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Abstract
The proliferation of Artificial Intelligence in various domains has led to a growing demand for ex-
plainability. However, most modern Artificial Intelligence models are complex and opaque, making it
challenging to interpret their decision-making process. The lack of transparency and interpretability of
AI systems can pose significant risks, such as erroneous decisions, biased outcomes, and ethical concerns.
To address these issues, various proposals have been put forth to generate explanations for black box
models, both agnostic and model-dependent, and to evaluate these explanations using qualitative or
quantitative measures. While these proposals have been useful in generating and evaluating explanations
for AI models, none has focused on improving model quality using these evaluations. Regularization
techniques, employed to introduce a quality bias into a solution, involve incorporating an additional
term into the loss function to ensure that the model satisfies certain quality criteria, such as augmenting
explainability. In this paper, the LIFR regularization term to improve the quality of AI models with
respect to explainability is presented. We demonstrate the effectiveness of our approach on a benchmark
dataset and discuss its potential applications.
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1. Introduction

The proliferation of Artificial Intelligence(AI) in various domains has led to a growing demand
for explainability, where users need to understand the reasoning behind AI systems decisions[1].
However, most modern AI models are complex and opaque, making it challenging to interpret
their decision-making process. The lack of interpretability of AI systems can pose significant
risks, such as erroneous decisions, biased outcomes and ethical concerns. To address these issues,
various proposals have been put forth to generate explanations for black box models, both
agnostic and model-dependent[2, 3], and to evaluate these explanations using qualitative[4]
or quantitative measures[5]. While these proposals have been useful in generating and evalu-
ating explanations for AI models, none has focused on improving model quality using these
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evaluations. Regularization techniques are commonly used to bias a solution by involving an
additional term to the objective function that ensure the model to fullfill some quality criterion
such as increasing explainability. In this work, the Low-Impact Feature Reduction(LIFR) regu-
larization term to improve the quality of AI models with respect to explainability is presented.
We demonstrate the effectiveness of our approach and discuss its potential applications.

2. Related work

Explainable Artificial Intelligence (XAI) has gained significant attention in recent years, with
researchers striving to bring transparency and interpretability to complex AI models. The field
has witnessed remarkable progress in generating explanations that help users understand the
decision-making process of black box models.

One of the most widely used approaches to generate explanations are LLEs, which generates
an importance matrix in which each term of the matrix is associated to the influence of feature i
for output j. Formally, let 𝑓 : 𝒳 → 𝒴 be a model to be explained, where 𝒳 ⊂ R𝑛 is the feature
space and 𝒴 ⊂ R𝑚 is the output space. Then, an explanation is a matrix 𝐴 ∈ R𝑛𝑚 where each
𝑎𝑖,𝑗 is the importance of the feature 𝑖 for the output 𝑗.

There has been developed different criteria to be able to compare between explanations.
The conciseness metric, which is developed as a metric by REVEL[5], enables to differentiate
between the most important features from the less important ones. The conciseness of an
explanation 𝐴 is defined as 𝑐𝑜𝑛𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴) = 1

𝑚−1

∑︀𝑚
𝑖=1 1 − |𝑣𝑖|1, where 𝑣𝑖 is the column of

the explanation, that is, the vector of all the importances of the feature 𝑖. However, those quality
criteria has not been used to impose a bias on training to improve intelligence models.

On the other hand, regularization is a widely used method to impose quality criteria on differ-
ent models in machine learning[6]. Most machine learning libraries already has regularization
terms implemented as default, such as weight decay.[7]. These penalties are generally added to
the cost function as a term that does not depend on the output space as it follows:

𝑐𝑜𝑠𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓Θ, 𝑋, 𝑌 ) = 𝑙𝑜𝑠𝑠(𝑓𝜃(𝑋), 𝑌 ) + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(Θ, 𝑋),

3. Low-Impact Feature Reduction(LIFR) regularization term.

In this work, we use the type of explanations based on importance matrix. We use the concept
of derivative as the importance matrix because locally the derivative of a feature with respect
to an output is the influence of this feature for this output. So, for an example 𝑥, we consider
that the explanation of 𝑓 for this example will be the matrix 𝛿𝑓

𝛿𝒳 (𝑥) ⊂ R𝑛 × R𝑚.
For the LIFR metrics development, we focus on removing the less important features. If a

model uses exclusively the most important features and discards the least important ones, its
behavior should be similar. Formally, we consider important features to be those whose absolute
importance is greater than the conciseness. Reciprocally, the non-important features are those
whose absolute importance is less than the conciseness. Once the prediction of the model and
the explanation are obtained, we proceed to delete the non-important features and compare the
results of both predictions. The regularization is calculated as the sum of both Kullback-Leibler



Table 1
Comparison between Efficientnet-B2 baseline and LIFR regularization sorted by Accuracy error

Experiment Accuracy error

Efficientnet_B2_1e-05 13.78%
Efficientnet_B2_5e-05 8.98%
Efficientnet_B2_1e-03 8.75%
Efficientnet_B2_LIFR_1e-03 2.91%
Efficientnet_B2_1e-04 2.29%
Efficientnet_B2_LIFR_1e-05 1.75%
Efficientnet_B2_5e-04 1.28%
Efficientnet_B2_LIFR_5e-05 1.26%
Efficientnet_B2_LIFR_5e-04 1.05%
Efficientnet_B2_LIFR_1e-04 0.88%

divergences between the model predictions of the example and the model prediction with just
the important features and the original one:

𝑑(𝑓(𝑥), 𝑓(𝑥′)) = −
𝑛∑︁

𝑖=1

𝑓(𝑥′)𝑖 log(
𝑓(𝑥)𝑖
𝑓(𝑥′)𝑖

) + 𝑓(𝑥)𝑖 log(
𝑓(𝑥′)𝑖
𝑓(𝑥)𝑖

) (1)

where 𝑥′ is the example without non-important features and 𝑓(𝑥) is the prediction for 𝑥. A
experimental study is presented below to show the effectiveness of LIFR in image classification.

4. Experimental Setup

We use as benchmark the CIFAR 10 image dataset [8], which has 50,000 images for training and
10,000 images for testing. As base experiment, we use the EfficientNet B2[9] and used AdamW
optimization [10]. We also use different learning rates (1𝑒− 05, 5𝑒− 05, and 1𝑒− 04).

5. Results

We evaluated the performance of LIFR to improve EfficientNet B2 behavior on CIFAR-10 with
different learning rates. The performance of the model was measured using the classification
error on the test set. The results are shown in Table 1 for the test error and Figure 1 for the
training and validation scores on accuracy, loss and LIFR regularization, respectively.

As shown in Table 1, the model achieved the best performance with a learning rate of
1𝑒 − 04 with the LIFR regularization, achieving a test Accuracy error of 0.88%. Among the
baseline models, the model with a learning rate of 5e-04 achieve its best performance of a 1.28%
Accuracy Error. These results suggest that the choice of using the LIFR regularization has a
significant impact on the performance of the model. To gain a deeper understanding of the
model’s performance, we also analyzed the training and validation accuracy, loss, and LIFR
regularization over time of the two learning rates with best performances. Figure 1 show these
metrics, respectively, as a function of the number of training epochs.
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(a) Learning Rate: 1e-04
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Figure 1: Comparative analysis over time of the performance of efficientnet-B2(B2) and Efficientnet-B2
+ LIFR regularization(B2-LIFR) on training and validation sets. Metrics: Accuracy, loss and LIFR.

Based on the Figure 1 of the training and validation metrics, we can observe that the models
without the LIFR regularization generally learn the dataset with fewer training epochs than the
models with LIFR. However, as the training progresses, the regularization technique starts to
catch up and eventually outperforms the baseline model in terms of validation accuracy.

6. Conclusions

In this work, we develop a theoretical basis for studying explainable artificial intelligence models.
Using this base, we develop a novel regularization term called LIFR, which restricts the learning
of the model and improves its stability compared to the baseline model.

Our experimental results on the CIFAR 10 image dataset shows that LIFR regularization
outperforms the baseline model in terms of accuracy error. Additionally, we have shown that
LIFR regularization is effective in preventing overfitting, despite the initial slower learning. As
part of our ongoing development, we are currently studying the impact of LIFR on accuracy and
loss. Additionally, we aim to explore the development of a new set of LIFR-like regularizations.
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