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Abstract
Explainable Reinforcement Learning (xRL) faces challenges in debugging and interpreting Deep Rein-
forcement Learning (DRL) models. A lack of understanding for internal components like Experience
Replay, which samples and stores data from the environment, risks burdening resources. This paper
presents an xRL-based Deep Q-Learning (DQL) system using SHAP (SHapley Additive exPlanations) to
explain input feature contributions. Data is sampled from Experience Replay, creating SHAP Heatmaps to
understand how it influences the neural network Q-value approximator’s actions. The xRL-based system
aids in determining the smallest Experience Replay size for 23 simulations of varying complexities. It
contributes an xRL optimization method, alongside traditional approaches, for tuning the Experience
Replay size hyperparameter. This visual and creative approach achieves over 40% reduction in Experi-
ence Replay size for 18 of the 23 tested simulations, smaller than the commonly used sizes of 1 million
transitions or 90% of total environment transitions.
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1. Introduction

Deep Reinforcement Learning (DRL) can optimise complex control and decision-making pro-
cesses. However, it lacks explainability, limiting its widespread use in regulated environments
like manufacturing, finance and medicine, where rising cost, safety and ethical concerns exist.
Experience Replay is an internal DRL sampling technique, inspired by neurons during sleep
[1], to break data correlation and stabilise deep off policy learning. Although Explainable
Reinforcement Learning (XRL) is emerging, Deep Q-Learning (DQL) is challenging to debug
and interpret with inefficiencies that burden resources, cause unnecessary energy consumption
and carbon emissions. SHapley Additive exPlanations (SHAP values) are a popular tool to
explain model predictions. This paper aims to create an XRL-based system that produces SHAP
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heat-maps to explain how input samples from Experience Replay affect the actions taken by a
DQL Agent. These SHAP heat-maps are further used as an additional tool to investigate the
impact of reducing Experience Replay on an Agent’s performance in simulations of varying
complexity.

2. Related work

[2, 3] introduced DQL, using the Bellman Equation [4] to optimise the control process in complex
environments. The agent uses equation 1 through trial and error to learn the quality of taking
an action in a given Markov Decision making Process (MDP) state to find an optimal policy
that maximises its total reward.

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎) + 𝛼(𝑅(𝑠, 𝑎)𝛾𝑀𝑎𝑥𝑎𝑄(𝑠′, 𝑎′)−𝑄𝑡−1(𝑆,𝐴)) (1)

Simulated environments, mimic real-world problems and generate valuable training data in a
secure manner [5]. Evaluation of performance is comparing the Agent to a handcrafted, human
expert, or random policy. Approximating Q-values with a neural network in large and complex
states destabilises learning, so Mnih used Experience Replay [6] to sample data and store from
the environment for the approximator to later reuse. However, drawbacks included correlated
samples, limited capacity causing an agent to forget information, outdated samples from
non-stationery environments and overfitting from samples memorised. Prioritized Experience
Replay (PER) [7] and Attention based Experience Replay [8] attemped to solve these.
Understanding Experience replay is crucial for efficiency. Deepmind’s Agent57 [9] which
beat human champions in Atari contained 80 billion frames of experience to achieve optimal
performance. Consequently many consider Experience Replay flawed with most wanting it
replaced. Asynchronous Actor-Critic (A3C) by [10] is a popular alternative. It trains multiple
agents in parallel, to explore the environment, and update a shared network, requiring more
resources but converging faster. Experience replay, although slower, is more memory efficient
only requiring stored transitions and not multiple copies of the network. [11] highlighted that
the size of Experience Replay 𝑀 is a neglected hyperparameter and if large hurts performance,
but [12] stated to keep it high using 90% of total environment transition steps as a rule of
thumb. [13] stated most default to Mnih’s 1M transitions for the capacity size. Experiments in
Atari showed increasing Experience Replay from 1 million to 10 million transitions while also
decreasing the age of the oldest Policy did improve performance. However, any increase in size
of Experience Replay further burdens resources.

The minimum experience replay size allowed is not known but explainability can help
find it. [14, 15, 16]. Custom explainers exist [17, 18] to understand simulation events but not
Experience Replay. Within XRL [19, 20, 21], SHAP (SHapley Additive exPlanations)[22] is a
popular choice to explain black-box models [23, 24, 25]. It assign feature importance values
for a particular prediction. RL-SHAP diagram explains environment features effect on action
selection. Similarly Experience Replay is partitioned based on Rule Density into clusters
and labelled to select environment features[26]. This paper proposes the use of SHAP for
Experience Replay aiding replay capacity size reduction.



3. Design

Figure 1: DCQL Architecture: 1) Agent takes action. 2) Environment returns reward + next state (10
processed images). 3) Experiences are sampled. 4) Neural network outputs q-values for Softmax. 5)
Unseen test set created. 6) model extracted. 7) Deep Explainer creates interpretable SHAP values.

A DQL Agent, either neural network (layers: observations input, 30 neuron hidden, q value
output) or convolutional (Figure 1, layers: 80x80px grayscale input, 32 features 5x5px, 32 features
3x3px, 64 features 2x2px, flattening layer, stride: 2, 30 neuron hidden, q value output), is placed
in 23 simulations, using Adam’s optimiser and SoftMax Policy. 128 samples of previous states,
next states, actions and rewards are stored in Experience Replay. Previous and next states
contain 10 images each if the convolutional Agent is used. Regardless of Agent chosen, 10%
is set aside for SHAP Deep Explainer. These samples are not seen by the trained agent model.
Hyperparameters ( 𝛾 = 0.9, 𝛼 = 0.001, 𝑇 = 100%) held constant, the Experience Replay
capacity was reduced: 1M to 500k, 100k, 50k, 10k, 5k, 1k, and 500 transitions respectively. The
alternative hypothesis tests for a difference (p < 0.05) in reward scores when experience replay
capacity is reduced. Agent is initialised with an Experience Replay set to 1 million transitions,
then three steps occur. Firstly the environment simulates for 200 episodes. Secondly a reward
is stored and graphed to learn how the Agent performed. Finally, either a SHAP summary
plot for state vector data or a SHAP heat map is generated for state image data to explain
from Experience Replay why the Agent took an action in a given state. These are repeated
until the size reaches 500 transitions. When all simulations are complete a density plot of
Experience Replay sizes is created. Shapiro-Wilk test is used to confirm if ANOVA and Tukey
or Kruskal-Wallis test with Dunn’s post hoc test can be used.



4. Results and discussion

Table 1
Minimum Experience Replay Size Allowed Table

Sim Type Sim Name State Input Discrete
Output

Model Type Preprocessed In-
put

Default Cap Min Cap % Reduc-
tion

Atari asterix (210, 160, 3) 9 CNN DQL (80,80,1) 1000000 500 99.95%
Atari james bond (210, 160, 3) 18 CNN DQL (80,80,1) 1000000 500 99.95%
Atari asteroids (210, 160, 3) 14 CNN DQL (80,80,1) 1000000 1000 99.90%
Atari breakout (210, 160, 3) 4 CNN DQL (80,80,1) 1000000 1000 99.90%
Atari space invaders (210, 160, 3) 6 CNN DQL (80,80,1) 1000000 1000 99.9%
Atari wizard of wor (210, 160, 3) 10 CNN DQL (80,80,1) 1000000 1000 99.9%
Atari air raid (250, 160, 3) 6 CNN DQL (80,80,1) 1000000 5000 99.50%
Atari pong (210, 160, 3) 6 CNN DQL (80,80,1) 1000000 5000 99.5%
Atari ms pack-man (210, 160, 3) 9 CNN DQL (80,80,1) 1000000 10000 99%
Atari private eye (210, 160, 3) 18 CNN DQL (80,80,1) 1000000 50000 95%
Atari bowling (210, 160, 3) 6 CNN DQL (80,80,1) 1000000 100000 90%
Atari QBert (210, 160, 3) 6 CNN DQL (80,80,1) 1000000 100000 90%
Atari demon attack (210, 160, 3) 6 CNN DQL (80,80,1) 1000000 500000 50%
Atari gravitar (210, 160, 3) 18 CNN DQL (80,80,1) 1000000 500000 50%
Atari yars’s revenge (210, 160, 3) 18 CNN DQL (80,80,1) 1000000 500000 50%
Atari zaxxon (210, 160, 3) 18 CNN DQL (80,80,1) 1000000 500000 50%
custom rat cocaine addic-

tion
(2,) 3 NN DQL N/A 1000000 500000 50%

box2d lunar lander (8,) 4 NN DQL N/A 1000 500 50%
Atari freeway (210, 160, 3) 3 CNN DQL (80,80,1) 1000000 1000000 0%
Atari seaquest (210, 160, 3) 18 CNN DQL (80,80,1) 1000000 1000000 0%
classic cartpole (4,) 2 NN DQL N/A 1000 1000 0%
Atari montezuma’s re-

venge
(210, 160, 3) 18 CNN DQL (80,80,1) N/A N/A N/A

Atari venture (210, 160, 3) 18 CNN DQL (80,80,1) N/A N/A N/A

Figure 2: Space Invaders 1,000 experiences Heatmap, shows bright & dark Q-value importance. We see
the agent has learned enemy location & movement. Q-values: Right-left highest, Go-Left lowest.

DQL or DCQL Agents was placed in 23 simulations. Table 1 shows the smallest Experience
Replay size allowed. Shap heatmaps is used to explain why. A Kruskal-Wallis test and Dunn’s
post hoc test is used due to reward data failing Shapiro-Wilk test of normality. The null
hypothesis is rejected. There is a difference (p < 0.05) in reward scores when Experience Replay
is reduced. It is found that in 18 of 23 simulations the Agent is tested in, Experience Replay can
be reduced over 40% smaller than the default 1 million transitions or the 90% rule-of-thumb for
total transitions. Some simulations proved too challenging to get a suitable result (Montezuma’s
Revenge and Venture) or had to be kept high (Freeway, Seaquest and CartPole) in order to
receive the highest reward. In future work Rule Density [26] will be considered to maintain
experience quality as capacity is reduced. In conclusion, the proposed XRL-based system using
SHAP values for Experience Replay can provide a more transparent, interpretable explanation
of actions taken by a DQL agent, which can aid in optimisation for a better use of resources.
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