CEUR-WS.org/Vol-3552/paper-8.pdf

Using Variability4ATOSCA and OpenTOSCA Vintner
for Holistically Managing Deployment Variability
(Extended Abstract)

Miles Stotzner®, Uwe Breitenbiicher?, Robin D. Pesl® and Steffen Becker!

!Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
’Herman Hollerith Zentrum, Reutlingen University, Reutlingen, Germany
*Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

Abstract

Applications often need to be deployed in different variants due to different customer requirements.
However, since modern applications often need to be deployed using multiple deployment technologies
in combination, such as Ansible and Terraform, the deployment variability must be considered in a
holistic way. To tackle this, we previously developed Variability4TOSCA and the prototype OpenTOSCA
Vintner, which is a TOSCA preprocessing and management layer that implements Variability4TOSCA.
In this demonstration, we present a detailed case study that shows how to model a deployment using
Variability4TOSCA, how to resolve the variability using Vintner, and how the result can be deployed.

Keywords
OpenTOSCA Vintner, Variability4TOSCA, TOSCA, Variability, Unfurl, xOpera

1. Introduction

Modern applications often require a combination of multiple deployment technologies, such
as Ansible and Terraform. Moreover, customers typically have different requirements for the
deployment of applications, e.g., regarding elasticity or the number of users the deployment
has to handle. As a result, applications often need to be deployed in different variants, e.g., one
variant is a community edition with limited functionalities and a restricted number of users,
whereas another variant is the highly scalable enterprise version [1]. Since modeling each of
these variants in separate deployment models would result in a huge number of models to be
maintained, we developed Variable Deployment Models in previous work [2] and extended the
concept in our latest paper [1], which was accepted at the research track of CooplS 2023. In this
demonstration, we show practical details of the case study presented in our CooplS 2023 paper.

Proceedings of the Demonstration Track at International Conference on Cooperative Information Systems 2023, CooplS
2023, Groningen, The Netherlands, October 30 - November 3, 2023

*Corresponding author.

Q miles.stoetzner@iste.uni-stuttgart.de (M. Stotzner); uwe.breitenbuecher@reutlingen-university.de

(U. Breitenbiicher); robin.pesl@iaas.uni-stuttgart.de (R. D. Pesl); steffen.becker@iste.uni-stuttgart.de (S. Becker)
&} https://miles.stoetzner.de (M. Stdtzner)

® 0000-0003-1538-5516 (M. Stotzner); 0000-0002-8816-5541 (U. Breitenbiicher); 0000-0002-5980-9395 (R. D. Pesl);
0000-0002-4532-1460 (S. Becker)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:miles.stoetzner@iste.uni-stuttgart.de
mailto:uwe.breitenbuecher@reutlingen-university.de
mailto:robin.pesl@iaas.uni-stuttgart.de
mailto:steffen.becker@iste.uni-stuttgart.de
https://miles.stoetzner.de
https://orcid.org/0000-0003-1538-5516
https://orcid.org/0000-0002-8816-5541
https://orcid.org/0000-0002-5980-9395
https://orcid.org/0000-0002-4532-1460
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

2. Variability4TOSCA and OpenTOSCA Vintner

TOSCA [3] is a standard for modeling the deployment of applications in a portable manner.
Please note that we introduce only a subset of TOSCA. The structure of the application to be
deployed is modeled as a topology template, which consists of node templates and relationship
templates: Node templates represent components, e.g., a web server or a Java application, while
relationship templates represent relations between components, e.g., a hosting relation or a
SQL database connection. Node templates and relationship templates are semantically described
by node types and relationship types, respectively. For example, a node template can have
the node type “Java20Application”. Moreover, properties can be used to specify deployment
configurations of node templates, e.g., to specify the HTTP port of a web server to be deployed.
Finally, deployment artifacts are used to provide the implementation files of a component to
node templates, e.g., a binary or a Docker image. These TOSCA models can then be executed by
TOSCA orchestrators, such as OpenTOSCA, Unfurl, or xOpera.

While TOSCA provides an abstraction layer on top of deployment technologies, applications
often need to be deployed in different variants. Of course, for each variant, a separate TOSCA
model could be created. However, this quickly results in a huge number of different models that
have to be maintained. Therefore, we extended TOSCA to Variability4TOSCA [2] in previous
work, which was further extended in our CooplS 2023 paper [1]. Originally, Variability4TOSCA
enabled to assign variability conditions over variability inputs to node and relationship templates
that define when the associated template is present in the model [2]. For example, if a Java
application needs to be deployed on a server in the community variant but on a scalable PaaS
offering for the enterprise variant, both variants can be modeled in a single Variability4TOSCA
model by including both potential hosting components and both possible hosting relations but
with conditions assigned that specify when which node and relationship template is present.
Thus, multiple variants of a deployment can be modeled in a single Variability4TOSCA model.
However, we found many practical examples in which also properties and deployment artifacts
would benefit from having conditions assigned. For example, if an enterprise variant of the
deployment provides significantly more functionalities than the community variant, it makes
sense to use different deployment artifacts for them, i.e., different implementations. Therefore,
we added the concepts of conditional properties and conditional deployment artifacts [1]. The
entire specification of Variability4TOSCA is publicly available at GitHub'.

OpenTOSCA Vintner [1, 2] is an open-source Variability4ATOSCA preprocessor and manage-
ment layer. Vintner is capable of resolving variability, i.e., evaluating assigned conditions, and
enables generating TOSCA models that can be executed by TOSCA-compliant orchestrators,
such as Unfurl and xOpera. Vintner has over 350 tests that are executed in an automated pipeline
for every pushed commit to attest the implementation. To ensure high code quality, we conduct
code linting, code style checks, and code quality analyses. Once a week, a nightly workflow is
scheduled that runs full integration tests with Unfurl, xOpera, and Google Cloud Platform (GCP).
The source code, an extensive documentation and detailed examples? are available on GitHub?.

Thttps://vintner.opentosca.org/variability4tosca/specification/
*https://vintner.opentosca.org
*https://github.com/opentosca/opentosca-vintner

https://vintner.opentosca.org/variability4tosca/specification/
https://vintner.opentosca.org
https://github.com/opentosca/opentosca-vintner

3. Demonstration

In this demonstration, we explain the case study of our paper [1] accepted at CooplS 2023 in
more detail and show how it can be modeled technically using Variability4TOSCA. Additionally,
we demonstrate how to resolve variability using OpenTOSCA Vintner and how to finally deploy
the application. We recorded a video of this demonstration, which is publicly available®.

3.1. Case Study Description

In previous work [1], we introduced a motivating scenario of a SaaS provider that offers different
plans for managed instances of a web shop application, which consists of a shop component
and a database. The scenario can be deployed either using the free community plan or the
paid enterprise plan. In the free community plan, the shop component is deployed along with
an SQLite database on a virtual machine to minimize costs. Thereby, the shop component is
implemented by the community deployment artifact, which implements the core functionality of
the shop component and is configured to use the SQLite dialect. In the paid enterprise plan, the
shop component is deployed along with a MySQL database on GCP with auto-scaling and high
availability enabled. Thereby, the shop component is implemented by the enterprise deployment
artifact, which implements the core functionality of the shop but also additional analytical
reporting functionalities, and uses the MySQL dialect. With plain TOSCA, two different TOSCA
models would be required to describe both variants.

3.2. Using Variability4ATOSCA to Model the Case Study

We modeled our case study using Variability4TOSCA. While the complete model is available at
GitHub?, Listing 1 shows an excerpt showing the most important Variability4TOSCA concepts.

For VariabilitydTOSCA, we introduced conditional node templates [2]. In Lines 11 to 13, the
MySQL database hosted on GCP is modeled (GCP is not shown for the sake of brevity). The
specified condition means that this database is only present in the model if the enterprise plan
is selected. The condition is not directly assigned but modeled in the variability options of the
model in Line 9 and, thus, can be reused. Thereby, the variability input “plan” is accessed, which
is modeled in Lines 4 to 6 and which has the community plan selected by default.

The shop component either connects to the SQLite database or the MySQL database. There-
fore, we introduced conditional relationship templates [2]. In Lines 17 to 19, the database
connection to the SQLite database is modeled with a condition assigned in Line 18 checking if
the community plan is selected. Similarly, the database connection to the MySQL database is
modeled in Lines 20 to 22 with a condition assigned in Line 21 checking if the enterprise plan
is selected. Please note: Technically speaking, the conditions are not assigned to relationship
templates but to requirement assignments that link node templates and relationship templates,
thus, supporting conditional relationship templates that are not explicitly modeled but implicitly.

Since the shop component needs to know the dialect of the database, the “DB_DIALECT”
property of the shop component must be set either to “sqlite” or “mysql” depending on which
database is present. To model this, we introduced conditional properties [1]: In Lines 24 to 26, the

*https://youtu.be/6szIGJPuCsU

https://youtu.be/6szIGJPuCsU

1 |topology_template:

2 variability:

3 inputs:

4 plan:

5 type: string

6 default: COMMUNITY

7 expressions:

8 is_community: {equal: [{variability_input: plan}, COMMUNITY]}
9 is_enterprise: {equal: [{variability_input: plan}, ENTERPRISE]}
10 node_templates:

11 gcp_database:

12 type: gcp.database

13 conditions: {logic_expression: is_enterprise}

14 shop:

15 type: shop.app

16 requirements:

17 - database:

18 conditions: {logic_expression: is_community}
19 node: os_database

20 - database:

21 conditions: {logic_expression: is_enterprise}
22 node: gcp_database

23 properties:

24 - DB_DIALECT:

25 conditions: {node_presence: os_database}

26 value: sqlite

27 - DB_DIALECT:

28 conditions: {node_presence: gcp_database}

29 value: mysql
30 artifacts:

31 - artifact:

32 conditions: {logic_expression: is_community}
33 file: files/application.community.xz

34 - artifact:

35 conditions: {logic_expression: is_enterprise}
36 file: files/application.enterprise.zip

Listing 1: Variability4TOSCA model of the case study (shortened).

“DB_DIALECT” property of the shop gets configured to use the SQLite dialect if the condition in
Line 25 evaluates to true. This condition checks the presence of the SQLite database identified by
its name “os_database” referring to a database deployed on a virtual machine on OpenStack (OS),
which is not shown in Listing 1 for brevity. Similarly, in Line 28, a condition checks for the
presence of the MySQL database identified by “gcp_database” to configure the MySQL dialect.

Furthermore, depending on the selected plan, either the community or the enterprise de-
ployment artifact must be deployed. Therefore, as part of Variability4TOSCA, we extended
TOSCA by conditional deployment artifacts [1]. The community deployment artifact is modeled
in Lines 31 to 33 and has a condition assigned in Line 32 checking if the community plan
is selected. Similarly, the enterprise deployment artifact is modeled in Lines 34 to 36 with a
condition assigned in Line 35 that checks if the enterprise plan is selected.

$ vintner templates import --template artifacts --path opentosca-vintner/examples/unfurl-artifacts

$ vintner instances init --i ce artifacts --template artifacts

$ vintner s T i 3 i es/unfurl-artifacts/tests/enterprise/inputs.yaml
$ vintner instances deplo

Executing locally the command "cd ~/.unfurl_home &&
INFO TOSCA.MODEL The pre-parsed input successfu
[ERNENEN uNFURL A password was generated and inc
lease keep this password safe, without i be able to decrypt any encrypted files committed to the repository.
New Unfurl project created at /home/stoetzms/.opentosca_vintner/instances/artifacts/data/unfurl.yaml

Figure 1: The CLI commands of OpenTOSCA Vintner to deploy the case study.

3.3. Using OpenTOSCA Vintner to Deploy the Case Study

Finally, we deploy the enterprise plan of our case study. We already provided in our CooplS
2023 paper [1] a step-by-step guide for the deployment®. In this demonstration, we extend this
guide by a demo video? and by the logs of a complete run on our integration pipeline®.

OpenTOSCA Vintner can be installed on Windows or Linux by using the package managers
npm or Yarn. We use the command line interface of Vintner to import the Variability4TOSCA
model, as shown in the first command in Figure 1, and initialize an application instance (second
command). To resolve the variability, we provide variability inputs stating that the enterprise
plan is required (third command). Vintner automatically resolves the variability by evaluating
the conditions and derives a TOSCA-compliant model by removing elements whose conditions
do not hold. We then deploy this using the fourth command. Vintner passes the resulting
model to Unfurl, which uses Ansible and Terraform to deploy our case study as desired on GCP.
Therefore, we also need to provide inputs, such as credentials for GCP.

Acknowledgments

This publication was partially funded by the German Federal Ministry for Economic Affairs and
Climate Action (BMWK) as part of the Software-Defined Car (SofDCar) project (19521002).

References

[1] M. Stétzner, U. Breitenbiicher, R. D. Pesl, S. Becker, Managing the Variability of Deployment
Artifacts and Configurations in Deployment Models, in: Cooperative Information Systems
(CooplS 2023), Springer, Accepted.

[2] M. Stoétzner, S. Becker, U. Breitenbiicher, K. Kadlméan, F. Leymann, Modeling Different
Deployment Variants of a Composite Application in a Single Declarative Deployment
Model, Algorithms 15 (2022) 382.

[3] OASIS, TOSCA Simple Profile in YAML Version 1.3, Organization for the Advancement of
Structured Information Standards (OASIS), 2020.

Shttps://vintner.opentosca.org/variability4tosca/guides/artifacts
®https://github.com/OpenTOSCA/opentosca-vintner/actions/runs/6100939642/job/16556255878

https://bmwk.de
https://bmwk.de
https://sofdcar.de
https://vintner.opentosca.org/variability4tosca/guides/artifacts
https://github.com/OpenTOSCA/opentosca-vintner/actions/runs/6100939642/job/16556255878

	1 Introduction
	2 Variability4TOSCA and OpenTOSCA Vintner
	3 Demonstration
	3.1 Case Study Description
	3.2 Using Variability4TOSCA to Model the Case Study
	3.3 Using OpenTOSCA Vintner to Deploy the Case Study

