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Abstract

Explaining the logic of a data-driven Machine Learning (ML) model can be seen as a defeasible reasoning
process that is likely non-monotonic. This means a conclusion linked to a set of premises can be
withdrawn when new information becomes available. Argumentation Theory (AT) formalises reasoning
with a defeasible knowledge base. Abstract Argumentation Frameworks (AAF) organise conflicting
arguments in a dialogical structure, allowing formal semantics to resolve conflicts. This study proposes
an XAI method for automatically forming an AAF-based representation, using weighted attacks to model
conflictual information. The concept of inconsistency budget is employed to eliminate the weakest
attacks. Findings showed that the variation of the inconsistency budget could affect, albeit limited, the
evaluation metrics computed over the resulting rulesets.
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1. Introduction

Numerous eXplainable Al (XAI) methods generate explanations of ML models in different
formats (numerical, rules, textual, visual or mixed) [1, 2]. Rule-based explanations are considered
naturally transparent and intelligible because they are a structured, compact, and intuitive
format for reporting information [3]. Rule-based approaches usually consist of rulesets clarifying
the relationships between the inputs of a model and its outputs. However, these approaches
neither verify if rules are consistent with the background knowledge nor handle potential
inconsistencies among rules [4, 5]. Understanding the inferential process of a model can be
considered a non-monotonic reasoning process that allows the withdrawal of some conclusions,
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carried out by some rules, in light of new information [6]. Similarly, a model’s predictions
may be discarded when in conflict with the existing knowledge. This decision should follow a
process grounded on logic and evidence. Argumentation studies how conflicting arguments,
usually formalised with a first-order logical language, can be presented, supported or discarded
in a defeasible reasoning process and investigates formal approaches to evaluate the validity of
their conclusions [7]. AT provides the basis for implementing these processes computationally
[8, 9], usually based on the notion of ‘arguments’ and ‘attacks’, often treated in an abstract
way [10]. Some scholars proposed methods for automatically mining arguments and attacks
from neural networks [11, 12]. However, more work needs to be done to assign weights to
arguments or attacks extracted from a trained model in an automatic way [13]. This study
focuses on automatically forming an argumentation framework consisting of rules and attacks
among them, and it uses the concept of inconsistency budget [14] to determine a threshold
for the strength of such attacks, and it investigates the impact of its variation to the resulting
argumentation framework.

2. Related work

AT can generate effective explanations by translating a model’s inferences in an argumentation
process that shows, step by step, how it concludes sets of conflicting arguments [12, 15, 16, 17].
Formal non-monotonic logic studies formal frameworks to capture and represent defeasible
inferences. A defeasible concept consists of a set of pieces of information, called arguments,
that can be invalidated by adding new information [18]. Defeasible argumentation provides
a sound formalisation for reasoning from a defeasible knowledge base [15]. This process
frequently requires the recursive analysis of conflicting arguments in a dialectical setting to
determine which arguments should be accepted or discarded [10]. Abstract Argumentation
Theory (AAT) is the dominant paradigm, whereby arguments are abstractly considered in a
dialogical structure. The AAT-based frameworks share a defeasible knowledge base made of
arguments, a set of attacks to model conflicts between two arguments, and a formal semantic for
conflict resolution that implements non-monotonicity in practice and assigns a dialectical status
(accepted or rejected) to the arguments [16, 19]. [20, 14] assigned numeric weights to attacks,
thus introducing Weighted Argumentation Frameworks (WAF). Weights must be positive, real
values that assess the strength of the attack or, equivalently, measure the inconsistency between
two arguments. The notion of inconsistency budget indicates how much inconsistency must be
tolerated. Given an inconsistency budget 3, all the attacks whose sum of weights is less than or
equal to 5 can be disregarded. However, there are no indications of determining the value of
the inconsistency budget to form a WAF with the optimal set of attacks and arguments.

3. Design

The experiment conducted as part of this research consists of training and explaining a model
using a WAPF. It contains six phases, as described below.

Phase 1: Dataset preparation. The first step was to choose a set of five training datasets
containing multi-dimensional data handcrafted by domain experts and a categorical labelled



target variable. The experiment was conducted on the Adult, Avila, Bank, Credit Card Default
and Letter Recognition public datasets downloaded from the UCI Machine Learning Repository’.

Phase 2: Model training. A feed-forward neural network with two fully-connected hidden
layers was trained on each dataset. The networks’ hyper-parameters (optimiser, activation
function, dropout rate, number of hidden neurons, and batch size) were tuned with a grid search
to reach the highest prediction accuracy; the training process was early-stopped to prevent
overfitting.

Phase 3: Automatic formation of a knowledge base. The ML models and the datasets
were fed into a rule-extraction method, presented in [6] that generates a set of I[F' — THEN
rules using a two-step algorithm. Each rule corresponds to a ‘defeasible’ argument in the
resulting WAF. The weighted attacks were automatically extracted from the generated rules by
following the process proposed in [13]. Generally, attacks are binary relations between two
conflicting arguments and can be of different kinds [8]. This study considers only the following
two types: 1) rebutting, and 2) undercutting attacks [8].

Phase 4: Conflict evaluation. The weight of each attack measures the degree of incon-
sistency between pairs of arguments. This inconsistency is the difference in the number of
instances supporting one of the two conflictual rules and belonging to their overlapping area [13].
The concept of ‘inconsistency budget’ was used to determine how much inconsistency must be
tolerated [14]. In this study, the inconsistency budget varied between 10% and 90%.

Phase 5: Dialectical status and accrual of arguments. Given conflicting arguments, their
acceptance status must be assigned. The ranking-base categoriser semantic [21, 22, 23] assigns
a rank value to each argument by considering the number of its attacks. If there are multiple
arguments with the highest rank, they are grouped into sets according to the conclusion they
support [13]. The most credible set is the one with the highest cardinality. In the case of ties, no
conclusion can be reached. This semantics does not consider the notion of weights of attacks.

Phase 6: Explainability Objective evaluation. Eight metrics were chosen to objectively
and quantitatively measure the degree of explainability of the generated rule sets, per the evalua-
tion approach presented in [13]. Objectivity is reached by excluding any human intervention in
the evaluation process. Number of rules and average rule length assess the syntactic simplicity of
the rules and must be minimised [24]. Fraction of output classes and fraction of overlap quantify
the rules’ clarity and coherence. The former should be as low as possible to avoid conflicts,
whereas the latter must be maximised to guarantee that all the target classes are considered.
A ruleset must also be complete, correct, faithful to the model’s predictions, and robust to be a
valid representation of a model’s inferential process [25, 26, 27, 28, 24].

4. Results and conclusions

The variation in the value of the inconsistency budget has, generally speaking, a limited impact
on the values of the metrics as the results remained almost unaltered throughout the five datasets
(see Fig. 1). Completeness and fraction of classes remained constant at 100%, whereas the values
of the other metrics for some datasets vary when the inconsistency budget goes above 50%.
The inconsistency budget is the cause of these variations in the metrics as they correspond to a
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sharp increase in the number of eliminated attacks (see Fig. 2). This supports the assumption
that the number of attacks affects the robustness, correctness, fidelity and, sometimes, other
metrics calculated over the predictions made by a WAF, even if this effect is limited in some
instances. However, the limitations of this study in terms of the number and variety of models
and datasets prevent reaching definitive conclusions. Further studies with datasets containing
additional types of input data, such as texts and images, and ML models based on deeper neural
networks or other learning architectures would tell if the few variations in the metric values
are exceptions or if the inconsistency budget truly has an impact. Future work will extend this
research study by using other semantics considering the attacks’ weights.

Correctness Fidelity
03 1
07— = — = —
05 05 w
03
01 1]
10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% BO.O00% S0.00% 10.00% 20.00% 30.00% 40.00% 5000% 60.00% 70.00% E0.00% S0.00%
Robustness Fraction of overlap
15 15
1 — 1
05— — 05 \——"\.)C
0 a
10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% B0.00% S50.00% 10.00% 20.00% 3000% 40.00% 50.00% 60.00% 70.00% B0.OD% S50.00%
Number of rules Average rule length
150 15
100  —— 10
—
J
50 \ e 5
o 0
10.00% 20.00% 30.00% 4000% 5S0.00% 60.00% 70.00% B0.00% 50.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% B0.00% S0.00%
e LU e |3 e DA NI credit card default = letter recognition —— Ul —FYilg =—hank credit card default == letter recognition

Figure 1: Values of the objective metrics obtained over the three argumentation frameworks obtained
by varying the inconsistency budget.
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Figure 2: Number of eliminated attacks in the argumentation frameworks at the variation in the value
of the inconsistency budget.
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