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Abstract
Multi-modal fact verification has become an important but challenging issue on social media due to
the mismatch between the text and images in the misinformation of news content, which has been
addressed by considering cross-modalities to identify the veracity of the news in recent years. In this
paper, we propose the Pre-CoFactv2 framework with new parameter-efficient foundation models for
modeling fine-grained text and input embeddings with lightening parameters, multi-modal multi-type
fusion for not only capturing relations for the same and different modalities but also for different types
(i.e., claim and document), and feature representations for explicitly providing metadata for each sample.
In addition, we introduce a unified ensemble method to boost model performance by adjusting the
importance of each trained model with not only the weights but also the powers. Extensive experiments
show that Pre-CoFactv2 outperforms Pre-CoFact by a large margin and achieved new state-of-the-art
results at the Factify challenge at AAAI 2023. We further illustrate model variations to verify the relative
contributions of different components. Our team won the first prize (F1-score: 81.82%) and we made our
code publicly available1.
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1. Introduction

The rapid rise of social media technology allows people to send and receive information immedi-
ately, and also creates fertile soil for the fast spread of fake news. The proliferation of fake news
not only triggers a storm of public opinion but also manipulates public events such as elections.
For instance, there were approximately 30 million tweets from 2.2 million users on Twitter in
the five months preceding the US 2016 presidential election, and either fake or extremely biased
news was contained in 25% of these tweets [1], misleading people and seriously influencing
the outcome of the election. Moreover, this issue became even worse during the COVID-19
pandemic period. Unconfirmed news with eye-catching images is becoming popular on social
media since richer information easily attracts more viewers than news with only text. Therefore,

1https://github.com/wwweiwei/Pre-CoFactv2-AAAI-2023.
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Figure 1: An example of each category in the Factify 2 dataset [6]. Each sample contains a claim and
document, both of which are composed of an image, text, and OCR of the image.

in order to mitigate the negative impact caused by fake news, there is an urgent need to develop
a multi-modal fake checker that can automatically assess the validity of news.
Given a claim and the support information consisting of not only text but also images, the

fact checker aims to discriminate whether the claim entails the support. Recent approaches
have demonstrated that utilizing multi-modal contexts to detect fake news achieves better
performance than only using one modality. For instance, Wang et al. [2] learned event-invariant
features using an adversarial network along with a multi-modal feature extractor to enhance
the performance of the fake news detector. More recently, Wang and Peng [3] introduced
Pre-CoFact with DeBERTa [4] and DeiT [5], to extract features from both claims and documents’
text and images, respectively and then fuses multi-modal contexts with the co-attention modules,
illustrating the competitive performance without auxiliary information.
However, Pre-CoFact fails to finetune the pre-trained model due to the large number of

parameters, which heavily depend on the post layers to learn the contextual information.
Besides, we argue that additional textual features such as stopword and URL counts provide
definitive descriptions and relations between inputs. In addition, the co-attention modules only
capture the dependencies between modalities while ignoring the relations between different
types of samples (i.e., claim and document). Therefore, we believe that multi-modal fact
verification remains an unexplored but essential problem.

To tackle this task and the aforementioned limitations, we examine our proposed method on
the real-world Factify 2 challenge [6], which is the largest multi-modal fact verification dataset
consisting of 50K news items from India and the US. Specifically, each sample contains one
document with a related image representing the reliable source of information and one claim
which also includes an associated image representing another source of information whose
validity needs to be assessed. The training set, validation set, and testing set are composed
of 35000 samples, 7500 samples, and 7500 samples, respectively. As shown in Figure 1, each



sample contains a textual claim, claim image, optical character recognition (OCR) of the claim
image, document, document image, and OCR of a document image, and is classified into support,
insufficient evidence, and refute between given claims and documents (detailed labels will be
introduced in §3.1)
In this paper, we propose Pre-CoFactv2 with parameter-efficient large foundation models

with feature representations to address the challenge. We utilize large-scale pre-trained foun-
dation models, DeBERTa [4] and Swin Transformer v2 (Swinv2) [7], to extract contextualized
embeddings from both textual content and visual images, respectively, and an adapter module
is used to improve model performance by finetuning the backbone with only a few parame-
ters. Furthermore, additional feature metadata such as the number of stopwords and URLs in
the claim and document is generated from the input to enrich the information; this enables
the model to learn explicit information from different perspectives. Afterwards, we integrate
the information among several modalities with multi-modal multi-type fusion modules into
corresponding embeddings to classify the category of the news.
To summarize, the contributions of this paper are three-fold:

• We propose parameter-efficient large foundation models with feature representations
(Pre-CoFactv2) for multi-modal fact verification by integrating adapters in the large-
scale foundation models to achieve competitive performance by training only lightening
parameters, and converting additional features to learn the explicit correlations between
claim and document.

• In addition to capturing information between modalities, we design multi-modal multi-
type fusions for different types of modalities (i.e., claim text and document images,
document text and claim images), which enforces the model to distinguish between the
given claim and document.

• To boost the detection quality, we introduce a unified ensemble method to integrate
various considerations from diverse models. This approach won first place, surpassing the
second place by 1.3% and the official baseline by 25.9% in terms of testing score. Moreover,
extensive experiments were conducted to examine and analyze the contribution and
effectiveness of each module.

2. Related Works

2.1. Multi-Modal Fact Verification

In recent years, multiple modalities (e.g., text and images) have been incorporated to demonstrate
the great potential for fact verification. MAVE [8] was proposed to learn better multi-modal
shared representations with a variational autoencoder by jointly training with a fact verification
classifier to verify the posts. In addition to learning shared features among several modalities,
Qian et al. [9] introduced HMCAN with a multi-modal contextual attention module to model
the features from multiple modalities in each news post, and a hierarchical encoding module
to capture the rich hierarchical semantics of text. Besides, Wu et al. [10] proposed MCAN to
take inter-modality relations into consideration by using multiple co-attention layers to fuse
visual and textual features extracted from Transformer-based models. Recently, Chen et al. [11]



proposed CAFE, which consists of an alignment module to transform the features from each
modality into a shared semantic space, an ambiguity module to estimate the ambiguity between
different modalities and a fusion module to capture the multi-modal correlations.
Existing work focuses on the importance of learning shared representations among multi-

modal information, which motivates us to use attention mechanisms to achieve the purpose.
However, pre-trained models with a base size are often used in the previous approaches, which
cannot utilize more fine-grained features compared with the large-size model. To that end, we
adopt large-size pre-trained models to effectively produce embeddings of text and images from
the complex multi-modal inputs.

2.2. Pre-Trained Model for Different Modalities

Transformer [12] has become the widely-used neural network architecture in various NLP and
CV tasks due to its parallel computation and long-term considerations. Since the advent of
BERT [13], a line of large-scale Transformer-based pre-trained language models (PLMs) such as
GPT-3 [14], DeBERTa [4], PaLM [15], and BLOOM [16] have been introduced to demonstrate
the generalizability of large-scale PLMs. With the drastically increased capacity of the model,
the accuracy of various language benchmarks has been significantly improved; it was therefore
been adopted to finetune downstream tasks and has achieved better performance.
In addition to the success of PLMs in NLP tasks, Transformer has also started taking over

visual benchmarks recently. Dosovitskiy et al. [17] proposed Vision Transformer (ViT) for pre-
trainingwith image patches, which has achieved competitive results compared to state-of-the-art
convolution neural networks on ImageNet-1K image-level classification benchmarks. Swin
Transformer (Swinv1) [18] constructs hierarchical feature maps and uses the shifted window
approach for computing self-attention, making it suitable as a general-purpose backbone for
various vision tasks such as object detection and semantic segmentation. Afterwards, Swin
Transformer v2 (Swinv2) [7] was proposed with several adaptations in order to better scale up
model capacity and window resolution to mitigate the unstable training and size discrepancy
between the pre-training and training images of Swinv1.

To use the generic knowledge of textual and visual information for fact verification, we employ
SOTA large-scale PLMs as pre-trained models instead of learning from scratch. Furthermore,
we utilize adapters in large-scale PLMs to finetune PLMs with lightening parameters while
improving model performance.

3. Method

3.1. Problem Formulation

Given a multi-modal claim denoted by 𝐶 = {𝐶𝑇𝑖 , 𝐶 𝐼𝑖 }
|𝐶|
𝑖=1 and a fact-checking document denoted

by 𝐷 = {𝐷𝑇
𝑖 , 𝐷𝐼

𝑖 }
|𝐷|
𝑖=1, the goal is to classify one of the five categories:

• Support_Text: the claim text is similar but images of the document and claim are not
similar.

• Support_Multimodal: both the claim text and image are similar to that of the document.



Figure 2: Illustration of the Pre-CoFactv2 framework. The parameter-efficient foundation model aims
to transform the input text and images into embedding by the pre-trained language model. Then, the
multi-modal multi-type fusion fuses the information from the same modality (images/text from the
claim and document), different modalities (images and text from the claim/document), and different
types (image from the claim and text from the document, and text from the claim and image from the
document) to obtain contexts. Besides, the feature extractor is designed to convert input text and images
into several features. In the end, the verification classifier contains cross-entropy loss and contrastive
loss to predict the possible class based on the embeddings from previous outputs.

• Insufficient_Text: both text and images of the claim are neither supported nor refuted by
the document.

• Insufficient_Multimodal: the claim text is neither supported nor refuted by the document
but images are similar to the document.

• Refute: The images or text from the claim and document are completely contradictory.

Each sample contains a claim and a document, each of which includes the OCR feature, some
special token count (e.g., stopword, @ URL), and word and character length.

3.2. Pre-CoFactv2 Overview

Figure 2 illustrates an overview of the proposed Pre-CoFactv2 framework. The additional
features are generated by the feature extractor from the given claim text, claim image, document
text, and document image. Then, we adopt two parameter-efficient foundation models for
learning in-domain knowledge from pre-trained embeddings with adapters and a multi-modal
multi-type fusion module for modeling not only cross-modality (i.e., text and image) relations
but also cross-type (i.e., claim and document) relations. Outputs of these embeddings are fused
by the verification classifier with cross-entropy loss as well as supervised contrastive loss [19]
to separate embeddings and find clearer boundaries.



3.3. Feature Extractor

Inspired by previous works for textual information in fake checking [20, 21], textual features are
extracted from both claim and document text to enable the model to learn explicit information
from different perspectives. Specifically, we extract statistical features from the text, namely
sentence word length, and character length. Then, we calculate the stopword, @name, and URL
counts to indicate the style of text content. Besides, OCR text extracted from images is adopted
to get the semantics information of the image instead of pixel values only.

3.4. Parameter-Efficient Foundation Model

3.4.1. Foundation Model

Benefiting from the advancement of utilizing basic knowledge as pre-trained models, we follow
[3] to incorporate NLP and CV foundation models as the initialized embeddings of text and
images. However, previous work failed to fully exploit the knowledge of generic datasets; we,
therefore, adopt state-of-the-art foundation models with larger sizes as the pre-trained models.
Specifically, we first use DeBERTa large [4] as our pre-trained NLP model and Swinv2 base [7]
as our pre-trained CV model, and then the embedding layer is used for transforming pre-trained
embeddings to embeddings in our task. Formally, the 𝑖-th output of the embedding layer is
calculated as follows:

𝐸𝐶 𝐼
𝑖
= 𝜎(𝑊𝐶 𝐼𝑋𝐶 𝐼

𝑖
+ 𝑏𝐶 𝐼); 𝑋𝐶 𝐼

𝑖
= 𝑆𝑤𝑖𝑛𝑣2(𝐶 𝐼𝑖 ), (1)

𝐸𝐷𝐼
𝑖
= 𝜎(𝑊𝐷𝐼𝑋𝐷𝐼

𝑖
+ 𝑏𝐷𝐼); 𝑋𝐷𝐼

𝑖
= 𝑆𝑤𝑖𝑛𝑣2(𝐷𝐼

𝑖 ), (2)

𝐸𝐶𝑇
𝑖
= 𝜎(𝑊𝐶𝑇𝑋𝐶𝑇

𝑖
+ 𝑏𝐶𝑇); 𝑋𝐶𝑇

𝑖
= 𝐷𝑒𝐵𝐸𝑅𝑇𝑎(𝐶𝑇𝑖 ), (3)

𝐸𝐷𝑇
𝑖
= 𝜎(𝑊𝐷𝑇𝑋𝐷𝑇

𝑖
+ 𝑏𝐷𝑇); 𝑋𝐷𝑇

𝑖
= 𝐷𝑒𝐵𝐸𝑅𝑇𝑎(𝐷𝑇

𝑖 ), (4)

where the dimensions of 𝐸𝐶 𝐼
𝑖
, 𝐸𝐷𝐼

𝑖
, 𝐸𝐶𝑇

𝑖
, 𝐸𝐷𝑇

𝑖
are 𝑑, the activation function 𝜎 uses ReLU [22].

3.4.2. Parameter-Efficient Adapter

Finetuning existing foundation models requires a large number of computation resources due
to the number of parameters, but is able to learn better representations for downstream tasks
which are not trained in Pre-CoFact. To that end, we design an adapter module in the foundation
models, which enables us to finetune the backbone with only a few parameters but still achieves
better performance than the freeze parameters.
We follow [23], which demonstrates the competitive performance of fine-tuning between

lightening parameters and all backbone parameters, by adding an additional adapter layer in
the output layer of Swinv2 to empower the model to capture the information of images in the
downstream tasks (fake news detection in this paper). The weights of the adapter layer are
computed as follows:

𝑆𝑤𝑖𝑛𝑣2(𝑋) = 𝐹𝐹𝑁 (�̃� ) + 𝐴𝑑𝑎𝑝𝑡𝑒𝑟(�̃� ); 𝐴𝑑𝑎𝑝𝑡𝑒𝑟(�̃� ) = (𝑊�̃� + 𝑏) + 𝑣, (5)



where �̃� is the output embedding before the feed-forward layer of Swin-Transformerv2, 𝐹𝐹𝑁 (𝑋)
is the original feed-forward layer, and 𝐴𝑑𝑎𝑝𝑡𝑒𝑟(𝑋) produces the adapted representations with
the same dimension of 𝐹𝐹𝑁 (𝑋) from the input-related weights.
We note that we cannot add adapter layers to our NLP foundation models since our GPU

memory will OOM, but we believe that this concept can improve the performance as well.

3.5. Multi-Modal Multi-Type Fusion

Previous work only considered 1) images of claims and documents, 2) text of claims and
documents, 3) images of claims and text of documents, and 4) images of claims and text of claims
to produce context embeddings. However, the relations between different types are critical
to judge the text and images across claims and documents. Therefore, we add two additional
co-attention blocks to model correlations between 5) images of documents and text of claims,
and 6) images of documents and text of documents. The co-attention block is a variation of the
multi-head self-attention block, which takes two modalities as inputs to learn interactions and
relations. Specifically, we compute the dot products of the query and the key, divide each by √𝑑,
and apply a softmax function to the attention scores to obtain the weights on the values, which
indicates the relative importance of each value for a given query.
We illustrate the computation of images of claims (𝐸𝐶 𝐼) and documents (𝐸𝐷𝐼) as examples,

and the others follow a similar process:

𝑄𝐼
𝐶 = 𝐸𝐶 𝐼𝑊 𝑄𝐼

𝐶 , 𝐾 𝐼
𝐶 = 𝐸𝐶 𝐼𝑊𝐾 𝐼

𝐶 , 𝑉 𝐼
𝐶 = 𝐸𝐶 𝐼𝑊 𝑉 𝐼

𝐶 , (6)

𝑄𝐼
𝐷 = 𝐸𝐷𝐼𝑊 𝑄𝐼

𝐷 , 𝐾 𝐼
𝐷 = 𝐸𝐷𝐼𝑊𝐾 𝐼

𝐷 , 𝑉 𝐼
𝐷 = 𝐸𝐷𝐼𝑊 𝑉 𝐼

𝐷 (7)

𝐴𝑡𝑡(𝐸𝐶 𝐼 , 𝐸𝐷𝐼) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(
𝑄𝐼
𝐶(𝐾

𝐼
𝐷)

𝑇

√𝑑
)𝑉 𝐼

𝐷) (8)

𝑍 𝐼 = 𝑁𝑜𝑟𝑚(𝐸𝐶 𝐼 + 𝐴𝑡𝑡(𝐸𝐶 𝐼 , 𝐸𝐷𝐼)) (9)

𝑂𝐼
𝐶,𝐷 = 𝑁𝑜𝑟𝑚(𝐹𝐹𝑁 (𝑍 𝐼) + 𝑍 𝐼) (10)

where 𝑊 𝑄𝐶 , 𝑊𝐾𝐶 , 𝑊 𝑉𝐶 , 𝑊 𝑄𝐷 , 𝑊𝐾𝐷 , 𝑊 𝑉𝐷 ∈ ℝ𝑑×𝑑, and 𝑁𝑜𝑟𝑚 and 𝐹𝐹𝑁 is the same normalization
method and feed-forward network as in [12].

To use fewer parameters, we share weights in a co-attention block for improving performance
because of allowing the model to learn common representations of the inputs. Finally, we apply
the mean aggregation to fuse all the results into one embedding to represent the corresponding
sentence or image embeddings.

3.6. Category Classifier

For predicting the label of the given claims and documents, all of the 12 aggregated outputs
from the multi-modal multi-type fusion, the 4 aggregated embeddings of 𝐸𝐶 𝐼

𝑖
, 𝐸𝐷𝐼

𝑖
, 𝐸𝐶𝑇

𝑖
, 𝐸𝐷𝑇

𝑖
, and

the 32 dimensions output from the feature extractor are concatenated as the input 𝑂 of the
classifier:

̂𝑦𝑖 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥((𝜎(𝑂𝑊 𝑍1))𝑊 𝑍2), (11)



where 𝑊 𝑍1 ∈ ℝ48𝑑×𝑑𝑚 and 𝑊 𝑍2 ∈ ℝ𝑑𝑚×5. Note that 𝜎 uses ReLU which is the same as 𝐸.
To enhance the generalization of our method, we jointly train supervised contrastive learning

[19] and cross-entropy. Thus, embeddings with the same label would become closer, while
embeddings with different labels would increase the distance. The loss function is as follows:

𝕃 = 𝛼 × −
|𝐶|
∑
𝑖=1

𝑦𝑖𝑙𝑜𝑔( ̂𝑦𝑖) + (1 − 𝛼) × 𝑆𝑢𝑝𝐶𝑜𝑛𝐿𝑜𝑠𝑠, (12)

where 𝑆𝑢𝑝𝐶𝑜𝑛𝐿𝑜𝑠𝑠 indicates a supervised contrastive loss. We set 0.7 for cross-entropy loss and
0.3 for supervised contrastive loss respectively1.

3.7. Unified Ensemble Techniques

To eliminate the effect of noisy data and to integrate various advantages, ensemble learning with
powerweighted sum has been used to integrate the informative knowledge from differentmodels
to achieve a better predictive performance of the overall model via the voting technique [3, 24].
However, we argue that using different powers for each model improves the generalizability
since each model does not require to use of the same projection space. Therefore, we propose
a unified ensemble method that the final predicted probabilities 𝑃 are computed with the
independent power weighted sum as:

𝑃 = 𝑃𝑁1
1 × 𝑤1 + ⋯ + 𝑃𝑁𝑀

𝑀 × 𝑤𝑀, (13)

where 𝑀 is set to 3 in this work, 𝑤1,⋯ , 𝑤𝑀 are weights of the corresponding model, and
𝑁1, ⋯ , 𝑁𝑀 are weights of power. We tune these hyper-parameters based on the validation set
and use ensemble weights as 0.2, 0.7, and 0.6 and powers as 0.125, 0.125, and 0.25, respectively.

4. Results and Analysis

4.1. Implementation Details

The dimension of additional features from text and imagewas set to 32, the embedding dimension
𝑑 of text and image were both set to 256, the inner dimension of the feed-forward layer was
512, and the number of heads was set to 12. The hidden dimension of the classifier 𝑑𝑚 was
128. The dropout rate was 0.1, and the max sequence length was 512. The batch size was 24,
the learning rates were set to 5e-5 and 1e-5, the pre-training epochs were set to 10 and the
training epochs were set to 15, and the seeds were tested with 42. The pre-trained DeBERTa was
deberta-large2, and the Swinv2 was swinv2-base-patch4-window8-2563. All of the parameters
in the two pre-trained models are first finetuned by another dataset [25] to enhance the model
capability, and then by the Factify 2 dataset. In the feature extractor module, all images were
transformed by resizing to 256, center cropping to 256, and normalizing. On the other hand, all
text was normalized by replacing emojis in text strings using demoji 4, all the abbreviations are

1We empirically found that supervised contrastive loss is not beneficial in this task (§4.2.1), thus the final model
sets 𝛼 as 1.

2https://huggingface.co/microsoft/deberta-large
3https://huggingface.co/microsoft/swinv2-base-patch4-window8-256
4https://pypi.org/project/demoji/



Module Used Pre-CoFact (1) (2) (3) (4) (5)

Feature Extractor x v v x v x

PLMCV DT-b CN SW-b SW-b SW-b SW-b

PLMNLP DE-b BB DE-l DE-l DE-l DE-l

Adapters x x x x v v

SupConLoss x x x x v x

Weighted F1 (%) 74.22 74.67 76.60 75.89 75.56 78.80

Table 1
Variations of our model by validation score. The pre-trained models include: DeiT-base (DT-b), CoatNet
(CN), Swinv2-base (SW-b), Deberta-base (DE-b), Deberta-large (DE-l), BigBird (BB).

expanded, and we delete the @name and URL to shorten the length of the text with meaningless
words. All the experiments were conducted on a machine with AMD Ryzen Threadripper 3960X
24-Core Processor, Nvidia GeForce RTX 3090, and 252GB RAM. To evaluate the performance of
the task, the weighted average F1 score was used across the 5 categories. The source code is
available at https://github.com/wwweiwei/Pre-CoFactv2-AAAI-2023.

4.2. Ablation Study

4.2.1. Variations of Our Proposed Model

To examine the relative contribution of our proposed module, we first conduct the ablative
experiments by removing each module as the variants of Pre-CoFactv2. Table 1 summarizes the
results of the variations on the validation set. We can observe that adopting different pre-trained
models (i.e., CoatNet [26] and BigBird [27]) with feature extractor (1) slightly outperforms Pre-
CoFact. Moreover, using a pre-trained CV model with Swinv2 with an adapter and a pre-trained
NLP model with Deberta-large (3) significantly improves the performance compared with Pre-
CoFact, which illustrates the importance of not only larger PLMs and finetuning them with
lightening parameters but also the multi-modal multi-type fusion. Comparing the variations
(2) with (3), additional information from the feature extractor further boosts the performance
by capturing explicit information instead of only semantic information from the embeddings.
It is worth noting that adding contrastive loss to the embeddings after fusion fails to benefit
overall performance, which suggests that calculating the contrastive loss of images and text
respectively may be more effective. Nonetheless, our proposed framework signifies the ability to
incorporate multi-modal claims and documents with explicit features and lightening parameters
to effectively classify the veracity of the news.

4.2.2. Variations of Our Ensemble Technique

To ensure the effectiveness of our unified ensemble technique, we conducted a comprehensive
ablation study of variants of ensemble techniques by integrating all the predictions in different
weights and powers. (1) is the subset of (2) when all the weight is the same, (2) is the subset of



Model (1) Average (2) Weighted (3) Power (4) Unified power
sum weighted sum weighted sum (Our)

Support Text F1 (%) 71.64 72.65 73.50 73.46

Support Multimodal F1 (%) 80.00 81.39 81.66 81.88

Insufficient Text F1 (%) 75.21 75.78 76.39 76.30

Insufficient Multimodal F1 (%) 74.62 76.22 76.11 76.41

Refute F1 (%) 99.73 99.70 99.80 99.80

Weighted F1 (%) 80.24 81.15 81.49 81.57

Table 2
Ablation study of ensemble techniques in terms of validation score. (1) Average: (prob1+prob2+prob3)/3,
(2) Weighted sum: 𝑤1 × 𝑝𝑟𝑜𝑏1 + 𝑤2 × 𝑝𝑟𝑜𝑏2 + 𝑤3 × 𝑝𝑟𝑜𝑏3, (3) Power weighted sum: 𝑤1 × 𝑝𝑟𝑜𝑏1𝑝 + 𝑤2 ×
𝑝𝑟𝑜𝑏2𝑝+𝑤3×𝑝𝑟𝑜𝑏3𝑝, (4) Unified power weighted sum (Ours): 𝑤1×𝑝𝑟𝑜𝑏1𝑝1+𝑤2×𝑝𝑟𝑜𝑏2𝑝2+𝑤3×𝑝𝑟𝑜𝑏3𝑝3.

(3) when all the power equals 1, and (3) is the subset of (4) when all the power is equal. Table 2
proves that the unified power weighted sum achieves the best result, which demonstrates that
our proposed unified ensemble method is superior to other techniques by up to 1.7%.

We can observe that averaging all predictions improves the performance only slightly, while
setting different importance and powers boosts the performance more. Our unified ensemble
technique, in contrast, achieves the best quality compared to different ensemble methods. We
note however that these parameters are manually tuned, which requires more costs to achieve
better performance.

4.3. Testing Performance

The results for the testing set are shown in Table 3 in terms of the weighted F1-score. Our
approach achieved the state-of-the-art performance of 81.82% of the weighted F1-score, winning
first place in the multi-modal fact-checking challenge, and outperformed the second place and
the official baseline by 1.3% and 25.9%, respectively. This again indicates the reasonable and
effective design of Pre-CoFactv2.
To further analyze the classification details, we illustrate the confusion matrices of the

validation set as well as the testing set of Pre-CoFactv2. As shown in Figure 3, we can observe
that the class of refute is the most distinguishable category, while some of the classes between
insufficient_text and support_text misclassify each other.

5. Conclusion

In this work, we introduce parameter-efficient large foundation models with feature representa-
tion (Pre-CoFactv2) to mitigate the issue of disseminating multi-modal fake news. With the
integration of adapters with foundation models, we are able to finetune the backbones with
only a few parameters while achieving better performance. In addition, feature representations
provide explicit information about both text and images of claims as well as documents to clarify



Triple-Check Baseline

Support_Text (%) 82.77 50.00
Support_Multimodal (%) 91.38 82.72
Insufficient_Text (%) 85.19 80.24

Insufficient_Multimodal (%) 89.22 75.93
Refute (%) 100 98.82

Final (%) 81.82 64.99

Table 3
Performance of Pre-CoFactv2 in terms of testing score, which achieved the first place and outperformed
the official baseline [28] by 25.9%.

Figure 3: The confusion matrices of the validation set and testing set of our proposed model Pre-
CoFactv2.

the relations between them with multi-modal multi-type fusion. With the help of a unified
ensemble technique, Pre-CoFactv2 is ranked first on the official leaderboard with an F1 score of
0.81, which outperforms the baseline by 25.9% and greatly benefits the research of multi-modal
fact verification. Furthermore, extensive ablative experiments demonstrate the effectiveness of
each module in our proposed framework.
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