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Abstract
Local Interpretable Model-Agnostic Explanations (LIME) are a well-known approach to provide local
interpretability to Machine Learning models. LIME uses an exponential smoothing kernel based on the
kernel width value, which defines the width of the local neighbourhood. In this paper, we study the
influence of the distances for these local explanations, and we explore the choice of kernel width to
guarantee a fair performance comparison between the distances.
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1. Introduction

The gap between the recent development of AI models and their social use has led the scientific
community to develop a new research area called Explainable Artificial Intelligence (XAI)
(see, e.g., [1, 2, 3, 4, 5, 6] for some comprehensive surveys). According to the literature, XAI
must contain a set of techniques to provide clear, intelligible, trustworthy, and interpretable
explanations of the decisions, predictions, and reasoning processes made by AI models. From a
technical point of view, there are many criteria for building a taxonomy of XAI methods [7]:
Model agnostic vs. model specific; intrinsic vs. post hoc; etc. One of them considers whether
the explanation is local or global [8].

One of the key points in these local explanations is the meaning of local. In this way, the
sense of proximity among points in the training dataset of the model plays a central role in
local explanations, and hence the choice of the distance considered is crucial in order to find
plausible explanations. In this paper, we consider one of the most widely used XAI methods,
the well-known method LIME [9] and we consider the influence of considering several metrics
on it and how the stability and adherence of the model [10] perform when the dimension of the
dataset grows and study the definition of a fair parameter (the kernel width) for a trustworthy
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performance.

2. Related work

LIME is a XAI model to provide interpretability for individual instances1. Each local explanation
is a set of feature-value pairs that determine which features provide a greater contribution to the
prediction, together with a numeric value that quantifies this contribution. In the literature, we
can find several studies of LIME focussing on different improvements on the original algorithm as
[11, 12, 13, 14, 15, 16, 10]. LIME algorithm tries to maximize the local fidelity of the explanations
approximating the model to be explained 𝑀 by a simpler model while having a low complexity
(in terms of human readability) of the interpretable model. In LIME, by default the simpler
model is a Ridge linear model. The input of LIME is a model 𝑀 and an individual data sample
𝑥 to be explained. To generate a dataset to train the Ridge linear model, firstly, a interpretable
representation of the dataset is computed. The dataset is then discretized (by default in quartiles)
and samples 𝑧 around the binary representation of 𝑥 are drawn weighted by the proximity
measure between an instance 𝑧 and 𝑥 in the binary representation. Generally, the proximity
measure is defined as an exponential kernel Π𝑥(𝑧) = 𝑒𝑥𝑝(−𝐷(𝑥, 𝑧)2/𝜏2) where 𝜏 is the kernel
width and 𝐷 the chosen distance. Let us remark that the kernel width defines the locality of
the model. Finally, a Ridge regression model is trained on the generated perturbed data. To
quantify the stability of the LIME explanations, in [17], the authors proposed the CSI metric,
which measures the similarity between the coefficients in different repetitions of the LIME
algorithm. Roughly speaking, for each feature, using a Gaussian distribution of the coefficients,
95% confidence intervals are computed. Then, the intersection of the confidence intervals is
binary encoded and the value is normalized. Finally, the mean of all the values obtained is
computed as a measure of concordance of the specific feature’s coefficients among the different
LIME repetitions.

3. Relation between metrics

The reliability of the Euclidean distance to capture the intuition of proximity in high-dimensional
metrics spaces has been widely studied. For example, in [18] the authors explain how us-
ing traditional metrics 𝐿𝑘(𝑥, 𝑦) =

∑︀𝑛
𝑖=1 |𝑥𝑘𝑖 − 𝑦𝑘𝑖 |1/𝑘 in high-dimensionality problems leads

to a loss of the notion of proximity. This is a major concern in problems where proximity
plays an important role. LIME uses a metric to measure the distance between binary vectors
whose components are 0’s and 1’s. In this context, the Hamming distance can be expressed as
Hamming(𝑥, 𝑦) =

∑︀𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖| which is exactly 𝐿1. In the case of binary vectors, the only

difference between applying the Hamming or Euclidean distance is the square root, given that
12 = 1 and 02 = 0. Furthermore, the maximum in the Hamming distance between two binary
sequences in R𝑛 is 𝑛, but the maximum distance between two binary sequences in R𝑛 in the
Euclidean distance is

√
𝑛, as one is the square root of the other. In the LIME implementation, the

default value given to the kernel width is 0.75 ·
√
𝑛, which can be seen as 75% of the maximum

1Along this paper, we refer exclusively to explanations of tabular data.



Figure 1: On the left, the Euclidean and the Manhattan distance CSI values are shown when using the
predefined kernel width. On the right, both distance CSI values are shown when using the predefined
kernel for the Euclidean distance and the proposed one for the Manhattan distance. The experiment
was repeated 10 times and the results are the mean values.

value given by Euclidean distances over an n-dimensional space. Using the same idea, we define
a custom kernel width for the Manhattan distance as 0.75 · 𝑛. Analogously, a kernel width
comparable to the Euclidean metric performance (using the custom definition) for each 𝐿𝑘 is
given by 𝑘𝑤 = 0.75 · 𝑛1/𝑘.

4. Experimentation

4.1. Kernel-width selection towards a fair comparison

In this experiment, we study the appropriate kernel width to be used depending on the metric.
Firstly, different synthetic data sets composed of 500 samples of different dimensions (from
10 to 40 with a step of 10) were generated. Secondly, for each dimension, a Random Forest
classifier was trained using 90% of the dataset as a training set. Thirdly, LIME was used to
explain the remaining 10% of the data set (used as a test set) using all the attributes available.
The 𝐶𝑆𝐼 metric is computed for the coefficient stability [10]. The last step was computed
for different choices of the kernel width. Specifically, for the Euclidean distance, we used the
75% of the maximum possible distance, and for the Manhattan distance, both the 75% of the
maximum possible distance and the 75% of the square root of the maximum possible distance
were applied. In Figure 1, the mean values of the CSI coefficients are provided for the different
dimensions.

4.2. Comparison between the two distances

In this second experiment, we compare the explanations obtained using LIME using both
distances. The explanations provided by LIME are an ordered list of the attributes based on its
contribution. The dataset used is the UCI ML Breast Cancer Wisconsing (Diagnostic) dataset
composed of 569 samples of dimension 30 for binary classification. The dataset was split into
training and test set in a proportion 90− 10 and a Random Forest classifier was trained. Then,
explanations were computed for the remaining 10%, obtaining a vector of the 30 attributes
ordered by importance. This was done using the predefined kernel width for the Euclidean
distance, and both the predefined and the proposed kernel width for the Hamming distance.
The vectors were compared as follows: Given two vectors 𝑥, 𝑦 with length the number of



CSI
Distance kernel width Mean Variance
Euclidean 0.75×

√
𝑛 99.39 0.1

Manhattan 0.75×
√
𝑛 9.48 8.53

Manhattan 0.75 · 𝑛 99.35 0.12

kernel width Max Mean Min
0.75 ·

√
𝑛 23.93 8.69 0.28

0.75 · 𝑛 1.37 0.19 0

Table 1
On the left, CSI values for the different choices of distances and kernel width. Higher values of CSI
mean better stability. On the right, similarity measure between the order of importance of the attributes
given by both distances for the two choices of the kernel width. The results depicted in the table are the
mean values for the test set.

features in the dataset, for each feature we compute the difference between the coordinates
of the feature in 𝑥 and 𝑦. Finally, the mean of these differences is computed. This provides a
similarity measure in the order of importance of the attributes. In Table 1 (left), the coefficients
CSI are shown, depicting the stability reached by LIME using the different kernel widths. Let us
remark that the conclusions of Experiment 1 are also achieved. We can see that the high values
are reached for the Euclidean distance using the predefined kernel width and the Manhattan
distance using the proposed one. In Table 1 (right), the similarity measure between the order of
the features computed using LIME is provided. Therefore, it is shown that both distances have
similar performance, providing similar relevance of the same features.

5. Conclusions

In the foundations of Machine Learning, it is well-known that the Euclidean distance loses the
proximity notion for high dimensions, while the Hamming distance performs better in that
context. However, this fact is not considered in the standard use of LIME and hence, undesirable
explanations can be obtained. In this paper, we have studied the relationship between the
Euclidean and the Hamming distances in this context, concluding its similarity. Experimentally,
we have shown that the stability of the LIME algorithm converges and that the resultant order
of importance of the features is similar when using the Euclidean and the Hamming distance if
the kernel width is adapted to the chosen distance.

Acknowledgments

Partially supported by REXASI-PRO H-EU project, call HORIZON-CL4-2021-HUMAN-01-01,
Grant agreement no. 101070028, and national projects PID2019-107339GB-I00 and TED2021-
129438B-I00 funded by MCIN/AEI/ 10.13039/501100011033 and NextGenerationEU/PRTR. The
content reflects the views of the authors only.

https://rexasi-pro.spindoxlabs.com/


References

[1] A. Adadi, M. Berrada, Peeking inside the black-box: A survey on explainable artificial intel-
ligence (xai), IEEE Access 6 (2018) 52138–52160. doi:10.1109/ACCESS.2018.2870052.

[2] A. B. Arrieta, N. D. Rodríguez, J. D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-
Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial intelligence
(XAI): concepts, taxonomies, opportunities and challenges toward responsible AI, Inf.
Fusion 58 (2020) 82–115. URL: https://doi.org/10.1016/j.inffus.2019.12.012. doi:10.1016/j.
inffus.2019.12.012.

[3] Y.-N. Chuang, G. Wang, F. Yang, Z. Liu, X. Cai, M. Du, X. Hu, Efficient XAI techniques: A
taxonomic survey, 2023. doi:10.48550/ARXIV.2302.03225.

[4] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of
methods for explaining black box models, ACM Comput. Surv. 51 (2019) 93:1–93:42. URL:
https://doi.org/10.1145/3236009. doi:10.1145/3236009.

[5] A. Jacovi, Trends in explainable AI (XAI) literature, 2023. doi:10.48550/ARXIV.2301.
05433.

[6] W. Saeed, C. Omlin, Explainable AI (XAI): A systematic meta-survey of current challenges
and future opportunities, Knowledge-Based Systems 263 (2023) 110273. doi:10.1016/j.
knosys.2023.110273.

[7] C. Molnar, Interpretable Machine Learning, 2 ed., Independently published, 2022. URL:
https://christophm.github.io/interpretable-ml-book, accesed on 2023-04-14.

[8] M. Du, N. Liu, X. Hu, Techniques for interpretable machine learning, 2018. doi:10.48550/
ARXIV.1808.00033.

[9] M. T. Ribeiro, S. Singh, C. Guestrin, "Why should I trust you?": Explaining the predictions
of any classifier, 2016. doi:10.48550/ARXIV.1602.04938.

[10] G. Visani, E. Bagli, F. Chesani, OptiLIME: Optimized LIME explanations for diagnostic
computer algorithms, CoRR abs/2006.05714 (2020). URL: https://arxiv.org/abs/2006.05714.
arXiv:2006.05714.

[11] M. R. Zafar, N. M. Khan, Dlime: A deterministic local interpretable model-agnostic ex-
planations approach for computer-aided diagnosis systems, 2019. doi:10.48550/ARXIV.
1906.10263.

[12] S. M. Shankaranarayana, D. Runje, Alime: Autoencoder based approach for local inter-
pretability, 2019. doi:10.48550/ARXIV.1909.02437.

[13] S. Shi, Y. Du, W. Fan, An extension of lime with improvement of interpretability and
fidelity, 2020. doi:10.48550/ARXIV.2004.12277.

[14] S. Mishra, B. L. Sturm, S. Dixon, Local interpretable model-agnostic explanations for music
content analysis, in: S. J. Cunningham, Z. Duan, X. Hu, D. Turnbull (Eds.), Proceedings of
the 18th International Society for Music Information Retrieval Conference, ISMIR 2017,
Suzhou, China, October 23-27, 2017, 2017, pp. 537–543. URL: https://ismir2017.smcnus.org/
wp-content/uploads/2017/10/216_Paper.pdf.

[15] M. S. Kovalev, L. V. Utkin, E. M. Kasimov, Survlime: A method for explaining machine
learning survival models, Knowledge-Based Systems 203 (2020) 106164. doi:10.1016/j.
knosys.2020.106164.

[16] D. Garreau, U. von Luxburg, Looking deeper into tabular lime, 2020. doi:10.48550/ARXIV.

http://dx.doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.48550/ARXIV.2302.03225
https://doi.org/10.1145/3236009
http://dx.doi.org/10.1145/3236009
http://dx.doi.org/10.48550/ARXIV.2301.05433
http://dx.doi.org/10.48550/ARXIV.2301.05433
http://dx.doi.org/10.1016/j.knosys.2023.110273
http://dx.doi.org/10.1016/j.knosys.2023.110273
https://christophm.github.io/interpretable-ml-book
http://dx.doi.org/10.48550/ARXIV.1808.00033
http://dx.doi.org/10.48550/ARXIV.1808.00033
http://dx.doi.org/10.48550/ARXIV.1602.04938
https://arxiv.org/abs/2006.05714
http://arxiv.org/abs/2006.05714
http://dx.doi.org/10.48550/ARXIV.1906.10263
http://dx.doi.org/10.48550/ARXIV.1906.10263
http://dx.doi.org/10.48550/ARXIV.1909.02437
http://dx.doi.org/10.48550/ARXIV.2004.12277
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/216_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/216_Paper.pdf
http://dx.doi.org/10.1016/j.knosys.2020.106164
http://dx.doi.org/10.1016/j.knosys.2020.106164
http://dx.doi.org/10.48550/ARXIV.2008.11092
http://dx.doi.org/10.48550/ARXIV.2008.11092


2008.11092.
[17] G. Visani, E. Bagli, F. Chesani, A. Poluzzi, D. Capuzzo, Statistical stability indices for LIME:

Obtaining reliable explanations for machine learning models, Journal of the Operational
Research Society 73 (2021) 91–101. URL: https://doi.org/10.1080%2F01605682.2020.1865846.
doi:10.1080/01605682.2020.1865846.

[18] C. C. Aggarwal, A. Hinneburg, D. A. Keim, On the surprising behavior of distance metrics
in high dimensional space, in: J. Van den Bussche, V. Vianu (Eds.), Database Theory —
ICDT 2001, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 420–434.

http://dx.doi.org/10.48550/ARXIV.2008.11092
http://dx.doi.org/10.48550/ARXIV.2008.11092
https://doi.org/10.1080%2F01605682.2020.1865846
http://dx.doi.org/10.1080/01605682.2020.1865846

	1 Introduction
	2 Related work
	3 Relation between metrics
	4 Experimentation
	4.1 Kernel-width selection towards a fair comparison
	4.2 Comparison between the two distances

	5 Conclusions

