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Abstract
User activity sequence modeling has significantly improved performance across a range tasks in advertising spanning across
supervised learning tasks like ad response prediction to unsupervised tasks like robot and ad fraud detection. Self-supervised
learning using autoregressive generative models has garnered interest due to performance improvements on time series
and natural language data. In this paper, we present a scalable autoregressive generative pre-training framework to model
user ad activity sequences and inspect its scaling properties with respect to model size, dataset size and compute. We show
that test loss on pre-training task follows power law scaling with respect to model size, with larger models being more data
and compute efficient than smaller models. We also demonstrate that improvement in pre-training test loss translates into
better downstream task performance by benchmarking the models on conversion prediction and robot detection tasks in
advertising.
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1. Introduction
Advances in deep learning have driven a rapid adoption
of sequence models applied to user behavioral data for ad-
vertising use cases spanning across personalization, ad re-
sponse prediction, bidding and robot and fraud detection.
Deep sequence models reduce reliance on manual feature
engineering while utilizing fine grained event level in-
formation about the users’ activity, leading to improved
performance across a wide range of tasks. For tasks like
ad response prediction, where labeled data is available at
scale, typical approaches use supervised learning to train
deep sequence models [4]. However, in domains like ad
fraud detection, obtaining accurate labels at scale is im-
plausible and error prone due to unavailability of high
coverage ground truth, and attempts to create pseudo
labels are fraught with risks of introducing bias. In such
scenarios, learning self-supervised user representations
is a natural choice. Recent advances have shown that
self-supervised pre-training of sequence models not only
improves performance on tasks with low-labeled data
volumes but also enhances performance over traditional
supervised learning on large labeled datasets.

Generative models, which aim to model the input data
distribution 𝑃 (𝑥), have been at the forefront in demon-
strating the effectiveness of self-supervised learning. The
key idea in self-supervised learning is to construct a
proxy task on unlabeled data available at scale, training
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on which enables the model to learn robust task-agnostic
embeddings capturing important characteristics and fea-
tures about the dataset. Autoregressive models, a class
of generative models that perform maximum likelihood
estimation by defining an ordering over the input, are
a natural fit for language and time series data and have
yielded state-of-art results by training highly paralleliz-
able deep sequence model architectures like Transform-
ers [1] on the next-token prediction objective. This has
motivated exploration of learning user embeddings using
next event prediction on their ad activity sequences as
the self-supervised pre-training objective [7, 12].

An interesting property of generative pre-training of
Transformers is their enhanced performance with grow-
ing model size, data size and compute. Analysis of these
scaling properties has garnered interest in the research
community, with primary focus so far being on natural
language and computer vision data [16, 17]. In this work,
we investigate the scaling properties for autoregressive
pre-training of user activity sequence models in adver-
tising. Rather than generalizing scaling laws in natural
language processing to advertising, we believe user activ-
ity sequence models merit an independent scaling anal-
ysis, since they are different from text based models in
three significant ways. First, instead of a homogeneous
time-series of text tokens, user activity sequence is a
multi-dimensional time series where each event in the se-
quence can be described using a variety of features types
typically seen in advertising, spanning across discrete,
high cardinality, real valued and natural language types.
Second, data size in advertising is upper bounded by the
number of users interacting with the ad program. This
is in contrast with scaling of text-based models where
while increasing model size, dataset size is considered to
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be unbounded as one could crawl more webpages to get
additional data. Finally, since traffic patterns and user
behavior in advertising are continuously evolving, adver-
tising models need to be retrained continuously, making
training cost and time a critical factor in deciding the
scaling strategy for deployed settings.

The paper is structured as follows: Section 2 describes
the related work, we outline a scalable autoregressive
generative pretraining framework for user activity se-
quences in Section 3. In Section 4, we analyze different
scaling properties of the model with respect to model
size, dataset size and compute. We present how improve-
ment in test loss during pre-training translates to down-
stream performance on a supervised task of conversion
prediction and an unsupervised task of bot detection in
advertising in Section 5. We discuss the key learnings
and contrast them with scaling properties in other data
domains in Section 6 and conclude in Section 7.

2. Related Work
Generative models aim to learn the input data distribu-
tion 𝑃 (𝑥), and help either estimate the probability of a
given data point or sample a data point from the input dis-
tribution [31, 32, 33]. In this paper, we are primarily con-
cerned with autoregressive deep generative models. The
autoregressive formulation factorizes learning the distri-
bution 𝑃 (𝑥) as the product of conditional probabilities of
current value given all previous values in a pre-defined
ordering. This framework has been applied successfully
across various domain such as image synthesis (pixel-
RNN [22], CPCv2[26]), audio synthesis (Wavenet[25])
and text (GPT[23, 24]). Previous work has also applied
a similar autoregressive frameworks to self-supervised
modeling of user activity sequences [7, 2, 3, 12], with
benefits across various downstream tasks.

Power law based scaling properties for generative pre-
training on text datasets using Transformer models was
studied in [16]. These properties have been successfully
used to create large language models such as GPT-3 [27],
GPT-4 [28], PaLM [29], LLaMA [30], etc. Works to estab-
lish scaling laws for other data domains such as vision
followed in quick succession [17, 18, 19]. More recently,
there has been a line of work suggesting that these laws
might be less universal than earlier suggested [18]. In ad-
dition, methods have been proposed to make the scaling
exponential for certain tasks, by either pruning the data
effectively [21] or pre-training with a different objective
[20].

Self-supervised learning has emerged as an important
technique in domains of recommender systems [10], ad-
vertising [11] and fraud detection [12]. Particularly, in
detection of fraud [12, 13] where we typically observe a
lack of precise labels, pre-training representations help

avoid label bias. There has been very little work towards
exploring scaling behavior in these domains. [14] stud-
ied scaling behavior of DLRM style recommender system
models across parameters, compute and data to show
that unlike text data, model scaling does not contribute
as much to performance improvements in recommender
systems. Previous works on scaling laws in advertising
use CLIP based models and assume data access across
multiple domains [15]. To the best of our knowledge,
our work is the first to study scaling behavior of Trans-
formers built on user activity sequences alone that uses
vanilla autoregressive pre-training and also includes an
evaluation of large models on downstream tasks relevant
in advertising and fraud detection.

3. Modeling Framework

3.1. Constructing Input Sequences
We order ad events (clicks) from the user based on times-
tamps to construct the activity sequence. Each event in
the sequence is described using multiple features, cre-
ating a multi-dimensional time series of the user’s ad
activity. To handle multiple feature types describing the
ad event, we encode each feature using an embedding
function which is learnt in an end-to-end manner with
the model training objective. Real-valued are converted
to categorical using bucketing to tackle the large range.
Formally, let 𝑆 be the n-length sequence of events for a
user entity ordered in time, where 𝑋𝑖 indicates the event
in position 𝑖 in 𝑆. Let [𝐹1, 𝐹2,..,𝐹𝑘] be the feature set
used for the event description and let [𝐸1, 𝐸2,..,𝐸𝑘] be
the embedding functions for the corresponding features.

𝑆 = [𝑋1, 𝑋2, ...., 𝑋𝑖, ..., 𝑋𝑛] (1)

𝑋𝑖 = [𝐹1(𝑖);𝐹2(𝑖); ...;𝐹𝑘(𝑖)] (2)

The descriptor of each ad event is a concatenation of
associated feature embeddings. 𝐶𝑖 represents concatena-
tion of these embeddings for the event at position 𝑖.

𝐶𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐸1(𝐹1(𝑖)), 𝐸2(𝐹2(𝑖)), ..., 𝐸𝑘(𝐹𝑘(𝑖)))
(3)

3.2. Training Objective
The time series of events S represented by their concate-
nated feature representations C is provided as input to
an off-shelf autoregressive deep sequence model. The
output representation at the last time step is taken as the
output representation of the sequence.

𝑅 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑀𝑜𝑑𝑒𝑙(𝐶) (4)

where R is the output representation (embedding) ob-
tained at the final time step of the model.



The model parameters along with the embedding ma-
trices are trained using next event prediction as the self-
supervised objective. At each time step, the model pre-
dicts the probability of the next event given only the
history, making autoregressive property a necessary con-
dition for the choice of the deep sequence model. We
use the Transformer decoder block as the autoregressive
model. The goal is to maximize the following likelihood,

𝐿(𝑆) =
∑︁
𝑢

∑︁
𝑖

log 𝑝(𝑋𝑖+1|𝑋1, .., 𝑋𝑖; 𝜃) (5)

where for each user entity 𝑢, 𝑝(𝑋𝑖+1|𝑋1, .., 𝑋𝑖) is the
output probability of the next event at each time step
and 𝜃 corresponds to the model and embedding matrix
parameters. Assuming each feature of predicted event to
be independent given the history,

𝑝(𝑋𝑖+1|𝑋1, .., 𝑋𝑖) =

𝑘∏︁
𝑗=1

𝑝(𝐹𝑗(𝑖+ 1)|𝑋1, .., 𝑋𝑖) (6)

For the probability terms corresponding to low cardinal-
ity and bucketed real valued feature inputs, full softmax
can be computed without any computational bottleneck
and cross-entropy of the predicted distribution with the
next event feature is used in the loss function.

𝐽
𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝐹𝑗(𝑖) = 𝐻(𝐹𝑗(𝑖+ 1), 𝐹 𝑗(𝑖)) (7)

where 𝐻(𝑃,𝑄) is the cross entropy between probability
distributions 𝑃 and 𝑄, 𝐹𝑗(𝑖 + 1) is the ground truth
probability distribution for the 𝑗𝑡ℎ feature of the next
event and 𝐹 𝑗(𝑖) is its predicted output probability distri-
bution from the softmax function at time step 𝑖. To avoid
the computational bottleneck in case of high cardinality
and natural language features, contrastive predictive cod-
ing [5] is used, which classifies the ground truth feature
value of the next time step against a set of randomly cho-
sen negative examples directly in the embedding space.
The dot product between the predicted embedding and
the target embedding (ground truth or negative samples)
represents the logits, using which the cross entropy is
computed.

𝐽
𝐶𝑃𝐶𝐹𝑗(𝑖) = − log 𝑝(𝐸𝑗(𝐹𝑗(𝑖+ 1))|𝑃 𝑖,𝑗 , {𝑙})

= − log
𝑒(𝐸𝑗(𝐹𝑗(𝑖+1)))𝑇 �̂� 𝑖,𝑗

𝑒(𝐸𝑗(𝐹𝑗(𝑖+1)))𝑇 �̂� 𝑖,𝑗 +
∑︀

𝑙 𝑒
(𝐸𝑗(𝐹𝑗(𝑙)))𝑇 �̂� 𝑖,𝑗

(8)

where 𝑃 𝑖,𝑗 is the prediction for the next time step
embedding for the high cardinality / natural language
feature 𝐹𝑗 and {𝑙} are the set of events that form the
negative samples.

The final loss function now consists of two parts - ex-
act cross entropy loss for low cardinality features and
contrastive loss for high cardinality and natural language
features. Let 𝑐𝑗 be an indicator variable that takes the
value 1 if feature 𝐹𝑗 is a high cardinality / natural lan-
guage feature and 0 otherwise. The self-supervised loss
function hence becomes:

𝐽𝑠𝑒𝑙𝑓−𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 =
1

𝑛− 1

𝑛−1∑︁
𝑖

𝑘∑︁
𝑗=1

((1− 𝑐𝑗)𝐽𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝐹𝑗(𝑖) + (𝑐𝑗)𝐽𝐶𝑃𝐶𝐹𝑗(𝑖)) (9)

3.3. Data and Hyperparameters
The dataset consists of user ad click sequences aggre-
gated over a pre-defined time window for a large-scale
advertising program. Only sequences above a minimum
length are considered and maximum sequence length is
bounded to recent 𝑛 events. We split users into train,
validation and test sets in an 80:10:10 ratio. The models
train on TensorFlow in a distributed multi-machine setup
with NVIDIA V100 GPUs using synchronous weight up-
dates. The loss is computed and optimized using AdamW
[35] optimizer with 𝛽1 as 0.9 and 𝛽2 as 0.95. We clip the
global norm of the gradients at 1.0. Decoupled weight
decay with a rate of 0.1 is applied. Unless otherwise
mentioned, we use a fixed learning rate of 1𝑒−4 after an
initial warmup schedule that steadily increases learning
rate from 0 to 1𝑒− 4 over the first epoch.

4. Scaling Analysis

4.1. Model Size
We scale the model size in terms of the number of non-
embedding trainable parameters in the Transformer by
increasing the number of layers, the latent state dimen-
sion and number of heads. We vary the number of non-
embedding parameters over 4 orders of magnitude and
train each model till convergence on the entire train-
ing dataset, which is the upper bound of the available
data. Table 1 shows the different model configurations
and their test loss at convergence. We note that the per-
formance varies only weakly with the individual layer
hyperparameters but strongly with the overall model
non-embedding parameter count as shown in [16].

Plotting the test loss at convergence follows a power-
law relationship with number of non-embedding param-
eters at constant dataset size, as shown in Figure 1. We
extrapolate the power-law trend observed between 50k
parameters and 25M parameters to 85M parameters and
highlight that the estimated test loss of 7.429 closely
matches the experimental value of 7.425. This implies



Table 1
Parameter Scaling Configurations (global batch size and num-
ber of epochs set constant at 16384 and 20 respectively)

Parameters
(non embedding)

Layers Latent
Dimension

Heads Test
Loss

54,240 4 32 4 7.631
410,240 2 128 4 7.595
3,186,432 4 256 8 7.535
6,359,552 2 512 4 7.478
12,664,320 4 512 8 7.493
25,273,856 8 512 8 7.466
85,136,640 12 768 8 7.425

that even at 85M parameters, we are not bottlenecked by
the dataset size, indicating that a billion-scale parame-
ter model is unlikely to overfit due to a data bottleneck.
However, we acknowledge that this trend must eventu-
ally saturate, beyond which it would not be useful to
further increase model size under the current training
framework, as we are upper bounded in terms of organi-
cally available data.
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Figure 1: Parameter Scaling

4.2. Data Size
We analyze the impact of data scaling by considering
different train dataset sizes, created by considering 0.1%,
1%, 25% and 100% of available user sequence data. The
learning rate is kept constant and we scale number of
GPUs with increased model size to keep the global batch
size constant. We train three model sizes, with 410K,
3.1M and 12.6M trainable parameters, until convergence
on varying dataset sizes and plot their test loss in Figure
2.

We obtain three key insights from Figure 2 - first, we
observe that larger models are more data efficient. That
is, larger models require a smaller dataset to achieve a
fixed test loss. Second, smaller models benefit more from
increasing dataset size when compared to larger models.
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Figure 2: Data Scaling

Finally, for a fixed model size, increasing dataset size
shows diminishing returns in terms of test loss improve-
ment, suggesting that to maximize performance, model
size and dataset size must be scaled in tandem. How-
ever, in the practical setting of activity sequence models,
where the dataset size is upper bounded, it would still
be useful to train the largest possible model to maximize
performance within the bounds suggested in Section 4.1.
As larger model training requires significantly more com-
pute, we explore the compute allocation strategy in the
next section.

4.3. Compute
In industry settings, training of models is bounded by
monetary constraints. We use wall-clock GPU-hours
on a homogenous GPU setup (NVIDIA V100s) as the
measure of compute as against the standard PetaFLOP-
days, as the monetary cost incurred to train a model in
a standard cloud setup is a function of GPU wall-clock
time usage and not GPU utilization. In this section, we
explore for a fixed budget (monetary value or equivalent
GPU-hours), the efficient scaling strategy for model size
and data parallelism (global batch size) to achieve the
lowest possible test loss. Scaling up model size at a fixed
global batch size would require more GPUs to run in
parallel, reducing the number of serial gradient update
steps that can performed in a fixed GPU-hour budget.
Alternatively, one could reduce global batch size and
number of parallel GPUs for a model and increase the
number of serial steps. We analyze this trade-off by fixing
the number of GPU-hours and varying the configuration
across different model sizes and global batch sizes in a
way that GPU utilization stays maximized. . We plot
the test loss for different model sizes at maximum GPU
utilization in Figure 3 for configurations detailed in Table
2. We note that the learning rate is scaled proportionately
with the global batch size [36].



Table 2
Compute configurations at 16 GPU-hours

Configuration GPUs Time
(minutes)

Learning
rate

1 64 15 0.0008
2 32 30 0.0004
3 16 60 0.0002
4 8 120 0.0001

Table 3
Benchmarking large models at batch size < 𝐵𝑚𝑖𝑛

Parameters GPUs Time
(minutes)

Batch size
(per GPU)

Test loss

201,649,152 8 120 48 7.732
85,136,640 8 120 128 7.601
25,273,856 8 120 256 7.554

410,240 8 120 960 7.677

We draw two key insights from Figure 3 - first, for
fixed number of parallel GPUs and wall-clock time, larger
models reach a lower test loss - indicating that sample
efficiency (1/(number of serial gradient updates × global
batch size)) increases with model size for a target test loss.
Second, for all model sizes, increasing number of serial
gradient updates is more effective than increasing batch
size. Hence, the efficient scaling strategy would suggest
scaling up model size while lowering the global batch size
for a given compute budget. However, reducing batch
size to extremely low numbers would make the gradient
updates noisier. We empirically demonstrate in Table
3 that lowering batch size below a minimum threshold
𝐵𝑚𝑖𝑛 for a larger model leads to worse performance than
a smaller model at fixed compute.
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While scaling up model size at 𝐵𝑚𝑖𝑛 ensures efficient
allocation of compute between data parallelism and serial
steps, a larger model at𝐵𝑚𝑖𝑛 requires a certain wall clock
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Figure 4: Larger model outperforms smaller model after
𝑊𝑚𝑖𝑛 wall-clock time

time before its loss outperforms smaller models due to
more serial gradient steps in smaller models early on
in the training. We define 𝑊𝑚𝑖𝑛 as the minimum wall
clock time required for a model with batch size 𝐵𝑚𝑖𝑛 to
outperform all smaller models trained at their individual
𝐵𝑚𝑖𝑛 configuration for the same wall clock time.

We empirically demonstrate the existence of 𝑊𝑚𝑖𝑛 in
Figure 4, where the larger 25M parameter model at batch
size 16k eventually achieves a lower test loss than smaller
410k parameter model with a more compute efficient
configuration of batch size 5k, where both batch sizes are
greater than 𝐵𝑚𝑖𝑛. Further extending to a fixed compute
budget, Table 4 demonstrates that a larger 25M parameter
model with batch size 8K achieves a lower test loss at the
end of 30 minutes compared to a smaller 410K parameter
model with batch size 7K at the end of 120 minutes on
the wall-clock, indicating that the 𝑊𝑚𝑖𝑛 for the 25M
parameter model lies within the regime of the allocated
compute budget even when data parallelism for the larger
model was set at a more inefficient configuration than
the smaller model.

Table 4
Compute efficiency when 𝐵𝑚𝑖𝑛 and 𝑊𝑚𝑖𝑛 are satisfied at
fixed GPU-hours

Parameters GPUs Time
(minutes)

Batch size
(global)

Test loss

25,273,856 32 30 8192 7.623
410,240 8 120 7680 7.677

Hence, the efficient use of compute requires training
the largest possible model for which both 𝑊𝑚𝑖𝑛 and
𝐵𝑚𝑖𝑛 are supported within the given compute budget.



5. Downstream Task Evaluation
We evaluate the performance of the learnt user represen-
tations on two downstream tasks - first, where accurate
labels are available for training a classifier and another
where no task specific fine-tuning is possible due to lack
of labels.

5.1. Linear Separability in Classification
In this experiment, we benchmark the user embeddings
on the user conversion prediction task based on linear
separability. We train a linear binary classifier on the
learnt user embeddings (output of the last timestep in the
sequence) to predict if the user converts, and evaluate the
efficacy based on AUC-ROC. Higher AUC-ROC implies
that the embeddings have better linear separation with
respect to the downstream conversion label.

5.2. Click bot detection
Due to absence of accurate ground truth labels, super-
vised techniques fall short in bot detection scenarios.
While labeling individual samples accurately may not be
possible, multiple domain-knowledge based heuristics
can be applied to reliably evaluate if a given group of
users are robotic. Hence, we cluster self-supervised user
embeddings using k-means and clusters of users based
on these heuristics are marked as robotic.

We calibrate the heuristics to achieve a fixed False Pos-
itive Rate (FPR), which refers to the fraction of genuine
human traffic flagged as robotic by the algorithm. Since
we do not have ground truth labels, FPR is approximated
by using converting users as a proxy for the distribution
of human labels. The fraction of converting clicks that
were marked as robotic is computed as FPR. We also de-
fine Invalidation Rate (IVR) as the fraction of total ad
clicks flagged as robotic by the algorithm at the program
level. For a fixed operating point FPR, the model with
higher IVR indicates better robotic recall.

5.3. Results
We consider embeddings from models described in Sec-
tion 4.1, where we scale the non-embedding parameter
count over 4 orders of magnitude on the entire training
data and train till convergence. Table 5 shows the down-
stream performance of the models on the conversion
prediction and the robot detection tasks.

Unsurprisingly, lower test loss of the larger models
translates to better downstream performance for both su-
pervised task of conversion prediction and unsupervised
task of robot detection. We note that scaling patterns on
downstream tasks do not necessarily follow the power

Table 5
Lift over downstream task performance relative to 54K model

Params IVR @ fixed FPR pConversion AUC

3,186,432 +1.63 % +0.02 %
6,359,552 +3.44 % +2.51 %
85,136,640 +4.09 % +3.57 %
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Figure 5: Relative count of bot accounts flagged across click
sequence lengths

law, making it challenging to predict the potential per-
formance gains from a larger size model apriori.

Figure 5 shows the relative count of bot accounts
flagged by individual models, split into different click se-
quence length buckets. It is evident that the larger models
are highly effective in identifying bot activity with low
click bucket bot detection improving by 42% and medium
click bot detection improving by 20% across the model
sizes considered. This indicates that larger models are
able to learn better representations for smaller sequence
lengths and help disambiguate more sophisticated bot
patterns with limited data.

6. Discussion
We show that the test loss of activity sequence models
trained using generative pre-pretraining follows a power-
law relationship with model size at constant dataset size,
similar to observations made in text, images and audio
domains [16, 17, 34]. Unlike text and images domains
where increasing dataset size is relatively easier by gath-
ering data from the web, user activity sequence datasets
have a hard upper bound on dataset size, governed by
number of users interacting with the ad program. Thus,
increasing model sizes would eventually lead to overfit-
ting, saturating the power law curve. However, our data
scaling experiments show that present model sizes do
not show saturating behavior even on 1% dataset size,
indicating that there is significant room for model scal-
ing at our current dataset size. We also show that larger



models are more data efficient, achieving a lower test loss
at fixed dataset size, consistent with the trends observed
in text and image domain [16, 17] with a key distinction
that smaller models benefit more from increased data in
the activity sequence domain.

As monetary constraints are a key consideration in
compute scaling in most industrial settings, we presented
a strategy to allot fixed GPU-hours across model size and
global batch size. In contrast to observations in natural
language models [16], we observe that scaling serial gra-
dient update steps are more effective than batch size, as
long as the batch size is above 𝐵𝑚𝑖𝑛. Compute efficient
training of activity sequence models involves limiting the
number of GPUs such that a global batch size of 𝐵𝑚𝑖𝑛

is achieved, and picking a model size such that training
is performed for at least 𝑊𝑚𝑖𝑛 wall clock time. Thus,
compute efficient training stops far short of convergence,
as highlighted to also be the case in natural language and
computer vision models. While larger models have been
shown to be sample efficient [16, 17, 34], we show that
the same translates to activity sequence models, even
under an additional constraint of fixed GPU-hours.

Finally, we show performance on downstream tasks of
bot detection and conversion prediction improves with
generative pre-training of larger model sizes. While we
obtain performance gains, they do not follow a power law
relationship, making it difficult to predict performance
gains on business tasks with model size scaling. This
observation is also consistent with findings in the text
domain where just scaling model size has shown signif-
icant improvements in downstream task performance
[28] that may not always follow the power law.

7. Conclusion and Future Work
We presented model, data and compute based scaling
properties for generative pre-training of user activity
sequence Transformer models and demonstrated how
scaling translates to better next event prediction efficacy
which in turn leads to better downstream performance
on advertising tasks.

In future work we plan to to study scaling proper-
ties with respect to activity sequence lengths, by using
longer time windows as a mechanism to scale the cur-
rent bounded dataset size. We will also experiment with
more efficient training strategies that help improve over
the current power law, while reducing training costs. Fi-
nally, with recent work on joint representation learning
of time-varying sequence data and fixed tabular data us-
ing masked language modeling [12], we will attempt to
study if scaling properties from this work also generalize
to other pre-training objectives.
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