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Abstract 
The paper presents the technical details of the ArgEML system α-version, which implements a general 

argumentation-based framework and methodology for Explainable Machine Learning. ArgEML is based 

on a novel approach that integrates sub-symbolic methods with logical methods of argumentation to 

provide explainable solutions to learning problems.  
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1. ArgEML Framework 

ArgEML is motivated by several works in the literature that explore the potential of the strong 
connection of argumentation with learning in the context of explainability. Some of these works 
have studied how to learn argumentation frameworks from data, abstract frameworks, [1], 
[2],[3],[4],[5] or structured frameworks, [6], [7], [8], [9], [10], [11]. Other interesting works can 
be found in [12], [13], [14], [15],[16], [17], [18], [19].  

The ArgEML learning methodology is a case of symbolic supervised learning, that can be also 
applied in a hybrid mode on top of other symbolic or non-symbolic learners that would generate 
an initial learning theory. The methodology is outlined in Figure 1 and briefly explained in 
paragraph 1.1. 

 
Figure 1: ArgEML Methodology 

 

1.1. Methodology overview 

• Step 1: decides the language (relevant features / predictors) of the learning problem in a 
similar way to the data processing step in a standard machine learning pipeline. 
• Step 2: identifies the basic contexts of the problem domain by selecting a compact set of 
arguments with high coverage to initialize the theory. 
Both steps (1) and (2) can be executed automatically or in a hybrid mode by calling onto a sub-
symbolic or symbolic existing learner. 
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• Step 3: involves a repeated learning process to produce an argumentation theory as the 
final output of the learner. At each iteration step two main operators are considered: a 
mitigation of errors in the definite prediction of (some part of) the current theory and an 
operator for resolving conflicts in the ambiguity of the current theory. The step is guided by a 
learning assessment (metric) that measures the quality of a theory as a trade-off between 
accuracy and ambiguity. 
 
The resulting explainable model is an argumentation theory that supports the conclusions 

(labels) of a target variable (classification problem case). To generate a prediction for an input 
case the theory is queried against all possible conclusions. If exactly one conclusion can be 
derived then the prediction is considered definite, otherwise, the conclusion forms a dilemma 
within the theory. Moreover, a definite prediction can be correct or wrong, that is definite correct 
or definite wrong. The learning assessment metric, which is a generalization of the standard 
classification accuracy, is defined as: 

 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 (𝐿𝐴)  =  
(𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)  +  𝑑𝑖𝑙𝑒𝑚𝑚𝑎𝑠 ∗ 𝑤𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

(1) 

 
LA includes a weighted element wd that reflects the weakness of dilemmas of the theory, e.g. for 
binary classification learning problem this factor can be chose to be one-half.  

 

2. ArgEML system: α-version 

System components and its main functions are discussed in chapters 2.1 and 2.2 respectively, 
whereas in chapter 2.3 we explain the evaluation (system verification) process followed. Details 
of the ArgEML theory and learning method can be found in [20]. Figure 2 shows two screenshots 
of the system, an ArgEML run on the left, and an ArgEML output on the right. 
 

     

Figure 2: ArgEML system screenshots, an ArgEML run (left), and ArgEML output (right). 

2.1. System components 

The ArgEML system is a Java application that integrates with Gorgias [21], a structured 
argumentation framework, for the development and evaluation of the argumentation theory it 
generates. In the automatic mode of operation, the application accepts as input a dataset 
(examples + feature set), while in the hybrid mode of operation, the system also accepts as input 
the results of an external ML model’s execution on the input dataset. The current implementation 
can process the results of the inTrees [22] library. The application interacts with the SWI-Prolog2 
component for the evaluation of the Gorgias argumentation theories learned. This interaction is 
achieved via the JPL API3.  

  

                                                             
2 A versatile implementation of the Prolog language. https://www.swi-prolog.org/ 
3 A library that provides a bidirectional interface between Java and Prolog. https://jpl7.org/ .  



2.1. Main functions 

The system accepts as input a dataset in the form of a csv file (feature set is automatically derived 
from the file), a set of decision-rules in a predefined format as a csv file, and a set of parameters 
that control the learning process.  In the automatic mode of operation, the learning process starts 
from exploring the input feature set, to construct the initial set of arguments. In the hybrid mode, 
additional knowledge is provided as input to the system, in the form of association rules between 
input features and the target feature.  

The output of the system is a Gorgias argumentation theory that we can use like any other ML 
model to generate predictions for new inputs with the corresponding explanations. The execution 
of the system is highly parametric allowing the end user to fine tune the execution of the process. 
The basic parameters are shown in Table 1. 

 
Table 1 
System parameters 

Parameter Values Description 

Initialize-theory args-np / 
args-wp /mixed 

Strategy to define type of initial arguments as 
general or with premises or both. 

Definite-errors-threshold percentage The target value for Definite errors metric. 
Ambiguity-threshold percentage The target value for Ambiguity metric. 
Majority-class-threshold percentage It defines the percentage above which a class of data 

is considered as a majority class.  
Balanced-distribution percentage It defines the range up to which a class distribution 

is considered balanced. 
Iterative learning-steps integer It defines the maximum number of iterative learning 

steps. 
Data-split (train / test) percentages It defines the percentages for splitting the data into 

train and test.  
Rules-complexity integer It defines the maximum number of conditions for 

rules selected by the hybrid process of step 2. 
Learning-assessment-loss decimal<1 It defines the acceptable performance loss during 

the iterative learning process. 

args-np:arguments without premises. args-wp:arguments with premises. 
 
• Parameters fine tuning: The user can experiment with various parameter values to 
understand under which configuration the system performs better for their problem. 
• Explanations (system output): Explanations of a prediction are provided in a natural form 
containing also a contrastive element against other possible predictions. An example of 
explanation is shown in Table 2. In this example the system learns an argumentation theory 
from an artificial dataset with 10 binary features that supports scenarios for “staying at home” 
or “going to work”. 
 

Table 2 
ArgEML example of input / output 

Input: {c1=0, c2=1, c3=0, c4=0, c5=0, c6=1, c7=0, c8=0, c9=0, c10=0, target=work} 

Output:  
Prediction: work, Explanation: The prediction work is supported by the fact c7=0. While the contrary 
prediction of home is also supported by the fact c8=0, the reason of c7=0 supporting work is stronger 
when c3=0. Moreover, although the fact c1=0 could render the argument for home based on c8=0 
stronger this is not so, because c4=0 holds. 

 
 



 
The system can also use the argumentation-based explanations to partition the problem-space 

into different sub-groups, examples are show in Table 3. 
 

Table 3 
ACSRS Example, Explanation Sub-groups 

Explanation group E1 E2 E3 E4.1,E4.2 E5.1,E5.2 
Number of cases 44 18 9 5 6 
Accuracy / Dilemma 96% 95% 100% Dilemma Dilemma 

 
The system can use these sub-groups to provide a grading a confidence for new predictions 

depending on the group that a new case may fall. Also, the identification of the dilemma groups 
can guide us to look for new data (to help resolve these). 

2.2. Evaluation of the α-version System 

Currently, the ArgEML system supports classification problems on datasets with categorical 
features. The ArgEML system is under continuous evaluation on different learning problems 
through which we get feedback that can help us tune and improve the approach. We present the 
results of our experimentation on three datasets, (1) an artificial dataset, (2) a standard dataset 
from a ML repository, and (3) a real-life image dataset. We compare the results with Random 
Forest (RF) models in Table 4. 

 
Table 4 
ACSRS RF comparison (in terms of accuracy) 

Dataset (size) Parameters a Train set(80%) Test set(20%) 
 RF ArgEML RF ArgEML 

CA DA LA CA DA LA 
Artificial Dataset (120) {args-wp, 0%, 0%, n/a} 1 1 1 n/a n/a n/a 
IRIS (150) {args-np, 0%, 0%, n/a} 0.96 0.96 0.96 0.90 0.93 0.93 
ACSRS (200) {hybrid, 5%, 10%, 2} 0.90 0.94 0.84 0.78 0.77 0.71 

a:{initialize-theory, definite-errors-threshold, ambiguity-threshold, rules-complexity}. 
All experiments run with majority-class=60%, balanced-distribution=20%, iterative-learning-steps=10. The experiment on 
the artificial dataset run with 100% on the train set. RF: Random Forest. CA: Classification Accuracy. LA: Learning Assessment. 
A: Definite Accuracy. 

 
The comparison shown in Table 4 is between the metric of Definite Accuracy, defined as 

(definite correct predictions) / (definite predictions), for the ArgEML theories, and Classification 
Accuracy for the RF models. We are also currently experimenting by running ArgEML in hybrid 
mode on top of standard explainability systems, such as LIME [23], SHAP [24] and GLocalX [25]. 
 

3. Contribution to xAI community 

The related material and the codebase of the system, together with the example data sets used in 
the demo are available on GitHub (github.com/nicolepr/argeml). The release of ArgEML α-version 
will provide the research community with another xAI tool for learning, experimentation and 
development of explainable solutions for decision support. We look forward to collaborate with 
the community to improve ArgEML and also work on new ideas. An important case of this is to 
examine how ArgEML can be used to enhance post-hoc explainability layer for opaque black-box 
learned models.   
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