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Abstract
Radiomics, involving analysis of calculated, quantitative features from medical images with machine
learning tools, shares the instability challenge with other high-dimensional data analyses due to variations
in the training set. This instability affects model interpretation and feature importance assessment. To
enhance stability and interpretability, we introduce grouped feature importance, shedding light on tool
limitations and advocating for more reliable radiomics-based analysis methods.
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1. Introduction

Radiomics [1] is a field of study that aims to extract quantitative features from medical images
using machine learning (ML) and statistical analysis. These features can be used to identify
patterns and associations that may not be apparent from visual inspection alone. Radiomics
have become increasingly popular in medical imaging as they provide a non-invasive and
efficient way to extract biomarkers from medical images. [2]

Radiomics analyses typically involve three main steps: image acquisition and segmentation,
feature extraction, and statistical analysis (see Fig. 1). In the first step, medical images are
acquired and segmented to isolate the region of interest. In the second step, quantitative
features are extracted from the segmented region using mathematical algorithms and statistical
methods. These features can include shape, texture, and intensity-based metrics, among others.
In the final step, statistical / machine learning (ML) based analyses are performed to identify
patterns and associations between the extracted features and clinical outcomes, such as disease
diagnosis, prognosis, and treatment response. [3]

Radiomics relies on measuring feature importance to understand their impact on predic-
tions. [4] [5] ML models like Random Forests [6] generate scores indicating a feature’s contribu-
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Figure 1: Workflow of radiomics analyses including imaging segmentation, radiomics feature calculation,
the analysis via an ML model (pipeline) and their interpretation.

tion to prediction accuracy. Ensuring model robustness across datasets requires understanding
the stability of these measures. However, like in other high-dimensional data analyses, the
sensitivity of feature selection to training set variations [7] [8] [9] is restricted. Hence, methods
to restore feature stability (FS) in radiomics-based analyses are indispensable. This entails as-
sessing the coherence in feature importance scores across datasets or utilizing stability selection
to identify consistent features across numerous model building iterations.

Hypothesizing low feature stability (FS) in radiomics-based prediction models, similar to
other high-dimensional data analyses, we propose grouped feature importance [11] [12] [13] for
assessing radiomics-based ML models, aiming to enhance stability and simplify interpretation.

2. Material and methods

2.1. Assessing feature stability of un-grouped radiomics features

To investigate the instability of radiomics-based analyses, we constructed a working example
utilizing 136 pre-calculated radiomics features [14] from the Lung Image Database Consortium
image collection (LIDC-IDRI) [15]. This database contains thoracic computed tomography (CT)
scans with annotated lesions, classifing 616 benign and 281 malignant nodules. We established
a standard machine learning (ML) classification pipeline using the R package mlr3 [16]. The
pipeline encompassed a random forest (rf) with feature preprocessing (imputation, factor
encoding, and correlation-based feature selection). To refine the pipeline, we utilized nested
resampling with 5-fold cross-validation for both outer and inner loops. Hyperparameters,
including the fraction filtered in preprocessing, the count of features randomly sampled per
decision tree split, and the number of trees within the rf model, were fine-tuned. The correlation-
based filter’s optimization involved a correlation cutoff range from 0.1 to 0.9. AUC served as
the basis for optimization and performance assessment.

Using a methodology akin to test-retest, we trained our ML pipeline over 1000 bootstrap
iterations, varying solely the underlying training set (seed) [17]. For model-agnostic feature



assessment, we employed minimal depth (MD) and permutation feature importance (PFI). The
variable’s ‘importance‘ threshold was determined based on the mean PFI or MD within one
iteration, revealing how often the variable was deemed important across 1000 bootstraps.

2.2. Feature stability of grouped radiomics features

To test our hypothesis on improved model stability with grouped radiomics features, we’ll form
these groups and assess their stability using Group Feature Importance (GFI) methods.

2.2.1. Grouping radiomics features

We will consider various approaches to organizing radiomics features into groups:

1. Grouping based on Semantic Meaning / Clinical Relevance: Categories according to the
anatomical or physiological aspects (shape, intensity, texture).

2. Feature Type Grouping: Groups based on calculation nature, e.g., original vs. processed
(wavelet, log-filter) image features.

3. Statistical Grouping: Use statistical techniques like clustering or intercorrelation analysis
to group features based on their statistical properties.

4. Task-Specific Grouping: Adapt feature grouping to the research question; e.g. for predict-
ing treatment response, cluster treatment-related features.

5. Expert Knowledge-based Grouping: Categories guided by physicians or domain experts,
based on clinical significance or feature relevance.

2.2.2. Grouped feature importance

To assess grouped feature importance [18] in radiomics analyses, we will use permutation-
based [19], refitting[20], and Shapley-based [21] methods.

1. Permutation-based method: Randomly permuting grouped features measures their impact
on the model’s predictive accuracy.

2. Refitting method: Fit the model multiple times, excluding specific feature groups, to
assess the change in performance.

3. Shapley-based method: Assign values to grouped features based on their contribution to
predictions using cooperative game theory.

Furthermore, we’ll employ the combined features effect plot (CFEP) [11] to visualize grouped
feature impact. CFEP presents a sparse and interpretable linear combination, offering insights
into the collective effect of grouped features and their combined influence on predictions.

3. Results

In our classification demonstration, employing 136 pre-calculated radiomics features from the
LIDC-IDRI dataset, we trained a ML pipeline over 1000 bootstrap rounds. The models achieved



Figure 2: Relative frequency of features selected as ”important” (threshold: > mean MD/PFI across all
iterations) based on Minimal Depth (MD) and Permutation Feature Importance (PFI) measures. Derived
from a test-retest analysis using a single radiomics-based ML model.

an average AUC of 0.880 (inter-quartile range: [0.871; 0.891]). In each bootstrap iteration, we
calculated MD and PFI values, marking variables exceeding the mean MD/PFI as ‘important‘.

In Figure 2, the relative frequency of each variable’s importance is depicted. Among the
136 radiomics features, 46 were chosen at least once by PFI, and 38 by MD. The top four vital
features were selected between 54.7% and 75.6% of the time for PFI, and 61.0% to 78.3% for MD.
These four features—promenance0_N, promenance0_P, sphericity, and uniformity_N—appeared
as the most important in different orders. The fifth feature (PFI: diameter_mm, MD: skewness)
was chosen less than 40% of the time in both cases.

4. Conclusion and outlook

In conclusion, our study highlights challenges in achieving feature stability and interpretability
in radiomics-based analyses, notably during feature importance interpretation. Using a test-
retest approach training one MLmodel (pipeline) 1000 times on varied training set combinations,
we found that the most crucial feature was selected in only about 75% of cases, clearly revealing
variability and uncertainty. This inconsistency persisted despite incorporating a correlation
filter into our ML pipeline, signifying that the issue extends beyond feature correlations [10].

To tackle this challenge and augment the interpretability of radiomics-based ML models,
we advocate for the adoption of grouped feature importance techniques. Among these, the
combined features effect plot (CFEP) [11] shows promise, visually representing feature group
influence through a sparse and understandable linear combination.

Instability in radiomics feature calculations arises from various factors like acquisition modes,
reconstruction parameters, and segmentation thresholds. [22] [23] This instability extends to
radiomics-based ML model performance due to high-dimensional test set variations. Hence,
future research should focus on refining grouped feature importance methods, including CFEP,
to enhance feature stability and interpretability.

Ultimately, by fortifying the stability and interpretability of radiomics-based ML models, we
can revitalize the potential of radiomics in medical imaging, enabling more precise diagnoses,
prognoses, and informed treatment choices for various medical conditions.
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