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Abstract
The growing demand for transparency, interpretability, and explainability of machine learning models
and AI systems has fueled the development of methods aimed at understanding the properties and
behavior of such models (XAI). Since different methods answer different explainability questions, it is
crucial to understand the kind of explanation the different XAI-methods provide, and in what situations
they should be used. We introduce eXplego, an interactive tree-structured tool designed to assist
users in selecting the most suitable XAI method for their use case. eXplego prompts users to answer
questions regarding the type of explanation they seek, guiding them along the branches of the decision
tree for further inquiries. After 2-5 questions, the tree reaches one of its leaves to suggest an XAI
method aligned with the user’s explainability need. The tool also provides helpful practical examples,
simplified descriptions of the suggested method’s functionality and interpretability, points to consider
when using the method, and links to the paper introducing the method, additional resources, and software
implementations. The tool is developed from an in-depth study to discern the characteristics of the
most prominent methods and the nature of the explanations they provide. We believe eXplego will help
streamline the process of XAI method selection and contribute to the practical implementation of XAI in
various domains. The tool is available at explego.nr.no.
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1. Motivation and scope

A plethora of XAI methods and variations thereof have been proposed in recent years, typically
grounded in formal and narrowly defined mathematical notions of interpretability [1, 2, 3, 4, 5].
Different XAI methods address different aspects of model behavior, and may therefore provide
very different results without being "wrong." Further, an increasing number of XAI methods are
now available as low-entry software implementations [6, 7]. Such software packages facilitate
XAI adoption, but due to the wide variety of methods available, they also pose a conundrum:
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Which XAI method is best suited for my specific case or application? The lack of guidance on
which questions an XAI method can address risks prioritizing ease of use and familiarity in
user choices.

In recent years, various XAI taxonomies have been proposed [8, 9, 10]. While such categoriza-
tion schemes organize the XAI method landscape, the principle objective of such taxonomies is
rarely to assist the developer in selecting a suitable XAI method for their specific use case and
explanation requirement – i.e. they often lack the practical dimension [11, 12, 13, 14, 15].

The recent taxonomy review paper [10] identifies challenges with the current state of the
XAI field, and provides three concrete suggestions for overcoming them. One of these is to
create a decision tree to guide method selection. In response, we have developed eXplego, an
interactive tree-structured tool to help guide developers and practitioners in their assessment
and choice of appropriate XAI methods, directly accessible in the web browser at explego.nr.no.
The name eXplego is (combined with ‘explain’) derived from the Greek word ‘eklégo’, meaning
the deliberate act of choosing or making a thoughtful selection. The tool draws inspiration from
the “Fairness tree” [16], a tool designed to assist in the selection of metrics to assess bias and
fairness in ML-models. Similarly, eXplego provides navigation to various XAI methods through
a series of practical desiderata the users must consider in their selection of XAI methods.

We have restricted ourselves to post-hoc, model-agnostic explanation methods for tabular
data models in eXplego. While explaining text and image-based models is important, their
data formats require other types of questions to identify an appropriate explanation method.
Moreover, we believe the need for a navigation tool is most pressing for post-hoc, model-agnostic
methods, precisely because they can be widely applied – hence this additional restriction.

2. The eXplego tool

Figure 1: A section of the eXplego tool.

The eXplego tool prompts the users to answer
questions regarding the type of explanation
they seek, guiding them along the decision tree
for further inquiries. Each question also comes
with practical in-place examples. A section of
the eXplego tool is shown in Figure 1. After
2-5 questions, the tool suggests an XAI method
aligned with the user’s explainability needs.
The leaves also contain a short summary of its
use and interpretability, a list of method usage
considerations, and links to methodological pa-
pers, additional resources, and software imple-
mentations.

eXplego is developed based on methodologi-
cal and practical XAI experience, and an extensive study of the most prominent XAI methods
and the kind of explanations they provide. The methods included in eXplego are listed below,
along with brief justifications for their placement in the tree.

Permutation feature importance [17]: Whole model → Features → Observing the features → One
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feature at a time
Measures the value of observing the features in the whole model as it permutes features and
measures the change in model performance. Since it permutes one feature at a time it does not
consider joint efforts/dependence among features.

SAGE [18]: Whole model → Features → Observing the features → Joint efforts
Decompose model loss onto features to explain the whole model in terms of the features. As
Shapley values fix some subsets of features while imputing the others, it explains the value of
observing the features considering their joint efforts.

ALEPlots [19]: Whole model → Features → Changing the feature values
Per-feature plots show changes in the ‘average’ prediction as one feature is altered. Thus, they
explain how the whole model reacts to changes in the feature values.

Data Banzhaf [20]: Whole model → Training observations
Decomposes a performance score for the whole model on training observations. Similarly to
Shapley values, subsets of observations are interchangeably fixed, while others imputed. Hence, it
explains the value of observing the training observations.

Conditional Shapley values [21]: Specific predictions → Features → Observing the features → Joint
efforts among features → Obey data distribution
Explains specific predictions in terms of features, by decomposing them onto the features. As
subsets of observations are interchangeably fixed/imputed, it explains the value of observing the
features where joint efforts are considered. Properly estimated conditional expectations ensure
feature dependence is accounted for.

Marginal Shapley values [22]: Specific predictions → Features → Observing the features → Joint efforts
among features → Ignore feature dependence
Exactly like Conditional Shapley values, but estimates the conditional expectations with a
simpler method ignoring the feature dependence.

PredDiff (first order) [23]: Specific predictions → Features → Observing the features → One feature at
a time
Explains how specific predictions are affected by observing single features (assuming others known)
by measuring how the prediction changes as they are replaced by conditional expectations.

Anchors [24]: Specific predictions → Features → Changing the observed feature values → Categorical
decision → Same decision
By providing feature space regions where a decision based on a prediction is unchanged, it explains
specific predictions in terms of changes in features values for the same decision that was reached by
the specific prediction.

Counterfacual explanation [25]: Specific predictions → Features → Changing the observed feature
values → Categorical decision → Different decision
Explains how specific predictions can reach a different categorical decision (based on the prediction
score) by providing examples of (minimal) changes to the feature values that would give the desired
decision.

LIME [26]: Specific predictions → Features → Changing the observed feature values → Continuous
prediction → Joint efforts among features
By fitting a local surrogate model to a joint feature set sampled around a prediction, the method
explains specific continuous predictions directly in terms of changes in the feature values, while
accounting for joint efforts among features.



ICE [27]: Specific predictions→ Features→Changing the observed feature values→Continuous prediction
→ One feature at a time
Explains specific predictions in terms of changes to one feature value at a time, by plotting individual
prediction scores against single altered features.

Shapley values for cluster importance [28]: Specific predictions → Training observations → Includ-
ing the observations
Uses Shapley values to explain the value of including (clusters of) training observations by decom-
posing specific predictions onto the different clusters.

Influence functions for perturbing training data [29]: Specific predictions →
Training observations → Changing the observed values
Explains changes in observed values in the training data for specific predictions by measuring loss
change when perturbing features in the training observations.

To the best of our knowledge, the eXplego tool is unique in its form. That said, the structuring
proposed in IBM’s Explainability 360 Toolkit [30] bears conceptual resemblance. eXplego differs
in the following key points: eXplego is more comprehensive, covers a wider range of XAI
methods, and is geared towards developers in that question prompts are more informed by the
technicalities of the XAI methods. As explained above, eXplego is also interactive, and provides
both in-place examples to help the user answer the questions, and detailed information beyond
the method’s name in the leaves.

Since our tool is restricted to models for tabular data, we encourage other researchers to
apply our format to other scenarios and model types, such as text and images. Further, our tool
is limited to identifying quantitative XAI methods most befitting different use cases. Privacy,
contextual and normative dimensions [31], also need to be considered when providing adequate
and trustworthy explanations [5]. Questions related to compliance with any legal framework,
like GDPR, are neither addressed.

Finally, our tool has been built with the open-source diagramming application draw.io. The
source code for our tool is available at github.com/NorskRegnesentral/explego. Feedback and
suggestions for new methods are all welcome and can be submitted by opening an issue in the
GitHub repository.

3. Expected contribution to the XAI community

It is our impression that the practical difficulty of matching explainability needs with existing
XAI methods is underestimated, and eXplego is a practical tool that can guide its users in
selecting an appropriate explanation method.

The tool can inspire future research: As [32] puts it: "Despite the recent resurgence of
explanation and interpretability in AI, most of the research and practice in this area seems to use
the researchers’ intuitions of what constitutes a ‘good’ explanation." The tool can also be used
to highlight explainability questions that no XAI method addresses. For instance, that our tree
lacks a question addressing feature dependence for global explanations of feature observation
with joint efforts, identifies that the SAGE method lacks a counterpart using conditional Shapley
values. Finally, we believe eXplego will streamline XAI method selection and contribute to
practical implementation of XAI in various domains.
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