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Abstract
Recent advancements in Artificial Intelligence have been fueled by vast datasets, powerful computing

resources, and sophisticated algorithms. However, traditional Machine Learning models face limitations

in handling scarce data. Few-Shot Learning (FSL) offers a promising solution by training models on a

small number of examples per class. This manuscript introduces FXI-FSL, a framework for eXplainability

and Interpretability in FSL, which aims to develop post-hoc explainability algorithms and interpretable-

by-design alternatives. A noteworthy contribution is the SIamese Network EXplainer (SINEX), a post-hoc

approach shedding light on Siamese Network behavior. The proposed framework seeks to unveil the

rationale behind FSL models, instilling trust in their real-world applications. Moreover, it emerges as a

safeguard for developers, facilitating models fine-tuning prior to deployment, and as a guide for end

users navigating the decisions of these models.
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1. Context

In recent years, Artificial Intelligence (AI) has made significant progress due to the availability of

large datasets, powerful computing devices, and the development of sophisticated algorithms [1].

Machine learning (ML) models are commonly used in AI systems because of their success in

various fields such as image processing, time series analysis, and audio signal processing [2, 3].

However, traditional ML systems have a major limitation in that they rely on large-scale datasets,

while real-world applications often have constraints that result in limited data availability [4, 5].

Technical issues may limit the collection of training data, while ethical or privacy concerns

may restrict data access [6]. Furthermore, traditional ML systems struggle to generalize from

few samples and their performance is often better for classes with more training samples and

worse for classes with fewer samples [7]. As a result, these systems are limited in their ability to

expand their knowledge beyond the scope of the data they were trained on. In contrast, in [8]

the authors show that humans can recognize a Segway despite the fact that they have seen it

only once prior in their life.

To overcome these limitations, recent studies proposed the use of few-shot learning (FSL),

where a ML model must learn to predict the class of a given instance when only a small number
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of examples of that specific class are available in the training set [9]. One-shot learning is a

specific case of FSL where there is only one labeled sample per class, while zero-shot learning

aims to predict the class of an instance without prior exposure to that class. Unfortunately,

the biggest downside of such systems is the lack of explainability. Understanding the reason

why a model takes a specific decision is hugely important to developers, organizations, and

end-users on which such decision falls upon. While end-users may prioritize understanding

an outcome’s explanation over the outcome itself, developers can use explanations to identify

potential issues with a model and repeat training procedures in a controlled environment. In

recent years, researchers examined the eXplainable Artificial Intelligence (XAI) topic from

various perspectives [10, 11]. The relevance of XAI in the context of FSL is easy to see since it

could expose whether or not machine think as humans, potentially unveiling human reasoning

and its brain interactions, that could be implicit, inherited by prior knowledge and possibly

based on inductive inference [12, 13]. More realistically, XAI in FSL would reveal how these

kind of systems mimic human learning.

2. Related Work

Only recently in [9], the authors introduced a taxonomy of FSL methods dividing them in: (a)
model-based, (b) data-based and (c) algorithm-based approaches. While model-based approaches

use prior knowledge to constrain the complexity of the hypothesis space so to operate on a

smaller one, data-based approaches use it to augment the training dataset increasing the number

of training samples. Algorithm-based approaches, on the other hand, use prior knowledge

to search for the best parameter configuration settings which defines the best hypothesis in

the hypothesis space. FSL paradigm has been employed in various fields ranging from image

recognition [14], time series forecasting [15], object recognition [16] and short-text sentiment

classification [17]. Considering the convolution structure of different FLS methods [14, 18, 19, 20]

and the dataset availability, few-shot image classification applicability has been prolific.

Due to the different natures of methodologies, the literature of research projects with the

aim of producing interpretable FSL models is quite limited. One research direction points at

re-designing the ML systems architecture, so to result in models interpretable by design [21, 22].

Such models are natively interpretable in the sense that they come equipped with an accurate

global and/or local view of the model behaviour, which is typically learned during the training

phase of the system itself. A compelling example in this context is presented in [23], where the

authors extend the capabilities of the explainable classifier SCOUTER [24] by introducing a novel

interpretable-by-design technique for FSL classification. Their approach involves identifying

shared patterns between an unseen image and a previously seen set of images. This is achieved

through a self-attention mechanism that learns discriminative patterns, which can then be

utilized for pairwise matching during classification. Other approaches seem to employ traditional

XAI techniques to explain the convolutional networks behaviour commonly built in different

embedding-learning models [25, 26]. Such techniques can result very limited since they are

tied to the architecture and tend to explain only a portion and not the entire architecture of

the system. A different approach explored in [27] trains an additional special auto-encoder

on the training dataset and uses it as core to the explanation algorithm. However, such an



approach ties the model interpretability to the dataset availability. It is important to note

that current state-of-the-art works on XAI in the context of FSL often lack a comparison with

well-known and widely used agnostic explainability techniques such as SHAP [28] or LIME [29].

This omission may be attributed to the challenges in a direct application of these techniques

due to the specific constraints that FSL imposes.

Challenges. Due to the recent introduction of the FSL paradigm, the literature is full of

application which may or may not follow a standard formulation of a FSL problem. Many

authors refer to Few-Shot Learning, indicating that few are the samples of a given class available

in the training set. Others, frame the problem considering that few are the samples available

at inference time instead. The lack of common standards in the problem definitions obviously

leads to various FSL application resulting in the need of different designs in interpretability and

explainability methodologies. A huge preliminary effort is required in defining the setting where

FSL paradigm is applied, in order to then define a standardized toolkit that can help explain

and understand the different approaches of FSL. Moreover, it is crucial to conduct a technical

assessment in order to compare new proposals with existing agnostic explainers. One hypothesis

is that available explainers could be employed in data-based models, as these methods involve

augmenting the training data in various ways. While current techniques may be applicable

out-of-the-box, their effectiveness in the FSL context still needs to be demonstrated. On the

other hand, model-based methods, ranging from embedding-learning to generative modeling,

present distinct challenges. A concrete example is the limitation of using LIME out of the box

with embedding-learning Siamese Networks, as noted by the authors of the tool itself
1
. This

limitation arises from the lack of default support for multiple inputs, requiring workarounds to

concatenate and separate inputs in the prediction function while correctly segmenting them

through additional implementations. Although current techniques may prove to be ineffective

in algorithm-based FSL learning, unable to distinguish whether a decision relies more on

preliminary model knowledge or the fine-tuning process itself, experiments are still necessary

to verify this.

3. Research questions and Approach

This project aims to propose a Framework to eXplain and Interpret Few-Shot Learning methods,

namely FXI-FSL, considering the 3-tier taxonomy partition of model-based, data-based and

algorithm-based given in [9]. Such framework will analyze the FSL problem w.r.t. two different

perspectives: (i) develop accessible post-hoc explainability algorithm to explain case-specific,

inner-family and potentially cross-family FSL methods, and (ii) propose novel interpretable-
by-design alternatives to common FSL architecture by keeping in mind the trade-off between

minimization of adjustments and performance.

1. Can explainability and interpretability technique be developed for FSL?

a) Are FSL approaches open to adjustments that introduce the concept of intrpretability

by design?

b) Are there specific FSL methodologies which tend to be post-hoc explained?

1
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Figure 1: FXI-FSL Scheme. Interpretability by-design operates during the design phase of FSL. Post-hoc
explainability does not involve architectures re-design, but mostly aims at explaining the outcomes given
by FSL traditional models. By-design and post-hoc approaches both cover all FSL methods, regardless
of what they are based upon.

c) What consists of a comprehensive and meaningful explanation in FSL?

2. Can traditional explainability techniques be suitable for FSL applications?

3. How to implement explainable post-hoc and interpretable-by-design approaches?

The FXI-FSL overall scheme is depicted in Figure 1. Interpretability by-design operates

during the design phase of FSL methods, looking for either conceptual or implementation

small changes to attach the element of interpretability to the actual FSL methodology. Post-hoc
explainability, on the other hand, does not involve any change to the methodology since it

aims at explaining the outcomes given by FSL traditional models only after they have been

design, trained and potentially deployed. It should be noted that while both by-design and

post-hoc approaches address all FSL methods regardless of the component they are based upon

(i.e., model-data or algorithm), they do not overlap and they are not necessarily consecutive.

Some scenarios might in fact benefit from the usage of both approaches on a given FSL method,

consolidating further FXI-FSL results. Further assessment is required for currently available

explainability techniques before their inclusion in the proposed framework. For instance, it

is necessary to investigate whether the limitations of LIME are specific to model-based FSL

models, such as the absence of support for multiple inputs in Siamese Networks, necessitating

workarounds in both prediction and segmentation functions. Additionally, questions such as

"what background set would SHAP utilize in FSL to learn shapely values if the training set

is unavailable?" need to be addressed to ensure the complete integration of traditional XAI

techniques in FXI-FSL.

4. Preliminary contributions

The first contribution to the FXI-FSL framework is a SIamese Network EXplainer, namely

SINEX2
, that was introduced in [30] in the context of FSL on audio input data. Siamese Networks

(SNs) [14] belong to the embedding-learning, which is a sub-family of model-based FSL, where

2
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traditional ML architectures reduce the input in a smaller embedding space in which similar

and dissimilar samples can be easily discriminated. SNs are composed of two or more identical

encoding sub-networks that map inputs into an embedding space, where a distance function is

applied to calculate the distance between the resulting embedded representations. A similarity

score is then calculated based on this distance.

SINEX is a post-hoc local explanation method which computes explanations by means of

a perturbation-based approach evaluating instance’s segment-weighted-average contribution

values to the final outcome. These contribution values can be visualized as heatmaps, providing

an intuitive representation of the behavior of Siamese Networks. In this work we experimented

the effectiveness of the explainer on AudioMNIST and ESC-50 audio dataset, considering the

log-mel spectrogram representation of the signal. Morover, the FSL problem setting was framed

so to have training, validating and test set as disjoint set of classes. The SNs were therefore

asked to classify instances of classes that were never seen neither during training nor during

the validating phase, relying only on one sample of each class.

Results on AudioMNIST illustrate that the correct classification of female speaker recordings

is mainly due to medium-high frequency segments, while their miss-classification depends

primarily on segments that reside at the very bottom of the frequency range. A symmetrical

behavior is observed for male speakers’ audios: a correct classification is usually based on lower

frequency values, while incorrect classifications are generally due to segments higher in the

frequency spectrum. The application of our method on ESC-50 extracts different insights, first

and foremost the SN inability to discriminate on medium-high frequencies between problematic

classes. Experiments also led us to think that the decay between sound events plays a big role,

especially if such events are repeated frequently in the overall recording.

5. Research Direction and Next steps

Current research direction is moving towards: (i) improve SINEX perturbation technique,

(ii) extend the supported data types to images and time-series, (iii) extend compliance with 3-

branched SNs architectures and (iv) extend support for distance-based SNs, other than similarity-

based ones. The perturbation approach previously described used in [30], involves measuring

the contribution of a specific segment by keeping it active while “silencing” all the other

segments, i.e., replacing them with non-informative values. On the other hand, the second

approach we aim at introducing, measures the contribution of a specific segment by “silencing”

it, while keeping all other segments active. Extensions on the data-type support would allow

us to offer a data-agnostic explainer, easily twickable via parameter configuration. This would

ensure different application and experimentation. For example, the replacing value to use

while “silencing” out part of the input during perturbation, might be grey, violet or any other

color for RGB images. Similarly, one could choose between different decibel value for audio-

inputs. Furthermore, distance-based architecture can be supported with minor adjustment

both during the segment-contribution computation and the heatmap generation. Finally, to

ensure the complete coverage of Siamese Networks, 3-branched architecture (3SNs) need a little

more integration in SINEX. Preliminary experiments demonstrated that the explainer can help

discover limitations that SNs might encounter, such as the erroneous dependence on specific



colors (on RGB images) or pixels (on grayscale images) that should not be considered important.

Therefore, SINEX provides an effective tool to highlight such limitations and guide a subsequent

model re-training phase.

Future research directions will focus on various aspects. First, since a limitation of SINEX is

that it can only study the SN behavior locally on each few-shot task, requiring human oversight

in multiple analyses of different tasks to get a comprehensive understanding of the network’s

global behavior, inspired by [31] we aim at proposing a local-to-global abstraction of the logic

learned by SN. Also, since many of the other existing FSL methods belonging to the embedding-
learning sub-family use CNNs as embeding functions [18, 20, 19, 32, 33, 34], the extention of

our proposed methodology might be studied. By doing so, it would be possible to understand

whether or not a common post-hoc methodology can be an inner-family explainability solution

for the model-based FSL branch, regardless of small algorithm adjustments and different input

data types.

Two other research directions of this project are aimed at exploring how to interpret and

explain data-based and algorithm-based FSL approaches. While the former employs prior

knowledge to typically transform samples and augment the training data, the latter alters the

search strategy in the hypothesis space. Since both of these families mainly operate during the

training phase, the hypothesis is that introducing some form of interpretability-by-design would

be a prudent choice whenever training data is accessible.

FXI-FSL will help scientist explore to which extent machine think as humans answering

questions like: Why is the model classifying a query input character as belonging to a specific
alphabet instead of another? [14] What is the importance of a motorbike image’s specific shape to
be recognized as such? [16]. The framework will help gaining trust in FSL models so to deploy

them safely in real-world applications. In scenarios where technical or privacy issues lead to

few training labeled samples [4, 5, 35], huge benefits could come from both local or global

explanations that highlight discriminative inner-class and intra-class features. Interpretable

FSL would be valuable for various subjects with possibly different backgrounds (i.e., developers,

end-users). In FSL intrusion detection in railway video surveillance [36], FXI-FSL would help

developers fine-tune the algorithm when mistaking a bird as an intruder. Similarly, a railway

employee would be assisted when deciding whether or not to close a specific route-segment

based on the tool insight. To conclude, FXI-FSL would benefit medical experts analysis in FSL

medical image classification [37] and, in general, such a framework might be both a safeguard

and a guideline whenever FSL is involved.
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