
TwERC: High Performance Ensembled Candidate
Generation for Ads Recommendation at Twitter
Vanessa Cai1,†, Pradeep Prabakar1,†, Manuel Serrano Rebuelta1, Lucas Rosen1, Federico Monti2,
Katarzyna Janocha2, Tomo Lazovich2, Jeetu Raj1, Yedendra Shrinivasan2, Hao Li1,‡ and
Thomas Markovich2,*,‡

1Twitter
2Twitter Cortex

Abstract
Recommendation systems are a core feature of social media companies with their uses including recommending organic and
promoted contents. Many modern recommendation systems are split into multiple stages - candidate generation and heavy
ranking - to balance computational cost against recommendation quality. We focus on the candidate generation phase of a
large-scale ads recommendation problem in this paper, and present a machine learning first heterogeneous re-architecture of
this stage which we term TwERC. We show that a system that combines a real-time light ranker with sourcing strategies
capable of capturing additional information provides validated gains. We present two strategies. The first strategy uses
a notion of similarity in the interaction graph, while the second strategy caches previous scores from the ranking stage.
The graph based strategy achieves a 4.08% revenue gain and the rankscore based strategy achieves a 1.38% gain. These two
strategies have biases that complement both the light ranker and one another. Finally, we describe a set of metrics that we
believe are valuable as a means of understanding the complex trade offs inherent in industrial candidate generation systems.

Keywords
candidate generation, information retrieval, recommendation systems

1. Introduction
Modern advertising systems are built around recommen-
dation systems, which seek to recommend an advertise-
ment to a user given everything the system knows about
the user, similar users, the advertisement, and advertise-
ments like it [1, 2]. Recommendation systems are used to
predict a user’s expected engagement rate. The predicted
engagement rate is usually combined with advertiser
specified bid to holistically achieve a desirable balance
among users, advertisers, and the platform, so that users
are delighted by the ads experience, advertisers are satis-
fied with the marketing return-on-investment, and the
platform can monetize the traffic. The task of ranking
all active ads in real-time has become computationally
prohibitive as the ads inventories have grown and the
model complexity has increased.

To address this issue, modern recommendation sys-
tems divide the task into two parts, candidate generation
and ranking, as it allows for a more efficient use of com-
putational resources within a tight latency budget, and
can lead to better performance compared to a single-stage
approach [3]. Candidate generation systems aim to filter

AdKDD 2023, August 07, 2023, Long Beach, CA
*Corresponding author.
†

These authors contributed equally.
‡

These authors contributed equally.
$ thomasmarkovich@gmail.com (T. Markovich)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

the space of all eligible items, which can number in the
billions, down to a set of a few thousand likely relevant
items for ranking. These methods are often evaluated by
recall, which measures the proportion of relevant items
that are successfully retrieved. Ranking models then take
the relevant items that have been identified by the can-
didate generation process and use complex models to
predict the likelihood of engagement. The goal of rank-
ing models is to sort the relevant items by their predicted
utilities (a combination of engagement likelihoods and
advertiser specified bids in the ads recommendation prob-
lem). Though ranking models have received extensive
study [4, 5, 6, 7, 8], candidate generation systems have
received less attention in both the academic literature
and industrial applications [9].

In this work, we focus on the candidate generation side
of recommendation systems and develop a system called
Twitter Ensembled Retrieval of Candidates (TwERC),
with a focus on ads applications. In section 2, we present
a rebuilt Twitter ads candidate generation stack system
that includes a system for combating feedback loops in
recommendation systems, a fully counterfactual candi-
date generation method, a graph similarity-based candi-
date generation method, and a blender that combines all
of these sources together. These pieces combine together
to form TwERC. We review both offline and online ex-
periments for TwERC in section 3, and show that this
rebuilt system improves the efficiency and effectiveness
of the candidate generation process by reducing the num-
ber of irrelevant advertisements that are shown to users.

mailto:thomasmarkovich@gmail.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Finally, we present our conclusions in section 4.

2. Theory and Methods
After a user opens up or refreshes their home timeline, the
page displays a combination of organic recommendations
and advertisements. The organic content and advertise-
ments are ranked concurrently, and mixed together at the
end of the pipeline with each ad being inserted into the
associated advertising slot. The recommendation system
built for advertising recommendations contains three
major stages: targeting and filtering; early ranking; and
heavy ranking and auction. The targeting and filtering
applies both hard and soft constraints to the active ad-
vertisements, to ensure that we only recommend ads to a
user that the advertisers intended the user to see. The set
of ads that pass this early filtering stage are then sent to
a light ranker. The topK advertisements are then sent to
our heavy ranking system, which computes the calibrated
probability of engagement for the ad given the optimiza-
tion objective of that advertisement. In contrast to the
light ranker, these heavy ranking models include many
heavier-weight features such as richer content represen-
tations or graph based user representations [10], and a
much more complex architecture [6]. The heavy ranking
models output a probability of engagement, pEng, that
we then use to compute the rankscore for the second
price auction. The rankscore is our best estimate of the
overall value or utility of showing a particular ad, and is
a function of the advertiser’s bid and other factors like
predicted engagement rates.

The above system is the product of years of develop-
ment by many Twitter engineers. While we are always
making improvements to the system, we have observed
that making improvements to the input feature size and
expressiveness of the light ranker is not generally feasi-
ble due to the tight latency budget. An alternative way
forward to improve the early ranking stage is to perform
what we call tail replacement. Tail replacement in this
setting specifically means replacing the bottom M% of the
topK ads from the light ranker with a different strategy
that is complementary and efficient. In this section we
explore two separate, but complementary, approaches for
tail replacement – rankscore candidate generation and
graph based candidate generation, and highlight practical
considerations associated with putting these techniques
into production. We then discuss the process by which
we combine candidates from all three different sources,
and finally turn our attention to metrics and figures of
merit.

2.1. Rankscore Candidate Generation
Unconstrained Ad Serving The unconstrained ad serv-
ing system (UAS) is a counterfactual data collection ser-
vice that scores all the eligible ad candidates at the request
level with a low sample rate. The selected request is du-
plicated and is then sent to a staging environment to get
all ad candidates’ bid and predicted engagement rate (pos-
itive and negative). In median, UAS scores approximately
50x more than the production scoring volume, granting
the capability of observing the quality of ads that might
have been filtered out by the early rankers, thus overcom-
ing the infamous selection bias problem in large-scale
online interactive/recommendation systems. With the
logged bid and predicted engagement rate, we are able
to calculate the 𝑟𝑎𝑛𝑘𝑠𝑐𝑜𝑟𝑒 of all the ad candidates. This
data allows us to bypass the common recommendation
systems feedback loop, because we are able to rank, and
scribe, all relevant ads for a user; rather than a filtered
subset. This allows us to train the early ranking system
on all data, rather than just its previous outputs. Addition-
ally, we used these data to identify significant headroom
(or regret of the current system) by optimizing the top𝐾
candidates in the early funnel.
Candidate Generation The counterfactual data is

not only used in measuring the regret and/or opportu-
nity size, but also processed to generate user-level top𝐾
ad candidates by expected value, through a process of
downsampling requests and by removing invalid or in-
complete requests. To be more specific, for each user 𝑢
and eligible ad 𝑎 we collect 𝑟𝑎𝑛𝑘𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑎, 𝑡) at time 𝑡
from UAS with a 3-week lookback window, and calculate
the time-aware user-ad quality score 𝑞(𝑢, 𝑎),

𝑞(𝑢, 𝑎) =

∑︀
𝑟𝑎𝑛𝑘𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑎, 𝑡) · 𝑒𝑡−𝑡0∑︀

𝑒𝑡−𝑡0
(1)

The quality score is a weighted average at the (𝑢, 𝑎) level,
with the weight being the elapsed time between the data
collection time 𝑡 and the pipeline running time 𝑡0. Ef-
fectively, this self-normalized score gives more weight
to the fresher data points. Practically, we observe the
time-aware weighting plays a significant role in adapting
the volatile nature of the rankscore, and contributes sig-
nificant incremental business impact on top of a simple
average aggregation. Then for each UAS covered user,
we generate top𝐾 ads with the highest 𝑞(𝑢, 𝑎) scores.
We set up recurring jobs to generate these high value ad
candidates every 3 hours and store them in a Manhattan
dataset (MH) [11], and the MH dataset is consumed by
the ad mixer at serving time. Though all the UAS scored
ads were eligible as of the data collection time, advertisers
sometimes update their budget and targting criteria. To
make sure we always fully respect advertisers’ targeting
criteria and their budget consumption status, we apply
an online filter at the serving time too.

Figure 1: New sourcing components (highlighted) in the serv-
ing funnel.

2.2. Graph Based Candidate Sourcing
Inspired by previous work at Twitter [10] and else-
where [9], we choose to construct a heterogeneous graph
embedding and use this as the core of our similarity
search.
Graph Embeddings For the graph based candidate

sourcing strategy, we choose to construct a directed multi-
graph from the engagements between users and the ad-
vertisements they have engaged with. This is done by
processing the event level data into a heterogeneous en-
gagement graph with different vertex types (e.g. user, ad-
vertisement, advertiser, application, video), and carefully
design the edge label definition. While we did not down-
sample data, we did clean data of all incomplete or other-
wise invalid events. Following the recipe of TwHIN [10],
we then embed this graph in a lower dimensional space.
We generated these TwHIN embeddings using the trans-
lation operator with the softmax loss function and dot-
product distance function. See [10] for more information.
We interpret the distance between a user and an item
as the likelihood that user would engage with that item.
This strategy produces manifolds in which similar users
and similar items are clustered together, and allows us
generate candidates through a nearest neighbor search
Embedding Update Cycles The ads engagement

graph is constructed by aggregating engagements over a
fixed time window. The choice of time window naturally
prohibits the representation of interactions as well as
vertices which fall outside that window, which make it
challenging to keep the graph and associated embeddings
up to date.

We choose to address this issue through a warm-
starting procedure. Because we have new vertices as-
sociated with new users or advertisements, we have to
compute new embeddings. Starting the warm-start opti-
mization process with randomly initialized embeddings
for new entities would move the already converged ver-
tices, thereby increasing the amount of noise in our em-

bedding updates. For this reason, we freeze the embed-
dings of the old vertices while the embeddings of the new
vertices are computed. One can view this as projecting
the new vertices into the existing manifold. Because the
old embeddings are frozen, we only need to include edges
that include any of the new vertices. We term this set of
new edges the ∆ edges. This is where the “tic” update
cycle stops. These tic embeddings are quick enough that
we compute them every twelve hours.

The tic cycle clearly is incapable of capturing the relax-
ation of the entire graph due to the new interactions and
new vertices. To do this, the toc cycle constructs an edge
list by combining the ∆ edge list with the complete edge
list from the previous embedding. With this composite
edge list in hand, we then unfreeze the old embeddings
and let the entire graph relax until it converges.

Candidate Generation Intuitively, we can retrieve a
high-recall set of ad candidates by using a user’s TwHIN
embedding to query its neighboring promoted tweets
using an ANN index [12, 13]. To efficiently retrieve these
ads without being constrained by online latency require-
ments, we built a mapreduce pipeline that precomputes
these in batch using the FAISS [13] library for our 130
million heaviest users. We configured FAISS to use the
inverted file index + HNSW to improve speed while main-
taining high recall. Additionally, we implemented a filter-
ing step to remove ads that are ineligible for a particular
user due to targeting criteria or insufficient budget, in
order to avoid cache misses during the retrieval stage.
We run this pipeline every six hours to both leverage
the embedding refresh cycle and avoid storing stale or
expired ads.

2.3. Blending
With the initial promising online experiment results from
both rankscore candidate generation and graph based
candidate sourcing sourcing, we built a blender compo-
nent in the ads serving early funnel, which dynamically
allocate and effectively merging the sourced ads capaci-
ties from various sourcing strategies. We use a configura-
tion file (𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦−𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 pairs for each strategy)
to specify the capacity allocation among the sourcing
strategies, and use it in both offline batch data process-
ing and online serving/merging logic. As an example, in
the first blending experiment, we use a 20%-20% blend-
ing between the rankscore sourcing and graph based
sourcing strategies, with the following key-value config-
uration {"rankscore": 0.2, "graph": 0.2}. With the specified
capacity allocation, we use them to generate a merged
Manhattan dataset [11], and fill in at most 20% of the
candidates with counterfactual-based and graph-based
respectively for the full ranking and auction to further de-
cide the final ads impressions (auction winners), meaning
we replace up to 40% of the tail.

Figure 2: Graph similarity based candidate generation
pipeline.

2.4. Efficiency
Both algorithms that we have proposed can be imple-
mented as batch data pipelines, which feed a distributed
key-value store that is utilized for online serving. Be-
cause the recommendations are run in batch, the impact
to real-time serving is limited to the cost of key-value
lookup, which is minimal. The computational resources
required are significantly lower than the business impact
they provide. Because these pipelines are run in batch,
any failures will result in stale recommendations but will
not cause serving failures. We have observed an improve-
ment in product metrics if we run the pipelines more
frequently, because they provide fresher candidates. We
have experimented with a range of refresh-periods and
selected the refresh cycle for each algorithm the repre-
sents a reasonable tradeoff between computational costs
and product metrics. Finally, these pipelines do require
maintenance but we have empirically observed that they
are quite stable because they are built on top of a robust,
distributed, data processing framework.

2.5. Metrics
The choice of metrics is both a deeply interesting question
and critical to the success of any project because they will
guide the overall progress of research and development.
It is important to find offline metrics that correlate with
our various online metrics and product concerns.

Recall The most obvious and easiest to define metric
is recall, or hit-rate, defined as 𝑅 = TP

TP+FN , where TP is

the number of true positives, or hits, and FN is the num-
ber of false negatives. We choose to define a hit as an
engagement that was correctly identified in the test set.
This provides a method to characterize the ability to pre-
dict user engagements. While this is valuable, optimizing
for pure recall can be sub-optimal because it neglects the
role of the auction and the true positive signals can be
sparse and has the potential to underweight brand ads.

Auction Recall To address these issues, we introduce
the concept of an auction recall. Specifically, we con-
sider true positives to be those ads that win the auction
for their slot. Optimizing for auction recall introduces
multiple possible issues, including constructing a system
that learns the biases and pathological behaviours of the
ranking stack that is downstream. While this can lead
to short term metric gains both online and offline, it can
easily lead to long-term product decay. As a result, we
typically examine both auction recall and engagement
recall metrics.
Rankscore NCG Rankscore normalized cumulative

gain (NCG) compares a given candidate generation al-
gorithm to a hypothetical algorithm that always selects
the top ads by rankscore. The metric that is computed
is the ratio of the sum of the rankscores of the ads se-
lected by the algorithm and the potential rankscore sum
that would be found by the hypothetical algorithm. It is
defined as:

𝑟𝑁𝐶𝐺𝑚 =

∑︀𝑛
𝑖=1

∑︀𝑚𝑖𝑛(𝑚,|𝐶𝑖|)
𝑗=1 𝐶𝑖,(|𝐶𝑖|−𝑗+1)∑︀𝑛

𝑖=1

∑︀𝑚𝑖𝑛(𝑚,|𝑅𝑖|)
𝑗=1 𝑅𝑖,(|𝑅𝑖|−𝑗+1)

, (2)

where 𝑅𝑖 is the set of rankscores of all eligible ads for
the ith request after targeting filters are applied, 𝐶𝑖 is
a the subset of ad candidates selected by the candidate
generation algorithm from 𝑅𝑖, 𝑛 is the number of ad
requests, and 𝑚 is set to match the number of ads that
would typically make it to auction. Lower rankscore
NCG ratios indicate a larger headroom for showing more
highly ranked ads by making improvements to candidate
generation.
Inequality Finally, we track the top 1 percent share

(T1PS) of the advertisers to evaluate whether our changes
are making the overall ads ecosystem more fair. This is
important to improving the advertising experience on
the Twitter platform because it improves the experience
of small and medium sized businesses, which is a long
standing product goal for all online advertising platforms.
The T1PS coefficient is defined as:

𝑇1𝑃𝑆 =

∑︀
𝑆𝑖≥𝑆(0.99|𝑆|)

𝑆𝑖∑︀
𝑖 𝑆𝑖

, (3)

where 𝑆𝑖 is the number of served ads among all users
from advertiser 𝑖 over a given period. Thus the condi-
tion, 𝑆𝑖 ≥ 𝑆(0.99𝑛) restricts to advertisers in the 99th

percentile or top 1 percent of advertisers with regards to
served ads.
Ads Value It is generally difficult to estimate the av-

erage value an advertiser realizes from running an ad
campaign on the platform. While we cannot estimate
that exact value because we do not have access to the
per-advertiser exchange rate for engagements, we can
use the average cost per conversion as a natural proxy
for that value. Using this intuition, we derive a measure
of proxy ads value AdsValue(𝑗) =

∑︀
𝑖
𝑅𝑖
𝐶𝑖

𝐶𝑖𝑗 , where 𝑗
indicates the experiment bucket, 𝑖 indicates the campaign
index, 𝑅𝑖 indicates the revenue for that campaign, 𝐶𝑖

indicates the number of conversions for that campaign,
and 𝐶𝑖𝑗 is the number of conversions for the 𝑖𝑡ℎ cam-
paign in the 𝑗𝑡ℎ experiment bucket. An increase in ads
value corresponds to improvements to our ads ecosystem
on the demand side. Tracking the ads value allows us to
understand if changes to our recommendation ecosys-
tem are improving the overall long-term value that we
provide to our advertisers in an a/b test setting.

Utility Utility is a derived metric that provides a way
to estimate the statistical performance of our end to end
system. To understand utility, we first have to understand
rankscore. Because Twitter is a second price auction, we
need to provide our best estimate for the overall value of
a particular ad. This is done by combining factors such
as the probability of engagement (pEng), probability of
negative engagement (pNeg), the advertisers bid. The
utility is simply the rankscore with observed values used
in place of the probabilities. An increase in utility corre-
sponds to an increase in the quality of our predictions.

3. Experiments
Initial investigations found that the ads serving early
funnel has significant headroom in the rankscore sum
ratio, an ads early funnel metrics indicating the amount
of regret we experienced due to filtering. An additional
set of experiments found that truncating the tail M% of
the early ranker’s top𝐾 candidates that are sent to full
ranking resulted in no observed decrease to net revenue.
This indicated an opportunity to improve the filtering
phase by experiment with additional candidate genera-
tion strategies. We built TwERC, which provides relevant
candidates with controlled computational costs to meet
this need. To do this, we explored four different strategies
that augmented the early ranker. Two of these strategies
are deployed in production.

We ran a range of offline and online experiments to
evaluate the impact of the two separate sourcing strate-
gies that were constructed. While the experiments pre-
sented below are run with each sourcing strategy in iso-
lation, we later on observe that the impact of the two
sourcing to be additive due to the construction of the

blender.
All online experiments were run using a 2% request

sampling strategy, where 2% of the traffic received the
treatment. We ran each experiment for a minimum of
seven days to account for statistical power and weekly
user behavioral trends, and tracked a variety of different
metrics to assess improvements to key product metrics.
The results presented below are all statistically significant
under a Benjamini & Yekutieli correction [14] for multiple
comparisons.

3.1. Rankscore Candidate Sourcing
Using the unconstrained ad serving system (see Sec-
tion 2.1), a counterfactual dataset containing full
rankscores of ads, we store high full rankscore ads at
the user level, and complement the top𝐾 candidate de-
cision previously generated solely by the early ranking
model. In practice, we use a trailing 21-day window
of the UAS data to generate the user level sourced ads
dataset through a time-aware weighted average aggrega-
tion which give more weights to more recent rankscore
for the user. It is powered by a scheduled batch job that
refreshes every 3 hours. At the serving time, we replace
at most M% of the early ranker’s tail top𝐾 ads by these
offline sourced ads, and send the merged candidate ads
set to the full ranking.

We prepare the sourced ads at the creative-user level.
For the lineitems that are associated with sourced ads,
we allow them to bypass the lineitem ranker, but respect
all restrictive targeting clauses (also known as targeting
filters).

We first tested this strategy using our offline simulator,
where we observe improvement, as high as 20% in auction
recall across different advertising objectives, as shown
in Table 1.

Based on these offline experiments, we ran a range
of online experiments with a range of different aggrega-
tion approaches. In the final iteration that we shipped
to production (Table 2, we observed an 1.38% increase in
net revenue, a 4.71% increase in utility per mille impres-
sions, and a 1.05% increase in ads value - all statistically
significant with adjusted p-values.

3.2. Graph Based Candidate Sourcing
Previous work using graph embeddings in an offline set-
ting showed promising results on a variety of ranking
and candidate generation tasks. Inspired by this work,
we looked to explore using these embeddings to generate
candidate ads. We began by simulating auction recall
after replacing the bottom M% of the tail of the early
ranker with nearest neighbor candidates as outlined in
section 2.2. In the offline analysis, we found an auction re-
call improvement across a variety of different objectives

Objective RSCS GBCS TDGBCS
Obj 1 11.1% 1.1 % -1.0%
Obj 2 2.3% 5.4% 7.9%
Obj 3 4.7% 2.3 % 10.2%
Obj 4 20.1% 4.5 % 7.2%
Obj 5 15.9% 2.0% 9.9%

Table 1
Offline experiment results from our counterfactual simula-
tor. Here, RSCS is the rank score candidate sourcing strategy,
GBCS is the graph based candidate sourcing strategy, and
TDGBCS is the time dependent graph based candidate sourc-
ing strategy. All results reflect the auction recall delta between
the production baseline and the experimental system.

as reflected in Table 1.
Motivated by the offline experiments, we hypothesized

that by adding graph signals, we would be able to better
capture relational information about ads and users that
can increase the quality of retrieved ads. To test this
hypothesis, we constructed an online experiment where
we precompute sourced ads by finding approximate near-
est ad neighbors in the graph embedding space for one
third of our highly active users offline. These candidates
complement the top𝐾 candidate decision previously gen-
erated solely by the early ranking model. In this exper-
iment, we replaced at most M% of the tail top-ranked
ads by the early ranker by these offline sourced ads, and
sent the merged candidate ads set to the full ranking.
We made no change to the downstream full ranking and
auction. As reported in Table 2 we observed statistically

Method Revenue Utility Ads Value
RSSC 1.38% 4.71 % 1.05 %
GBCS 4.08% 6.42 % 1.26 %

Table 2
Results from the rankscore candidate sourcing online experi-
ment

significant gains across reported metrics with adjusted p-
values. We additionally analyzed this experiment in the
context of advertiser inequality, and found a T1PS reduc-
tion of 1.2% which was a significant effect. The control
bucket result is also consistent with the historical T1PS.
When we break down by advertiser type, we see that the
small and medium businesses and mid-market size ad-
vertisers experienced the largest decreases in inequality,
while direct sale and reseller accounts also experienced
moderate decreases. This indicates that our experiment
helped the advertisers who were experiencing the largest
levels of inequality previously. This experiment is a very
concrete example of a case where we can simultaneously
increase net revenue and decrease advertiser inequality –
two objectives often thought to be in conflict.

3.3. Time Dependent Embeddings
The user embeddings that are used as query vectors gen-
erally converge to the average of all of the advertisements
that the user engages with. While this provides a reliable
way to predict a user’s most common commercial inter-
ests, it misses interests that may have a temporal nature
to them. For example, advertisements for infant goods
may become less relevant over time as a parent’s child
ages. To address this issue, we followed the example of
the rankscore temporal discounting in equation (1) and
computed time-decayed user embeddings as

�⃗�𝑢𝑠𝑒𝑟
𝑖,𝑡 =

∑︀
𝑗∈𝒩𝑖

𝑒𝜆(𝑡𝑗−𝑡0) �⃗�𝑡𝑤𝑒𝑒𝑡
𝑗∑︀

𝑗∈𝒩𝑖
𝑒𝜆(𝑡−𝑡0)

, (4)

where |𝒩 | is the set of the last-N engagements, 𝑡0 is the
time the job runs, 𝑡𝑗 is the time of the time of the 𝑗𝑡ℎ

interaction, and 𝜆 is the decay constant. We implemented
this aggregation strategy using a cloud SQL framework.
Using this, we ran tail-replacement offline experiments
using the same simulator that was used for the other
candidate generation experiments, with results reflected
in Table 1.

We additionally explored the overlap between candi-
dates using the time-dependent and time-independent.
For users with a long history if advertising engagements,
we observed little overlap between the two candidate
generation strategies. For users with little to no history,
however, the overlap increased significantly. This is not
unexpected, because the time-dependent vector should
be close to the time-independent vector. Finally, we per-
formed a qualitative analysis of the candidates that are
generated using these strategies. For users for whom
we know their interests, we find this strategy captures
emerging interests in some instances, as desired. We are
encouraged by these results, as well as the low computa-
tional cost to generate these embeddings.

3.4. Embedding Induction
As illustrated in the previous section, using the candi-
dates returned by an ANN-search in the graph embed-
ding space increases the quality of the tweets returned
by the early ranker and in turn, the revenue generated
by the platform. However, not all users can be served
via ANN-search, as users that have never interacted with
an ad or an advertiser do not appear in the engagement
graph used to train graph embeddings, and thus do not
enjoy a representation describing their interests in terms
of promoted tweets (a common situation for new and
light users for instance). To enhance the quality of rec-
ommended ads to a broader pool of users, we resorted
to Graph Learning techniques to extend the coverage of
our embeddings. In particular, we implemented an effi-
cient formulation of the Feature Propagation approach

described in [15] that propagates information over the
arcs of the follow graph. We decided to limit feature
propagation to just one hop and infer graph embeddings
for missing users 𝑈𝑀 as:

𝑥𝑖 =
1

|𝑁+
𝑆,𝑇 (𝑖)|

∑︁
𝑗∈𝑁+

𝑆,𝑇
(𝑖)

𝑥𝑗 ∀𝑖 ∈ 𝑈𝑀 (5)

where 𝑥 ∈ R𝑑 and 𝑁+
𝑆,𝑇 (𝑖) is a randomly sampled set

of 100 followings of 𝑖 that do have an embedding (here
sampling is introduced to upper-bound the resources
required to process each user). The main intuition is
to use the interests of the followings of a target user as
a proxy for the interests of the user themselves. With
this view in mind, the solution illustrated in (5) can be
understood as a form of collaborative filtering where
the notion of user-user similarity is defined by follow
connections and the averaging mechanism implements a
voting system. Empirically, we observed this approach to
perform particularly well in offline experiments and be
extremely efficient at the same time as equation (5) can
be easily implemented with a simple SQL query, which
in turn allows to exploit scalable frameworks such as
BigQuery for experimentation.

Table 3 shows the results we obtained for users that
have and do not have (before diffusion) graph embed-
dings at experimentation time. Only tweets returned
by the ANN-search and that can be recommended to a
user as specified by the advertiser’s targeting criteria
have been considered as possible candidates for a user. A
tweet is considered as relevant for a target user if the user
has interacted with this in the past. Inducted embeddings

Method With Without
Random ordering 6.5% 10.11%
Inducted graph embeddings 34.38% 42.07%
Graph embeddings 43.53% -
Light Ranker 49.52% 55.61%

Table 3
Offline results on inducted embeddings for users that with
and without a graph embedding (i.e. users that appear in the
ad engagement graph).

on the follow graph achieve very good performance in
this offline setting, obtaining a HR@K equal to ∼ 79%
of the one showed by the true graph embeddings and
maintaining similar performance also on users that do
not have a graph embedding at all. At the time of writing,
online evaluation of the inducted embeddings is ongoing.

Qualitatively, we observed inducted embeddings to
produce good quality results on a few users for which we
know their interests, although they might not always cap-
ture peculiarities of the users themselves. For instance,
users based in a country but that predominantly follow

people based abroad tend to get recommended tweets
that are consistent with their interests but that are not
necessarily targeted to residents of their specific country.
This particular phenomenon could be attenuated intro-
ducing a weighting scheme on the followings of a target
user that takes into account similarities in demographic
or potentially engagement. We leave an exploration of
this weighting scheme to future work.

4. Conclusion
In this work, we described TwERC– a candidate genera-
tion system that was designed as part of our ads multi-
stage ranking system. We hypothesized that a heteroge-
neous candidate generation system can improve perfor-
mance without substantially increasing computational
costs. We demonstrated that an ensemble of different
techniques, each with their own bias, are able to pro-
vide significant improvements in both offline metrics and
product metrics through the use of online A/B tests. As
part of these experiments, we also outline a suite of met-
rics monitor various aspects of the complete ads ecosys-
tem. Finally, we outline multiple exciting new directions
to explore to cost-effectively expand this heterogeneous
strategy.

References
[1] S. Kang, C. Jeong, K. Chung, Tree-based real-time

advertisement recommendation system in online
broadcasting, IEEE Access 8 (2020) 192693–192702.

[2] A. Z. Broder, Computational advertising and rec-
ommender systems, in: Proceedings of the 2008
ACM conference on Recommender systems, 2008,
pp. 1–2.

[3] W. Liu, Y. Xi, J. Qin, F. Sun, B. Chen, W. Zhang,
R. Zhang, R. Tang, Neural re-ranking in multi-stage
recommender systems: A review, arXiv preprint
arXiv:2202.06602 (2022).

[4] R. Anil, S. Gadanho, D. Huang, N. Jacob, Z. Li, D. Lin,
T. Phillips, C. Pop, K. Regan, G. I. Shamir, et al.,
On the factory floor: Ml engineering for industrial-
scale ads recommendation models, arXiv preprint
arXiv:2209.05310 (2022).

[5] R. Wang, B. Fu, G. Fu, M. Wang, Deep & cross
network for ad click predictions, in: Proceedings
of the ADKDD’17, 2017, pp. 1–7.

[6] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin,
L. Hong, E. Chi, Dcn v2: Improved deep & cross
network and practical lessons for web-scale learn-
ing to rank systems, in: Proceedings of the web
conference 2021, 2021, pp. 1785–1797.

[7] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang,
N. Sundaraman, J. Park, X. Wang, U. Gupta, C.-J.

Wu, A. G. Azzolini, et al., Deep learning recommen-
dation model for personalization and recommen-
dation systems, arXiv preprint arXiv:1906.00091
(2019).

[8] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chan-
dra, H. Aradhye, G. Anderson, G. Corrado, W. Chai,
M. Ispir, et al., Wide & deep learning for recom-
mender systems, in: Proceedings of the 1st work-
shop on deep learning for recommender systems,
2016, pp. 7–10.

[9] A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosen-
berg, J. Leskovec, PinnerSage, in: Proceedings of
the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ACM,
2020. URL: https://doi.org/10.1145/3394486.3403280.
doi:10.1145/3394486.3403280.

[10] A. El-Kishky, T. Markovich, S. Park, C. Verma,
B. Kim, R. Eskander, Y. Malkov, F. Portman,
S. Samaniego, Y. Xiao, A. Haghighi, TwHIN: Em-
bedding the twitter heterogeneous information net-
work for personalized recommendation, in: Pro-
ceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, ACM,
2022. URL: https://doi.org/10.1145/3534678.3539080.
doi:10.1145/3534678.3539080.

[11] Manhattan, our real-time, multi-tenant distributed
database for twitter scale, 2014. URL: https:
//blog.twitter.com/engineering/en_us/a/2014/
manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale.

[12] V. Athitsos, M. Potamias, P. Papapetrou, G. Kol-
lios, Nearest neighbor retrieval using distance-
based hashing, in: 2008 IEEE 24th International
Conference on Data Engineering, IEEE, 2008, pp.
327–336.

[13] J. Johnson, M. Douze, H. Jégou, Billion-scale simi-
larity search with GPUs, IEEE Transactions on Big
Data 7 (2019) 535–547.

[14] Y. Benjamini, D. Yekutieli, The control of the false
discovery rate in multiple testing under depen-
dency, The Annals of Statistics 29 (2001) 1165 –
1188. URL: https://doi.org/10.1214/aos/1013699998.
doi:10.1214/aos/1013699998.

[15] E. Rossi, H. Kenlay, M. I. Gorinova, B. P. Chamber-
lain, X. Dong, M. Bronstein, On the unreasonable
effectiveness of feature propagation in learning on
graphs with missing node features, Proceedings of
the First Learning on Graphs Conference (2022).

https://doi.org/10.1145/3394486.3403280
http://dx.doi.org/10.1145/3394486.3403280
https://doi.org/10.1145/3534678.3539080
http://dx.doi.org/10.1145/3534678.3539080
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://blog.twitter.com/engineering/en_us/a/2014/manhattan-our-real-time-multi-tenant-distributed-database-for-twitter-scale
https://doi.org/10.1214/aos/1013699998
http://dx.doi.org/10.1214/aos/1013699998

	1 Introduction
	2 Theory and Methods
	2.1 Rankscore Candidate Generation
	2.2 Graph Based Candidate Sourcing
	2.3 Blending
	2.4 Efficiency
	2.5 Metrics

	3 Experiments
	3.1 Rankscore Candidate Sourcing
	3.2 Graph Based Candidate Sourcing
	3.3 Time Dependent Embeddings
	3.4 Embedding Induction

	4 Conclusion

