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Abstract
Deep Neural Network (DNN) based perception algorithms have demonstrated remarkable success in
tackling perception problems. However, their inherent shortcomings, such as brittleness, opacity, and
unpredictable responses to edge cases, complicate the verification of their decision-making processes.
This challenge stems from the DNN-based algorithms’ lack of transparency and interpretability, making
it difficult to assess their plausibility against existing environmental knowledge. For safety-critical
applications like autonomous driving (AD), monitoring the decisions of DNN-based perception algorithms
in relation to established environmental knowledge during operation is crucial. This paper reviews current
methods for verifying the plausibility of DNN-based perception algorithms and proposes innovative
approaches for real-time, explainable plausibility verification within the context of DNN-based automotive
perception.
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1. Introduction

Recent advancements in Deep Neural Networks (DNNs) have broadened the scope of DNN-
centric perception methods in safety-critical applications such as autonomous vehicles [1].
The real-world deployment of these DNNs, however, raises significant concerns regarding
potential safety violations, which may impede the approval and conformance of vehicles to
safety standards [2, 3]. This situation also prompts questions about the safety of such approaches
from a societal perspective. DNNs, when deployed, are expected to effectively handle complex,
corner-case scenarios that generate data not encountered in the training set. Under such
conditions, there is often a substantial drop in DNN performance [4, 5]. Given this context,
the plausibility of a DNN is defined as the degree to which its outputs or decisions align with
established domain knowledge or expected behavior. As comprehensive performance evaluation
of DNNs cannot be attained by exhaustively listing and assessing every conceivable scenario
the DNNs might encounter, implementing plausibility verification methods becomes crucial to
guarantee the accuracy and safety of perception functions in AD.
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The primary reason for the performance drop in DNNs during real-world deployments stems
from the methodology employed in training and testing these networks. Typically, DNNs are
developed using large datasets, which are partitioned into training and testing subsets. The
common practice is to train these networks using the training subset and validate them with
the testing subset of the datasets [6]. It is generally assumed that the test data accurately
reflects the DNNs’ performance during a real-world deployment. However, as the training and
testing datasets are derived from the same distribution, evaluating DNNs with test data may
not truly reflect their performance under real-world conditions. In the real-world deployments,
DNNs encounter edge-case scenarios [7] and may even face adversarial attacks [8], making it
difficult to predict their performance based solely on the testing subset of the dataset. In the case
of AD, uncertainties arise from environmental influences, sensing hardware, and perception
software [9]. These uncertainties consequently generate ambiguity in the classification output
of DNNs. Therefore, there is of utmost importance to continuously monitor the plausibility of
the decisions made by DNNs in the real world. Additionally, for the real-world deployment of
DNNs in AD, system-level measures such as error identification and treatment are also required,
as reflected in the upcoming AD safety standards ISO/TR 4804 [2].

In the context of autonomous driving, instant feedback on the decision-making process
of Deep Neural Networks (DNNs) is also crucial for building user trust and ensuring safety.
Providing users with immediate explanations for the vehicle’s actions, such as sudden braking
or lane changes, enhances their understanding and confidence in the technology. This feedback
becomes particularly essential in situations where the DNN detects objects or events that may
not be immediately apparent to human observers. By offering transparent and interpretable
explanations for these decisions, users can gain insights into the DNN’s behavior and develop
a better sense of trust and comfort in relying on autonomous systems. This instant feedback
enables users to have a deeper understanding of why specific decisions are made, fostering
acceptance and facilitating effective collaboration between humans and autonomous systems.

One significant challenge in verifying the plausibility of decisions made by Deep Neural
Network (DNN) models lies in their inherent limitations. Often referred to as ’black-boxes’,
these models are characterized by a critical lack of transparency and interpretability [10]. The
lack of transparency and interpretability prevents the validation of perception functions in
AD. Consequently, there has been a surge of research interest in the explainability of DNN
models employed in AD [9]. However, to the best of the author’s knowledge, the existing
explainability methods have limitations, including an inability to operate in real-time. As AD
involves high-stakes decisions, it is of paramount importance to evaluate the decisions made by
DNNs during their operation. Therefore, a plausibility verification method must function in
real-time and verify the plausibility of DNNs’ decisions in AD systems.

In this Ph.D. research, my objective is to address the need for real-time plausibility verification
methods within the context of DNN-based automotive perception. The methods developed
through this research will be able to validate decisions made by DNNs, in relation to the
knowledge available about the surrounding environment.



2. Research Problem

Autonomous driving has emerged as one of the most revolutionary advancements in transporta-
tion, promising improved safety, convenience, and efficiency [11, 12]. However, it demands a
high degree of robustness and reliability, especially in the operation of Deep Neural Networks
(DNNs) in perception functions. To effectively manage critical situations that may arise during
deployment, these DNNs must demonstrate exceptional proficiency and accuracy in perceiving
and interpreting their environment. Moreover, the safety of autonomous vehicles can be further
ensured by verifying the decisions made by these networks. In the light of these challenges, this
Ph.D. research aims to investigate methods for real-time plausibility verification of DNN-based
perception functions in autonomous driving and propose strategies to enhance their safety
capabilities. Specifically, the overall aim of this project is to answer the following question:

• How can the plausibility and the safeguarding of the DNN-based perception func-
tions be improved?

Since the area of real-time plausibility verification for DNNs is still largely unexplored, the
following aspects have been chosen to define the scope of the research. These aspects include:

• Plausibilizing decisions of DNNs in high-stake applications
• Automating plausibility checks for DNNs in perception functions for autonomous driving
• Implementing real-time plausibility checks for DNNs

Based on these aspects, we propose the following research questions to investigate the
previously mentioned areas thoroughly:

RQ1 How can we evaluate the outputs of DNN-based perception functions for their conformity
with existing knowledge?

RQ2 How can we implement real-time plausibility verification methods within the context of
DNN-based perception functions?

RQ3 How can we automatically validate the plausibility of a DNN’s decision?

This Ph.D. research, which began in May 2022, focuses on investigating real-time plausibility
checks for DNNs within the perception function of autonomous vehicles. Section 3 identifies
key related works that define the research problem, while Section 4 discusses the methods
proposed to tackle the issues outlined in the research questions. Lastly, Section 5 concludes the
paper and provides an overview of the planned thesis work.

3. Related Work

3.1. Explainable AI in Autonomous Driving

Explainability in AD is essential for safety and user trust. Deep neural networks (DNNs) used
in AD perception functions often lack transparency, making explainability increasingly crucial
for identifying corner cases and potential failure modes, as well as building user trust in the



system [13, 14]. Explainable artificial intelligence (XAI) methods for AD can be categorized into
local explanations, global explanations, and explainable driving models.

Local explanations can be categorized into saliency-based and counterfactual explanations.
Saliency-based methods identify important image regions that contribute to the output of DNNs,
using techniques like back-propagation [15, 16], perturbation [17], or local-approximation [18].
Counterfactual explanations find minimal input modifications to change the model’s decision,
helping to understand model sensitivity and robustness [17, 19].

Global explanations aim to provide a comprehensive summary of a model’s behavior. Model
translation approaches aim to make opaque models interpretable by converting them into more
transparent models [20, 21]. Representation explanation techniques offer insights into the
information captured within the model’s internal data structures at varying levels of granularity,
improving our understanding of model behavior [13, 22].

An emerging trend is incorporating explainability directly into the model architecture, de-
signing intrinsically explainable models. Drawing inspiration from modular systems, examples
in this domain include the end-to-end architecture of ChauffeurNet [23].

In conclusion, explainability in AD is vital due to its safety-critical nature and increased use
of DNNs. While local methods offer valuable insights into specific cases, they have limitations
in terms of verifiable constraints. Global methods provide comprehensive summaries of model
behavior but can be challenging to implement in real-time. As a result, new XAI techniques are
needed for real-time plausibility verification in autonomous driving, ensuring safety and user
trust in this fast-evolving field.

3.2. Plausibility Verification of DNNs

Many studies have aimed at assessing the validity of decisions made by DNNs. One common
approach involves using uncertainty estimation to verify the output of the decision by DNNs. For
instance, Feng et al. [24] utilize uncertainty estimates of DNNs to compute a trustworthiness
score. Gaussian YOLOv3 [25], on the other hand, identifies false positives by calculating
bounding box localization errors. Autoencoders have also been employed to examine false
positives in DNNs [26]. In a recent study, the output of 2D object detectors has been verified
with human-interpretable concepts by using concept-based interpretations [27].

A prevalent alternative method involves validating the decisions made by DNNs using other
sensor modalities. For example, Khesbak et al. [28] and Geissler et al. [29] utilize sequential
checking methods to evaluate the consistency of object detection across multiple sensor streams.
Additionally, Vivekanandan et al. [3] employ energy-based optimization techniques to verify
object detection across various sensor streams.

In conclusion, various studies have sought to verify the plausibility of DNN decisions using
approaches like uncertainty estimation and alternative sensor modalities. However, these
approaches must address the critical need for explainability in DNNs. As such, there is an
increasing demand for methods that validate DNN decisions and enhance interpretability,
fostering deeper insight into their decision-making. Therefore, bridging the gap between
plausibility verification and explainability in DNNs is essential.
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Figure 1: Overview of the three-stage Ph.D. research structure. (a) Post-hoc real-time plausibility verifi-
cation method, (b) Ante-hoc plausibility verification method, and (c) Automatic explainable plausibility
verification using collaborative perception.

4. Proposed Solutions

To address the identified research questions in Section 2, three distinct studies are presented.
To the best of our knowledge, this is the first work that concentrates on real-time plausibility
verification with explainability features. The Ph.D. research has been structured into three
stages to address these research questions:

1. Development of a post-hoc, real-time plausibility checker
2. Development of ante-hoc XAI methods for a plausibility check
3. Explainable plausibility verification of perception DNNs using collaborative perception

The initial stage of the Ph.D. research involves conducting a literature review on XAI methods,
assessing their real-time performance and suitability for verifying the plausibility of DNN’s
behavior. The selected method will function as a parallel plausibility verifier for the network’s
decisions. This first research stage will address RQ1 by proposing methods that examine DNN
behavior in accordance with existing knowledge and RQ2 by investigating real-time plausibility
verification.

The subsequent stage of the Ph.D. research focuses on integrating the chosen XAI method
into the DNNs’ network architecture. While the initial step is suitable for understanding false
positive detection in DNNs, it falls short in identifying false negative detections. Since the
parallel plausibility verifier is only activated by the DNN’s output, it can solely detect false
positive cases. By incorporating the plausibility verifier into the DNNs’ network architecture,
the research aims to minimize false negative and false positive detections.



The final stage of the Ph.D. research centers on the automation of plausibility verification.
This stage addresses RQ3 by proposing methods to automate real-time, explainable plausibility
verification. strategy is utilizing a collaborative perception environment to verify the plausibility
of perception functions in autonomous vehicles. In collaborative perception, multiple views
of the environment offer an enhanced understanding of the surroundings. This improved
comprehension of the environment can be harnessed to validate the behavior of DNNs.

Concept bottleneck models [30] present a promising avenue for real-time plausibility verifi-
cation in DNN models. These models essentially offer a simplified depiction of the knowledge
captured by the DNN, acting as intermediaries that transform the complex internal representa-
tions of DNNs into more comprehensible outputs for users, which aids explainability.

However, bottleneck models are limited by their reliance on the presence and quality of
interpretable features [31]. This reliance can curb their application in scenarios where these
features are sparse or absent. Additionally, their oversimplification of the DNN’s knowledge
can sometimes result in the loss of important details.

Despite these challenges, bottleneck models hold considerable potential for enhancing real-
time plausibility verification. Their capability to transform intricate DNN representations into
interpretable ones could play a crucial role in developing real-time, explainable plausibility
checks. Therefore, the combination of bottleneck models and plausibility verification forms a
compelling area of exploration for this research.

5. Conclusion

This paper has identified the need for real-time, explainable plausibility verification methods
for DNN-based automotive perception systems. We have proposed a three-stage approach to
address this need. Our approach includes the development of a post-hoc real-time plausibility
checker, an ante-hoc XAI method for plausibility checking, and an explainable plausibility
verification process using collaborative perception.

The Ph.D. research presented in this paper will contribute to the field by developing novel
methodologies for real-time plausibility verification with explainability features. As a result,
the proposed methods have the potential to significantly enhance the safety and reliability
of autonomous vehicles and advance the deployment of DNN-based perception algorithms in
real-world applications. Ultimately, this research aims to bridge the gap between plausibility
verification and explainability in DNNs, paving the way for more robust and trustworthy AI
systems in safety-critical domains.
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