulted in the emergence of more intricate reasoning tasks, typically taking the form of QA

formats, which require multi-hop reasoning capabilities. Nevertheless, while these studies have

been invaluable and have contributed intriguing insights into LLMs, they have inadvertently

overlooked certain crucial factors. Firstly, many of these tasks involve a limited number of

hops, often restricted to two or three steps. Secondly, these tasks are typically structured as

true/false or multiple-choice questions, which may not capture the nuanced behavior of LLMs

in responding. Additionally, these investigations failed to consider the correlation between

the level of supervision and LLMs performance. In essence, it is essential to explore how

LLMs perform when provided with various levels of information, ranging from complete

information as seen in mathematical word problems to partial or even no information, to gain a

comprehensive understanding of their behavior and decision-making processes. To this end, we

selected the existing Fermi Reasoning Challenge introduced by [17]. This selection addressed

the aforementioned issues by presenting multi-level tasks that demand a more profound level

of reasoning. Furthermore, Fermi Problems (FP) inherently require an approximation in their

responses, as precise answers are often impossible or impractical to attain. Our contribution

can be summarized as:

1. We present a comprehensive assessment of LLMs applied to Fermi Problems across



different levels of supervision. Our study focuses on leading LLMs, including T5, Flan-T5,

and models from the GPT family, marking the first of its kind in applying these models to

the FP reasoning task. Therefore, this paper can serve as a reference point for approaching

this challenging task.

2. We investigate various approaches for training and inferring from LLMs. Specifically, we

assess the impact of fine-tuning, both with and without prompting. We also explore the

utility of Chain-of-Thought prompting [18] and evaluate the effectiveness of few-shot

learning while varying the number of provided examples. Furthermore, we delve into the

application of zero-shot learning for implicit reasoning in FP.

3. We offer a more in-depth analysis of the behavior exhibited by LLMs, particularly fo-

cusing on the most common errors they tend to make. Additionally, we investigate the

relationship between the size of LLMs and their performance for FP. Furthermore, we also

unearth intriguing latent insights that offer valuable guidance for potential enhancements

in these models.

2. Fermi Problem

The Fermi challenge [17] inspired by Enrico Fermi, the Nobel winner in physics known for

his remarkable skill in making accurate estimates of complex numerical problems, is often

referred to as “Fermi problems”. These problems typically involve making assumptions and

approximations to arrive at a rough estimate, rather than a precise calculation. Owing to the

intrinsic complexity of the reasoning questions involved, FPs have been appropriated for use in

science Olympiads and interviews.

2.1. Tasks

FP encompasses three distinct tasks: perfect-context, distractor-context, and full, which

are designated as Task 1, Task 2, and Task 3, respectively. These tasks can be seen as different

levels of supervision or evidence provided to a model. Figure 1 illustrates an example of the FP

for these three tasks.

2.1.1. Task 1: Perfect-Context

At this level, alongside the given question, all essential knowledge (defined as a set of facts)

required to answer the question is integrated into the input. This task bears resemblance to math

word problems, which often feature a concise narrative outlining a scenario and presenting

a question related to an unknown quantity [19]. In both of these scenarios, information is

explicitly provided, eliminating the need for retrieving knowledge, and instead emphasizing

how such information is interconnected and can be used as guidelines to arrive at the final

answer.

2.1.2. Task 2: Distractor-Context

In realistic scenarios, the input context often comprises non-relevant information, and models

must effectively discern which pieces are pertinent to the given question. In line with this



If every human that's ever lived was
brought back to life. What would be the
population density of people per square

kilometer?

F1: The total surface area of Earth is
510e+6 km square

F2: The total population on earth is
7.2e+9

F3: Around 55e+6 people die each year

F4: It has been 120000 years since the
start of human-life on earth

F5: The minimum number of people
required to repopulate the entire human
race is 500

F6: There are 192 countries in the world

F7: The total land area on earth is
510100000 sq

...  

F20: The total income generated last
year in the world is 80e+12

Q1: What is the new population?

Q2: What is the total surface area of Earth?

Q3: What is the total population on Earth?

Q4: How many people have died till now?

Q5: How many people die each year on an
average?

Q6: How many years has it been since the
AD?

|

|

|

|

F1: The total surface area of Earth is
510e+6 km square

F2: The total population on earth is 7.2e+9

F3: Around 55e+6 people die each year

F4: It has been 120000 years since the
start of human-life on earth
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Figure 1: FP’s Tasks: In Task 1, the model receives both the question and the relevant facts (represented

as green facts). In Task 2, in addition to the question and relevant facts, the model also receives

distractor facts (represented as red facts). Finally, in Task 3, the model only receives the question without

any additional information. Regardless of the task, the model can produce two alternative outputs:

Ans 𝐴, which is a direct answer and implies implicit reasoning, and Program, which represents an

executable explicit reasoning process. In the program, fact matching (assigning sub-questions to facts) is

excluded from Task 3 because this task is meant to generate its supportive facts independently (orange

component).

real-world complexity, the FP includes this task that involves the deliberate inclusion of some

distractor facts alongside the question and relevant information.

2.1.3. Task 3: Full

The ultimate goal is to enable models to answer complex questions without any provided

information. In essence, the model should learn to retrieve supporting facts and demonstrate

the reasoning behind the answer based on the retrieved supporting facts. Achieving this level

of abstraction is akin to human-style problem-solving.

2.1.4. Outputs

Regardless of the chosen task, two acceptable outputs can be provided, which may serve as

alternatives to each other: Ans 𝐴 and Program P. Ans 𝐴 signifies the direct answer to a given

question. Furthermore, each FP question is complemented by an explanation in the form of an

executable program. This program delineates the facts, values, and mathematical computations

essential for deriving the answer. Program P has the potential to demonstrate how models

engage in reasoning across various facets, including question decomposition, fact matching,

and the relationship between questions in terms of mathematical operations. Given the paper’s

primary focus on LLM behavior and Program P’s role in facilitating the interpretability of



Name Train Validation Test

REALFP 185 125
*

558

SYNTHFP 8000 1000 1000

Table 1

Statistics for both RealFP and SynthFP datasets. However, [17] mentioned that the validation set (
*
) of

RealFP contains 185 samples, but we found only 125 in their released dataset.

models, we will exclusively present experiments based on this output, excluding Ans 𝐴. This

decision allows us to delve deeper into the model’s reasoning processes and provides valuable

insights into its decision-making capabilities.

2.2. Datasets

[17] presented two distinct datasets for analysis: RealFP, comprising of real-world FP collected

from various internet pages, quizzes, and Fermi problem Olympiads; and SynthFP, a larger

synthetic dataset created manually from 12 different templates. Table 1 shows statistics of the

datasets. As the test set of RealFP better represents the Fermi challenges in the real world,

throughout this paper, we will use this set to report the performance of the models. Additionally,

the RealFP validation set is employed for early stopping mechanisms for the models in our

experiments, and we chose not to use the validation and test sets of Synthetic to maintain

consistency and fairness across all models.

2.3. Metrics

Answer Evaluation: To evaluate the performance of a predicted direct answer 𝐴′
over the

true answer 𝐴, the 𝑓𝑝_𝑠𝑐𝑜𝑟𝑒 with the following definition will be employed:

𝑓𝑝_𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑥

{︂
0, 1− 1

3

⃒⃒⃒⃒
𝑙𝑜𝑔10

𝐴′

𝐴

⃒⃒⃒⃒}︂
(1)

This metric considers the imprecision and uncertainty of answers by assigning a full score to a

prediction that produces an answer within the same order of magnitude as the reference gold

answer. Conversely, for each order of magnitude that the prediction diverges from the reference

answer, the score is reduced by 1/3 points.

Program Evaluation: Explanations (programs) are evaluated along three criteria:

• Validity (valid?): This assesses whether the program is syntactically valid by evaluating it

to determine if it results in a numerical output. A Python program executor is employed

for this purpose. A score of 1 is assigned if the execution is successful, otherwise, it

receives a score of 0.

• Answer Accuracy Evaluation (𝑃𝐴𝑛𝑠): After the program successfully generates a numeric

answer (passed the valid? evaluation with score 1), this metric assesses the accuracy of

the generated numeric answer 𝐴′
with ground truth 𝐴 based on the previously defined

𝑓𝑝_𝑠𝑐𝑜𝑟𝑒.



• Fact Identification (Facts): Determines whether the program includes all and only the

specified gold facts F, using an F1 measure for assessment.

3. Experimental Design

Our experiments are structured around different LLMs training approaches, including fine-

tuning, few-shot, and zero-shot learning, with and without Chain-of-Thought (CoT) prompting.

3.1. Fine-tuning Setting

Fine-tuning without Chain-of-Thought: The introduction of Transformers, along with

the attention mechanism [20], marked a new era in transfer learning. This innovation enabled

the training of large models in an unsupervised manner on extensive datasets, allowing them to

acquire semantic knowledge of the language, thus forming a robust foundation for adapting to

downstream NLP tasks. This approach has significantly improved performance across a wide

range of NLP tasks with limited training samples, a practice commonly referred to as fine-tuning.

Notable examples of these models include BERT, BART, and T5. Among the aforementioned

models, T5 stands out as particularly adept at handling reasoning tasks due to its inherent

architecture of sequence-to-sequence (seq2seq), which aligns well with the demands of such

tasks. Consequently, we have chosen this model as the foundation for our fine-tuning setting.

To achieve this, we employ a straightforward approach: we concatenate the available supportive

facts with the question (for tasks 1 and 2) to construct the input, which the model processes,

ultimately yielding Program P as the output. Furthermore, we assess the performance of T5

using various versions, including T5-small and T5-base. It is worth noting that we also explored

a larger variant of T5, namely T5-large, which boasts 770 million parameters. However, our

findings indicated a degradation in results, which could potentially be attributed to the limited

number of samples available within the datasets.

Fine-tuning with Chain-of-Thought: In the realm of instruction-based fine-tuning, [21]

conducted an investigation into the impact of various factors, including scaling the number

of tasks and model size, and the incorporation of CoT data during the fine-tuning process.

Specifically, in their paper, they outlined their objective as follows:

“The goal of Flan finetuning is to produce an improved checkpoint across a range of
evaluations, which includes multi-step reasoning ability in addition to traditional NLP
tasks”.

To achieve this goal, they integrated nine CoT datasets into the fine-tuning phase and demon-

strated the positive impact of this approach on unseen reasoning tasks. Additionally, they made

Flan-T5 checkpoints publicly available, maintaining consistency with prior versions of publicly

released T5 checkpoints. As a result of these considerations, we selected the Flan-T5 model as

our experimental model, which incorporates the CoT capability. However, prompt engineering

can be beneficial in tailoring prompts to suit specific tasks. Nonetheless, we opted to maintain

consistency by using the original CoT prompt (“Answer the following question step by step”),



as utilized in the original paper, to ensure fairness across different tasks and model sizes in our

experiments.

3.2. Few-Shot Setting

LLMs have popularized the notion of few-shot learning, where these models can acquire new

tasks with just a small number of examples [22, 23]. Few-shot learning offers significant benefits

as it reduces the necessity for extensive data collection, which can be costly. Investigating

few-shot reasoning for FPs can determine whether such models can address intricate questions

in an interpretable manner. To this aim, we explore the capabilities of the GPT-based family

with varying numbers of provided examples, as typically encountered in few-shot learning

scenarios.

3.3. Zero-Shot Setting

Embracing the use of super-large LMs has opened the door to unlocking zero-shot reasoning

capabilities. Prominent models in this category include GPT-4, LLama, Flan-PaLM, Flan-T5,

and Bloom. Furthermore, the fusion of these models with the CoT prompting has yielded

significant improvements in various tasks [24]. However, CoT imposes a requirement for

these models to generate answers through step-by-step reasoning processes. Nonetheless,

these answers may not align with FP’s Program P output. This discrepancy arises because

the specified program P does not conform to the standard output generated by such models,

and they encounter challenges in producing responses without any prior exposure to relevant

samples. Consequently, we explored and evaluated zero-shot reasoning by focusing solely on

direct answers (Ans 𝐴). While this approach may limit interpretability to some extent, assessing

their performance under these conditions can offer valuable insights.

3.4. Experiments Setup

In our fine-tuning process, we used a constant random seed value throughout all experiments.

We maintained a batch size of 8 for the entire duration. Additionally, we set the learning

rate to 1e-3 and utilized the Adam optimizer [25]. To monitor model performance and ensure

reproducibility, we employed the validation set from the real dataset. The best model checkpoints

were saved based on this validation set loss. For consistency and fairness in reporting results, we

conducted fine-tuning for 50 epochs on real data and 5 epochs each on synthetic and combined

(both) data. Moreover, our GPU of choice was the NVIDIA A100 SXM4 40 GB. In few-shot

and zero-shot settings, we adjusted the temperature parameter to <= 0.1 to enhance model

determinism and minimize variation.

4. Results and Performance Analysis

4.1. Quantitative Results

Program-Based results: Table 2 provides an overview of our findings obtained through

fine-tuning and few-shot learning experiments. As observed in the table, increasing the model



Model

Task 1: Perfect-Context Task 2: Distractor-Context Task 3: Full

Program P Program P Program P

𝑃𝐴𝑛𝑠 Valid? Facts 𝑃𝐴𝑛𝑠 Valid? Facts 𝑃𝐴𝑛𝑠 Valid?

Fine-tuning

T5-small
real 0.36 0.67 0.97 0.22 0.87 0.66 0.18 0.95

synth 0.17 0.39 0.85 0.08 0.43 0.58 0.19 0.84

both 0.35 0.63 0.95 0.18 0.78 0.79 0.13 0.75

T5-base
real 0.37 0.75 0.94 0.28 0.88 0.59 0.16 0.93

synth 0.16 0.26 0.91 0.12 0.49 0.89 0.15 0.83

both 0.44 0.77 0.89 0.16 0.56 0.87 0.16 0.83

FLAN-T5-small
real 0.34 0.62 0.97 0.21 0.89 0.56 0.15 0.94

synth 0.15 0.33 0.91 0.09 0.57 0.5 0.14 0.82

both 0.39 0.64 0.94 0.18 0.71 0.88 0.18 0.78

FLAN-T5-base
real 0.49 0.86 0.94 0.24 0.85 0.62 0.16 0.93

synth 0.15 0.35 0.88 0.05 0.27 0.85 0.14 0.83

both 0.43 0.75 0.95 0.23 0.89 0.93 0.14 0.87

Few-Shot Learning

GPT-3.5-Turbo
1-shot 0.23 0.44 0.90 0.13 0.26 0.86 0.10 0.34

3-shot 0.49 0.68 0.96 0.28 0.51 0.92 0.21 0.52

5-shot 0.52 0.70 0.95 0.32 0.56 0.92 0.23 0.58

Table 2

Program-based results: T5, FLAN-T5 fine-tuned without and with CoT respectively on three distinct

datasets: real, synthetic (synth), and combined (both) datasets. For few-shot learning, GPT was utilized

exclusively on the real dataset. Evaluation criteria for Program P include whether it executes (Valid?),

and if so, whether the execution produces a correct answer (𝑃𝐴𝑛𝑠), as well as whether it utilizes the
required (gold) facts included in the input for Tasks 1 and 2. All the results reported above were obtained

from the real dataset’s test set.

size from small to base resulted in performance improvements for both the T5 and FLAN-T5

models. Notably, FLAN-T5 achieved the highest performance in task-1 with a precision score of

0.49, while in task-2, T5-base obtained the highest score (0.28) among all fine-tuning settings.

However, it is important to highlight that task 3 yielded comparatively lower results across all

fine-tuning settings. Of particular interest is the performance in the 5-shot learning scenario,

where GPT-3.5-turbo surpassed all fine-tuned models and achieved a new state-of-the-art

benchmark on all three tasks. Another noteworthy observation relates to the "Valid?" score in

Task 3 when compared to Task 1 and Task 2 in the Fine-tuning setting. In most instances, the

model tends to generate more valid programs in Task 3. This can be attributed to the model’s

greater freedom in generating its own approach, which results in more preferred ways of

generating solutions, often leading to shorter answers and reducing the likelihood of producing

invalid responses.



Model

Task 1: Perfect-Context Task 2: Distractor-Context Task 3: Full

Ans 𝐴 Ans 𝐴 Ans 𝐴
GPT-4 0.66 0.55 0.22

GPT-3.5-Turbo 0.72 0.46 0.29

FLAN-T5-XL 0.34 0.12 0.25

Table 3

Zero-Shot results: Due to the infeasibility of generating Program P, this setting was evaluated using

direct answers (Ans 𝐴) with the 𝑓𝑝_𝑠𝑐𝑜𝑟𝑒 function.

Direct-Answer-based results As previously mentioned, attempting to generate the exe-

cutable Program P without providing any examples to LLMs is not practically achievable in a

zero-shot context. Therefore, in this section, we evaluate the results based on Ans 𝐴. Table 3

showcases significant findings in this scenario, with scores of 0.72 and 0.55 for tasks 1 and 2,

respectively. These scores suggest that LLMs can offer reasonably accurate answers through

implicit reasoning when provided with useful information(either with only pertinent informa-

tion or in conjunction with distractors.). However, they struggle to clearly explain how they

arrived at their answers (see the superior results in table 3 compared to table 2). Regardless

of the output format, it becomes evident that the presence of distractor information can pose

challenges for models and adversely affect their performance. Importantly, the results indicate

that the provision of relevant information can enable models to generate estimations, whereas

the absence of such knowledge reduces LLMs to a trivial baseline level. In essence, [17] reported

a constant model that predicts a random value (a logarithmic sweep between 1010 and 10−10
),

which can achieve a result of 0.22 of Ans 𝐴.

4.2. Qualitative Results

Figure 2 illustrates various examples generated by fine-tuned and few-shot models for tasks 1

and 3. In the leftmost example in task 1, we observe that the few-shot model correctly produced

a program, while the fine-tuned model made an error concerning the selection of the appropriate

mathematical operation, mistakenly choosing multiplication instead of division to derive the

answer. Conversely, on the right side of the figure, the opposite situation occurred, where

the few-shot model erroneously included the original question in the decomposition question

and incorporated it into the calculation (Program: div(Q1, Q2, Q3)). More interesting, in task

3 where models have the freedom to forge their unique path of reasoning, leveraging their

supportive facts and calculations, the left example showcases the performance of the few-shot

model. In this task, the few-shot model interprets the question and deduces a suitable estimated

number based on its own knowledge. Notably, in this particular example, the few-shot learner

employs “liters” as a unit of measurement to provide the answer. Conversely, the fine-tuned

model, while correctly identifying the appropriate mathematical operation (division) for the two

facts, falls slightly short in its generation of numbers and decomposition questions. Finally, in

the rightmost example, where the question can be considered more challenging than the other

examples, the fine-tuned model encountered a significant issue. It duplicated its generation,

resulting in an answer that lacked reasonability, essentially attempting to mimic the structure it

learned during the fine-tuning phase. Conversely, the few-shot model demonstrated a more



INPUT:
F1: The volume of the swimming pool is

2500 cubic meters
  F2: The volume of a single water drop is

 18e-10 cubic meter
        Q: How many drops of water are needed to

fill an Olympic swimming pool?

PROGRAM:
    Q1: What is the volume of an Olympic

swimming pool?
           Q2: What is the volume of a single drop of

water?

   A1: 2500 m**3             A2: 18e-10 m**3
Q2 -> A2 | F2              Q1 -> A1 | F1

    P: Div(Q1, Q2)

Q1: What is the volume of the swimming pool? 
Q2: What is the volume of a single water drop?

 A1: 2500 m**3        A2: 18e-10 m**3 
 Q2 -> A2 | F2        Q1 -> A1 | F1

P: Mul (Q1, Q2)

Q1: What is the volume of the swimming pool?
Q2: What is the volume of a single water drop?

 A1: 2500 m**3           A2: 18e-10 m**3
 Q2 -> A2 | F2            Q1 -> A1 | F1 

 P: Div (Q1, Q2)

x

INPUT:
F1: The total heat generated by a heater

 is 9600 W
   F2: The average heat given off by a single

 person is 80 W  
Q: How many children would a couple

have to have in order to negate
the need of a heating system
in a modern average-sized

 home?

PROGRAM:
Q1: What is the total heat needed to generate

    to compensate for the need of a heating
system?

Q2: What is the average heat produced by the
presence of a single child?

A1: 9600 W                     A2: 80 W 
Q2 -> A2 | F2                  Q1 -> A1 | F1 

 P: Div (Q1, Q2)

Q1: What is the total heat generated by a heater?
 Q2: What is the average heat given off by a single

person?

 A1: 9600 W                              A2: 80 W
Q2 -> A2 | F2                      Q1 -> A1 | F1 

 P: Div (Q1, Q2)

Q1: What is the total heat generated
 by a heater? 

           Q2: What is the average heat given off by a
single person?

   Q3: How many children does a couple
have to have in order to

negate the need of a heating
 system in a modern

average-sized home? 

 A1: 9600 W            A2: 80 W   
  Q2 -> A2 | F2           Q1 -> A1 | F1 

 P: Div (Q1, Q2, Q3) x
Fine-tune Few-shot

INPUT:
Q: How many jelly beans fill a bucket?  

PROGRAM:
       F1: The average volume of a bucket is 0.67

cubic feet
    F2: The average volume of a jelly bean is

0.00012 cubic feet
         Q1: What is the average volume of a bucket?

    Q2: What is the average volume of a jelly
 bean?

 A1: 0.67 ft**3                  A2: 0.00012 ft**3 
Q2 -> A2 | F2                        Q1 -> A1 | F1

P: Div(Q1, Q2)

   F1: The volume of a bucket of jelly beans
 is 62000 cc

F2: The volume of a single jelly bean is
 62000 cm**3

      Q1: What is the volume of a single bucket of
jelly beans?

        Q2: What is the volume of a single jelly bean?

A1: 62000 cm**3                A2: 62000 cm**3
Q2 -> A2 | F2                     Q1 -> A1 | F1 

 P: Div(Q1, Q2)

F1: The volume of a bucket is 5 liters     
      F2: The volume of a jelly bean is 0.001 liters

Q1: What is the volume of a bucket?       
        Q2: What is the volume of a single jelly bean?

      A1: 5 liters              A2: 0.001 liters 
      Q2 -> A2 | F2               Q1 -> A1 | F1 

 P: Div(Q1, Q2)

x

INPUT:
Q: In an average year, how many lives
  would be saved if everyone around

 the world were required to wear a face
 mask in public?

PROGRAM:
      F1: 7e+6 lives are lost every year due to air

pollution
   F2: 41000 lives are lost every year due to

second-hand smoking
 Q1: How many lives are lost every year

 due to air pollution?
 Q2: How many lives are lost every year

 due to second-hand smoke? 

 A1: 7000000                 A2: 41000 
 Q2 -> A2 | F2                 Q1 -> A1 | F1 

 P: Add (Q1, Q2)
    F1: The average life expectancy is 72 years
    F2: The average life expectancy is 72 years

Q1: What is the average life expectancy?
Q2: What is the average life expectancy?

A1: 72 years             A2: 72 years
Q2 -> A2 | F2           Q1 -> A1 | F1 

 P: Mul (Q1, Q2)

        F1: The global population is 7.8 billion people
F2: The average mortality rate due to     

    respiratory diseases is 3%            
 F3: Wearing a face mask reduces the    
      risk of respiratory diseases by 70%
Q1: What is the global population?        

         Q2: What is the average mortality rate due to
 respiratory diseases?

        Q3: What is the reduction in risk of respiratory
diseases by wearing a face mask?

A1: 7.8e+9        A2: 0.03          A3: 0.7
Q2 -> A2 | F2     Q1 -> A1 | F1      Q3 -> A3 | F3 

 P: Mul (Mul (Q1, Q2), Mul (Q3, Q1)) x

x

Task 1 Task 3

Ground Truth

Figure 2: Sample generated examples for tasks 1 and 2 using fine-tuning and few-shot Learning. The

blue components represent answers obtained from a 5-shot GPT-3.5-turbo, and the orange components

show the answers generated by the fine-tuned FLAN-T5-base model. The ground truth for each example

is depicted in gray.

meaningful expansion of its decomposition, even though it failed to identify a correct path to

the original question, yielding an incorrect result. Based on these examples, it becomes evident

that models, especially larger ones like GPT-based models, have the capacity to retrieve relevant

information, but the relationship between such information requires further investigation.

4.3. Fine-tuning vs Few-shot Learning

Figure 3 illustrates the fine-tuned model’s behavior in generating program hop counts when

compared to the few-shot model across all tasks (denoted as Fp’s tasks). In Task 1, depicted

as the leftmost image, where all relevant facts are provided, the fine-tuned model generated

programs with hop counts that closely matched the two most frequent counts (specifically, 2-hop

and 4-hop). This suggests that fine-tuning may be influenced by an unbalanced distribution of

examples and may tend to produce the most common strategy learned during the fine-tuning

phase. Furthermore, this tendency can explain the high value of the “valid?” score (0.86) for

this model. In contrast, the few-shot model appears to mimic the ground-truth behavior more

closely. For instance, in Task 1, the few-shot model generates answers with hop counts of 1 and

5, which the fine-tuned model did not produce. Interestingly, in Task 2, where the fine-tuned

model displays a similar behavior, the few-shot learning approach generates answers with

higher hop counts (e.g., 7, 8, 9) due to the increased number of facts in this task. Furthermore,

in Task 3, where models are given the freedom to explore their own reasoning methods, both

models exhibit a tendency to generate programs with a lower number of hops. This behavior is



Figure 3: Frequency of hop counts (number of decompositions in program) in both Fine-tune and Few-

shot settings on the real test set for tasks 1 to 3. Ground-truth data is represented in green, Fine-tune

results correspond to FLAN-T5-base (real), and Few-shot results correspond to GPT-3.5-turbo (5-shot).

noteworthy and may provide insight into why these models face challenges with this task. The

inclination towards simpler answers in response to complex questions, such as in the case of

Task 3, can potentially lead to suboptimal results.

5. LLMs’ Limitations & Possible Solutions

Facts’ Units Identifiers: One common issue found in LLMs is the mishandling of FP identi-

fiers. This often results in incorrect responses, where LLMs choose mathematical operations for

facts that lack compatibility or fail to yield a correct answer. For example, in Figure 2 leftmost

hand side, a fine-tuned model selected multiplication despite the query explicitly requesting a

unitless numerical answer. A potential solution involves integrating fact’s unit checking into

the generation process, using a multi-task approach or a non-sequential procedure, as shown in

[19] for addressing equation-based questions with a tree-structured decoder.

Reasoning Deadlock (LLMs’ Predicament): A significant challenge in LLMs is their per-

formance in Task 3 especially in the Few-shot setting, where they must provide autonomous

reasoning. In this task, LLMs often struggle with their reasoning processes, leading to invalid or

incorrect answers. Common issues, including but not limited to, raising sub-questions without

answers, assigning numeric values to undecomposed questions, failing to link supportive facts

to questions, and condensing multiple mathematical relations into a single equation, such as

“Div(Q1, Mul(Q2, Q3), Q4)” which increases the likelihood of encountering impossible equations.

An effective approach to address this issue involves the deployment of LLMs within iterative

loops, as opposed to requiring them to perform reasoning in a single comprehensive round. Uti-

lizing LLMs in multiple rounds ensures the consistency and reliability of the generated answers.

This perspective can yield significant benefits, as the model becomes progressively informed

about the components it has expanded upon and those that remain unexplored, resulting in a

more coherent and accurate reasoning process.



6. Related Work

Recently, LLMs have emerged as a promising avenue for improving reasoning tasks, particularly

in the context of retrieving relevant and supportive information. For instance, [26] demonstrates

that LLMs possess the ability to discern implicit relations. They achieve this by decoupling the

process of inferring reasoning steps from their execution. This partially aligns with our findings

for task 3 (implicit reasoning) of FPs, where LLMs appear to be more successful at retrieving

information than conducting reasoning over the retrieved information. Additionally, there

have been attempts to enhance existing reasoning and QA tasks by generating intermediate

knowledge to facilitate multi-hop reasoning. In their work, [27, 28] employ LLMs to create

benchmarks, and they find that this technique can improve both the performance of models and

their interpretability. In line with these efforts, other studies [29, 30] have demonstrated that

incorporating intermediate supervisory information into the input can enhance the performance

of such models. This aligns with our findings, wherein the fine-tuning of task 1, incorporating

supportive facts concatenated with the input yielded superior results than the absence of such

knowledge. Furthermore, [31] introduced an agent communication mechanism for addressing

complex reasoning questions. In this approach, a model engages in a series of QA interactions

with agents, such as TextQA and TableQA, to arrive at the final answer. However, this approach

has the potential to harness the capabilities of LLMs as agents for solving FPs. Nevertheless,

accomplishing this without auxiliary supervision remains a challenging endeavor, necessitating

significant dataset modifications to adapt it for FPs. In addition, exploring other directions in

the context of complexity is also noteworthy. In terms of complexity, some studies, such as

[32], propose that introducing a progressive task complexity framework can yield advantages

for LLMs. [33] proposed TELeR, a general guideline for LLMs in prompt designing to perform

complex tasks. However, Fermi Problems regard this complexity as comprising three distinct

and isolated tasks. The possibility of merging these complex paradigms represents a promising

avenue for future research, which we defer to further exploration. Finally, similar to our work,

[34] also assessed the capabilities of LLMs in the domain of logical reasoning tasks. They carried

out their experiments in a few-shot learning scenario, utilizing methodologies such as prompt

engineering and CoT. However, it’s important to note that their primary focus was solely on

logical reasoning, whereas our study diverges by primarily delving into mathematical reasoning,

particularly within the context of Fermi Problems.

7. Conclusion

This paper explored the performance of LLMs in various FP scenarios, including fine-tuning,

few-shot, and zero-shot settings. Our findings indicate that despite the advancements in LLMs,

there is still a need for further enhancements to enable these models to exhibit creativity at a

level comparable to human capabilities
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