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Abstract
Methods of the eXplainable Artificial Intelligence (XAI) gain more and more interest in the machine
learning (ML) community. For explaining neural networks, a lot of methods have been proposed,
especially in the context of computer vision (CV). These approaches aim at explaining the decisions
by means of sensitivity or importance of input features. In this paper, an application in the field of
visual inspection (VI) in the manufacturing domain is analyzed. As different XAI methods produce
interpretations of varying quality, we propose a metrics bundle to value the quality of those algorithms,
e.g. Gradient or Guided Backpropagation. The bundle includes a new approach of measuring the
correctness of the explanation and enables developers to rely on the most appropriate method for their
use cases.
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1. Introduction

As the scientific field of artificial intelligence is evolving rapidly in the past few years, concerns
about the safety, security, reliability, and resiliency of these systems are growing. There have
been increasing efforts to understand ML models in order to detect weaknesses (e.g. correlated
features) at an early stage. These methods are known collectively under the term XAI [1] and
are used to explain the decisions of an AI system.

In this paper, an application of visual inspection in the manufacturing of fuel injection
equipment (FIE) systems is in focus. We implemented a neural network which is used to detect
coating failures in FIE components. For improving the model we applied various XAI methods
producing explanations of varying quality. In order to evaluate these methods objectively,
a metric composition is proposed. It quantifies the ability of the XAI methods to accurately
describe the sensitivity of the model at the given sample as correct as possible, the ability
to compensate noise in the model function and the computational speed calculating the XAI
algorithm.
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This paper is structured as follows. In the next section we present the applied XAI methods
and the proposed metric composition. Section 3 shows the coating failure use case, the applied
XAI methods and our metrics bundle. The final section summarizes our findings and gives an
outlook of further investigations.

2. XAI methods and metrics

There are many XAI methods which are used to provide interpretations for ML models (see
[2], [3], [4] or [5]). They can be classified by various characteristics such as agnosticism or
locality [6]. Local approaches are mainly based on one example of the data set and reveal how
features contribute to the output. Global approaches on the other side take the whole data set
into account [7]. The agnosticism characteristic describes whether the approach works only
for specific ML models (model-specific) or if it can be applied to any model (model-agnostic)
[8]. In this work, we focus on model-specific methods for neural networks which provide
local interpretations, namely Gradient Backpropagation (GrB) [9], Deconvolutional Networks
(DeCon) [10] and Guided Backpropagation (GuB) [11].

The main question is how to decide which method provides good explanations [12]. Regarding
our use case explanations should be correct and not susceptible to model noise. In addition, fast
computation time is important due to real-time application in assembly lines (compare also
to [13]). An explanation is correct if it directly represents, how the model made its decision
(compare to [14] or [15]). This aspect can be determined by the sensitivity of a model which
characterizes the behavior of infinitesimal changes in the input. Gradient methods, such as the
above-mentioned ones, can be leveraged for that. In this context, the term feature sensitivity
describes the ability of an XAI method to determine the sensitivity of a model as correct as
possible. The second property is to be free of model-induced noise. The ability of a method to
reduce the influence of model-induced noise is called noise susceptibility. In the following we
provide a brief description of the metrics (see [16] for more details).

As mentioned above, Feature Sensitivity takes only the local context of the model function
into account. Let 𝑓𝑐(𝑥𝑡) be the prediction probability for the testing input 𝑥𝑡 and let 𝑥𝑝 be a
small deviation vector. We define the feature sensitivity metric 𝑀𝑠 as follows.

𝑀𝑠 =
1− 𝑓𝑐(𝑥𝑝)

𝑓𝑐(𝑥𝑡)

𝛼

The deviation vector 𝑥𝑝 is based on the attributions of 𝑥𝑡 . The attributions 𝐴 are a general
measure of the contribution of a single input value to the predication (compare to [17]). The
deviation vector 𝑥𝑝 is now chosen sample wise as percentage 𝛼 using the 𝐿2 norm and is defined
as follows:

𝑥𝑝 = 𝑥𝑡 −
𝛼 · ||𝑥𝑡||2
||𝐴||2

·𝐴

There are many methods to calculate a sensitivity score (see [18]). In our approach we use
the gradient-based attributions 𝐴 to derive 𝑥𝑝 and scale 𝑀𝑠 to a range from −1 to 1. For
this purpose the score is divided by the score of the exact gradient calculated using GrB. This



automatically gives GrB has a score of 1 as the ideal algorithm. To get rid of the influence of
arbitrarily chosen samples, the score can be calculated over as many samples as possible. For
any method the scores of all samples form a stochastic distribution. As a single score the mean
of all sample scores is used.

To find a metric to account for Noise Susceptibility, a definition of noise is needed. For
any model trained on a finite amount of samples, the model function can only classify these
samples exactly. The difference between an imaginary ideal model function trained on infinite
samples and the present model function can be considered as an error. For this metric the error is
assumed to be dominated by high frequency noise terms. For any XAI method, the attributions
are as well assumed to consist of the ideal part 𝐴𝑖𝑑𝑒𝑎𝑙 and the error 𝐴𝜖 introduced by the noise
𝐴 = 𝐴𝑖𝑑𝑒𝑎𝑙 +𝐴𝜖. According to Balduzzi et al. [19], the gradient of the model function is even
more susceptible to noise than the model function itself. The noise of the gradients is usually
high frequency, especially for deep networks. The attribution error 𝐴𝜖 is therefore also expected
to be large. This contrasts to the low frequent ideal attributions 𝐴𝑖𝑑𝑒𝑎𝑙. By applying a low pass
image filter on the attribution map 𝐴 the ideal attributions 𝐴𝑖𝑑𝑒𝑎𝑙 are reconstructed. For the
present application a Gaussian filter is used. The attribution error 𝐴𝜖 is assumed to be low for
a method that is not susceptible to model noise and high for a method vulnerable to model
induced noise. To quantitatively evaluate the model induced noise the structural similarity
(SSIM) [20] is used to compare the attribution mask 𝐴 before and after filtering. For the SSIM
two images 𝑥 and 𝑦 are compared based on their difference in luminescence 𝑙(𝑥, 𝑦), contrast
𝑐(𝑥, 𝑦) and structure 𝑠(𝑥, 𝑦). The SSIM should yield a maximum score of 1 if (and only if) the
attributions are identical. The SSIM is calculated window-wise for a number of local windows
of the images. The final noise score 𝑀𝑁 uses the mean SSIM over all windows.

The metric Computational Speed 𝑀𝐶 is determined by the computed samples per second
and is normalized by means of the fastest algorithm. Hence, 𝑀𝐶 ranges between 0 and 1
whereas value 1 identifies the fastest algorithm.

3. Applying XAI Methods and Metrics

Visual inspection is an important application in the manufacturing domain. Pictures are taken in
certain production steps in order to detect defective parts. In our use case we need to recognize
coating failures on a cylindrical part. The ring showing the coating is extracted from the raw
image, unrolled, straightened and stacked in lines showing 45∘ each. The model aims to identify
not only good parts (OK), but also to distinguish between four different failure types (BLACK,
DAMAGE, SCRATCH and SILVER).

The used ML model applies a modified ResNet50 architecture (see [21]). The original ResNet50
network is scaled up by a factor of 4 in width and height, respectively. Instead of 224× 224× 3
the network uses input images of size 896× 896× 3. All convolutional layers are also scaled
up by the same factor. To be able to use the original fully connected layers at the end of the
network without re-scaling, an average pooling layer is introduced.

The samples for bad classes are chosen equally. Here, the scores are calculated per class and
for every considered XAI method an average is build. For the feature sensitivity the deviation
percentage 𝛼 is chosen empirically as 0.00001. The result can be seen in the following table.



Method 𝑀𝑆 𝑀𝑁 𝑀𝐶

Gradient Backpropagation (GrB) 1.000 0.668 1.000
Deconvolutional Network (DeCon) -0.050 0.358 0.586
Guided Backpropagation (GuB) 0.000 0.880 0.549

The generated sensitivity show that DeCon and GuB loose quite a lot of their correctness
when identifying sensitive features. In addition, DeCon shows bad results regarding noise and
speed and thus, it could be excluded for the coating failure use case. Regarding GrB and GuB
a clear preference could not be derived. GrB is the fastest algorithm but GuB shows a better
performance with respect to noise. The figure below illustrates our findings. The most left
image represents a faulty case (FC) containing three problematic areas. The figure reveals that
DeCon provides bad results for this use case. GrB and GuB on the contrary highlight these
areas correctly.

(a) FC (b) GrB (c) DeCon (d) GuB

4. Conclusion

GrB and GuB are useful for interpreting the coating failure use case. All anomalies get high-
lighted. DeCon does not work properly for this use case and should not be used here.

However, the sensitivity score can only be applied to gradient-based explanation methods.
To include other XAI methods such as LRP [22], DeepLift [23], GradCam [24] or GradCam++
[25] which do not compute sensitivity scores but rather relevance scores, a clearer definition of
correctness is needed with respect to all applicable XAI methods. Simply describing correctness
as the ability to choose important attributions is not sufficient. Possibly, a combination of
existing and new metrics could lead to clearer results. Also more metrics are needed to account
for problems of different methods. For example, Guided Backpropagation is invariant to model
randomization (see Adebayo et al. [26]).
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